Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Кровозаменители на основе гемоглобина.



Попытки применения растворов гемоглобина в клинических целях предпринимались уже в начале века и были возобновлены в 30 - 40 гг. Эксперименты по введению растворов гемоглобина в различных дозах, концентрациях и при разных степенях кровопотери показали способность последних поддерживать жизнь животных, обеспечивая транспорт кислорода. Однако эти работы выявили также выраженную нефротоксичность этих препаратов.

Одна из основных причин нефротоксичности установлена в 1967 г. после применения растворов гемоглобина, очищенных от стромальных компонентов. Они не повреждали почки. Сделан вывод в том же году, что повреждение почек вызывается стромальной фракцией эритроцитов [52].

Выше уже говорилось о том, что раствор гемоглобина при введении его в кровоток резко увеличивает онкотическое давление, тем самым изменяя гемодинамику. Однако, согласно последним данным, полимеризованный гемоглобин с молекулярной массой 600 000 при концентрации 6г/100 мл обнаруживает сравнительно небольшое онкотическое давление крови порядка 20 мм. рт. ст., что близко к онкотическому давлению крови. Но при концентрации 12г/100мл раствор такого гемоглобина имел онкотическое давление 40 мм. рт. ст. Но в Америке (A.G. Greenburg) создан гемоглобин с молекулярной массой 1млн., который даже в концентрации 14г/100 мл обусловливал онкотическое давление 20 мм рт. ст. При такой концентрации раствор имеет кислородную емкость, равную таковой для цельной крови.

В современной литературе по этой проблеме встречаются мнения о том, что полимеризованный гемоглобин с большой и очень большой молекулярной массой является первым реальным кандидатом на преклинические и клинические испытания. Но возникают проблемы, без решения которых нельзя приступать к клиническим испытаниям.

Одна из таких проблем - неясность судьбы этих гигантских молекул в организме.

Предполагают, что они разрушаются в ретикулоэндотелиальной системе опсонинами плазмы и макрофагами. Внеэритроцитарный гемоглобин слишком быстро выводится из кровеносного русла [53].

В настоящее время обсуждаются следующие пути решения этой проблемы: моделирование эритроцитов путем микрокапсулирования растворов гемоглобина; химическая модификация гемоглобина с получением полигемоглобина и его конъюгатов с биополимерами; внутримолекулярная модификация гемоглобина, препятствующая его диссоциации на димеры.

Важным направлением в современном развитии проблемы создания " искусственной крови" является создание неких микротелец или микрокапсул, содержащих гемоглобин. Но первые опыты были неудачны, а перспективную идею вывели из небытия совсем недавно M.C. Farmer и B.P. Garber, создав методику получения липосом. При осуществлении микрокапсулирования растворов гемоглобина для создания искусственных мембран используются, кроме липидов, и синтетические полимеры, некоторые полимеризованные белки. Толщина получаемых мембран сравнима с толщиной мембран эритроцитов.

Казалось бы, что эта упрощенная модель эритроцита, судя по экспериментальным данным, может успешно функционировать в человеческом организме, и пора бы переходить на клинические испытания. Но в этих липосомах гемолипидный комплекс был способен осуществить лишь около 1 тысячи циклов " оксигенация - дезоксигенация". Это означает 6 - 8 часов " работы". Эритроцитарный же гемоглобин функционирует в течение 90 - 120 дней (по другим данным 40 дней) и способен осуществить 400 тысяч циклов.

Кроме этого, автор в своей работе засекретил методику изготовления микротелец, но, учитывая строение микротелец и насколько сложна их конструкция, можно предположить, что методика очень дорогая и трудоемкая, и она не сможет удовлетворить потребности, например при массовом травматизме. К тому же возникает вопрос о механизмах разрушения и дезактивации таких очень сложных структур и продуктов их разрушения. Отмечается также внедрение искусственных липосом в элементы ретикулоэндотелиальной системы клетки и нарушении ее функции [52, 53, 54].

Самой важной проблемой создания " искусственной крови" данного направления остается сохранение гемоглобином нативных свойств в течение длительного промежутка времени. В норме непрерывно происходящее разрушение этой сложной молекулы в эритроците купируется с помощью биологической работы ресинтеза, которая протекает с использованием энергии за счет гидролиза АТФ. Возможность искусственного получения таких мембран была показана еще 20 лет назад. Имеется принципиальная возможность создания таких мембран и для гемоглобинсодержащих липосом, но такая перспектива выглядит довольно отдаленной [53, 51].

Недостаток модифицированного гемоглобина - в более высоком, по сравнению с донорской кровью, сродстве к кислороду, что связано с отсутствием регулятора обратной оксигенации и более низкой кислородной емкости. В последнее время найден метод, который позволяет устранить этот недостаток путем создания модифицированного гемоглобина, способного к обратимой оксигенации. Вследствие больших размеров молекулы модифицированного гемоглобина (при его степени полимеризации свыше 25 - 30%) увеличивается СОЭ до 55 - 60мм/ч [55].

В последнее время активизировались исследования бычьего гемоглобина с целью использования его в качестве основы для создания " искусственной крови". Бычий гемоглобин тщательно очищают от примесей путем кристаллизации, полимеризуют и соединяют его с пиридоксаль-фосфатом.

Перфторуглеродные эмульсии.

Другое направление создания " искусственной крови" - создание синтетической модели крови на основе перфторорганических соединений.

Уникальные свойства ПФУ - способность растворять кислород и углекислоту, высокая инертность - послужили основанием для создания кислородпереносящих кровезаменителей именно на основе перфторуглеродов. Первое поколение ПФУ - флюосол- ДА (Япония) был испытан в клинике [56].

Перфторированные жидкости полностью нерастворимы в воде и поэтому в качестве кровозаменителей их можно использовать только в виде эмульсий. Капельки эмульсии можно рассматривать как своеобразную модель эритроцита, где фторуглерод заменяет гемоглобин, а слой эмульгатора наружную мембрану эритроцита. Но, в отличие от гемоглобина, характер присоединения и отдачи кислорода эмульсией перфторуглеродистых соединений иной. Кривая диссоциации цельной крови (оксигемоглобин) имеет S-образную форму, зависимость насыщения же фторорганической эмульсии от парциального давления кислорода выражается на графике прямой линией [49]. Известны ПФУ, обладающие повышенной кислородной емкостью: диметиадамантан, октилбромид и некоторые другие [53, 57].

В рецептуру большинства существующих в настоящее время эмульсий перфторорганических соединений, предназначенных для применения в медицинской практике, включен синтетический эмульгатор, относящийся к классу поверхностноактивных веществ - блоксополимер оксида этиленаоксида пропилена, известный в зарубежной литературе под названием " плюроник", а в отечественной - " проксанол".

Это поверхностно-активное вещество стабилизирует перфторорганические соединения in vitro, препятствуя процессу коалесценции [58].

Эмульсии перфторорганических соединений могут быть использованы для трансфузии, по мнению некоторых исследователей, только лишь в том случае, если животные или человек будут дышать при этом не воздухом, а кислородом [49, 59].

Известно, что различные эмульсии перфторорганических соединений неодинаково выводятся из организма, некоторые из них могут длительное время сохраняться в организмах экспериментальных животных. Это представляет серьезную проблему, решить которую позволят исследования длительности нахождения фторуглеродов в организме, времени циркуляции в кровотоке, мест кумуляции и депонирования, методов дезинтоксикации и путей выведения из организма. Кроме того, частицы эмульсии перфторорганических соединений способны сорбировать большие количества холестерина и липидов, что, возможно, влияет на время циркуляции в кровотоке и места кумуляции. Этот эффект сорбции можно использовать в медицинской практике, в частности в кардиологии. Эффект нужно учитывать при разработке новых эмульсий ПФУ и иметь ввиду при назначении таких препаратов больным с большим содержанием холестерина в крови. У эмульсий ПФУ есть еще один эффект, который нельзя не учитывать: применение их в качестве кислородпереносящих кровезаменителей активирует в клетке функции цитохрома Р 450. Такой эффект указывает на повышенное образование в клетке кислородных радикалов, которые могут участвовать в разрушении клеточных структур. Эмульсии ПФУ не влияют на реакцию связывания аллоантигенов человека с полными (АВО) и неполными (Rh), алло- и преципитирующими ксеногенными антителами и, следовательно, на определение групповой и резуспринадлежности крови. Присутствие эмульсии ПФУ заметно угнетает реакцию лимфоцитотоксических HLA - антител с лимфоцитами, розеткообразование Т- и В-лимфоцитов. Эмульсии ПФУ обеспечивают эффективное восстановление капиллярного кровотока, функционального состояния микрососудов и перфузии тканей.

Одним из недостатков инфузии кровезамещающего раствора является некоторое ухудшение агрегатного состояния крови и повышение проницаемости микрососудов. Вполне вероятно, что эти качества препарата связаны с недостаточной очисткой исходного материала и неполной гомогенностью суспензии [58, 53, 60, 61, 62, 63].

Плазмозаменяющие препараты.

В настоящее время разработана рациональная классификация кровезаменителей (О.К. Гаврилов, П.С. Васильев, 1975). В ее основу положены их функциональные свойства и особенности действия. Исходя из того, что показаниями к переливанию крови являются:

1) кровопотеря и шок различного происхождения;

2) интоксикации;

3) дефицит белка, были предложены препараты, позволяющие заменить хотя бы одну из этих функций крови.

С учетом того, что инфузионные средства осуществляют коррекцию патологических изменений в крови больного, возникающих в организме при различных патологических состояниях, их еще можно называть гемокорректорами (О.К. Гаврилов, 1975). В соответствии с указанными выше лечебными функциями гемотрансфузий выделяются следующие основные группы кровезаменителей.

К первой группе относятся полиглюкин, реополиглюкин, желатиноль, полифер. Их назначают для лечения кровопотери, шоков различного генеза, при операциях для восстановления гемодинамики и микроциркуляции, а также для гемодилюции.

Вторая группа кровезаменителей включает дезинтоксикационные инфузионные жидкости (гемодез, полидез, неогемодез). Эти препараты применяются для лечения заболеваний, которые сопровождаются интоксикациями: отравлений, ожогов, лучевой болезни, лейкозов, токсической диспепсии, дизентерии, гемолитической болезни новорожденных, а также болезней печени и почек.

К третьей группе относятся препараты, применяемые для парентерального питания. Это белковые гидролизаты (гидролизат казеина, аминопептид, аминокровин, гидролизин и др.), смеси аминокислот (аминон, вамин, полиамин, мориамин, морипрон, азонутрил, альвезин и др.), жировые эмульсии (липофундин, интралипид и др.), витаминные смеси для парентерального введения (солувит).

Выделяют также и четвертую группу кровезаменителей, к которой относят кристаллоидные солевые растворы: дисоль, трисоль, хлосоль и др., а также осмодиуретические вещества. Эти средства участвуют в регуляции кислотно-основного равновесия, водно-электролитного обмена и отчасти корригируют состав крови.

В настоящее время активно ведутся работы, направленные на создание кровезаменителей, которые могут быть отнесены к пятой группе – переносчики кислорода.

И, наконец, выделяют шестую группу – кровезаменители комплексного действия.

Независимо от группы и характера действия, все кровезаменители должны обладать физико-химическими и биологическими свойствами, близкими свойствам плазмы крови, т.е. должны быть: изоионичными; изотоничными; изоосмолярными; неанафилактогенными.


Поделиться:



Популярное:

  1. XXIII. ОБРАЗЫ, ПРЕДСТАВЛЕНИЯ В ОСНОВЕ ВСЕХ НАШИХ ДЕЙСТВИЙ
  2. Алюминий и сплавы на его основе.
  3. Анализ платежеспособности предприятия на основе показателей ликвидности баланса
  4. База правил нечеткой логики. Блок вывода. Нечеткий вывод на основе правила композиции.
  5. В 1990 году для участия в программе пилотируемых полётов представителей средств массовой информации был проведён отбор кандидатов в космонавты на конкурсной основе.
  6. В настоящее время используется классификация ХНК Н.Д.Стражеско и В.Х.Василенко, в основе которой лежит классификация сердечной недостаточности, предложенная Г.Ф.Лангом.
  7. В основе реализации проекта в среде VBA лежит понятие модуля. Модуль – это набор описаний и процедур на языке VBA, собранных в одну программную единицу.
  8. В социуме на основе первичных ценностно-моральных представлений о
  9. Выше какой температуры не должны нагреваться от воздействия электрического тока строительные конструкции, доступные для прикосновения персонала?
  10. ГЛАВА 5. АВТОМАТИЗАЦИЯ НАУЧНЫХ ИССЛЕДОВАНИЙ НА ОСНОВЕ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ
  11. ГЛАВА 8 ЯЗЫК ЛЮБВИ 5: ПРИКОСНОВЕНИЯ
  12. Глава 8. Наука прикосновений


Последнее изменение этой страницы: 2017-03-03; Просмотров: 988; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.023 с.)
Главная | Случайная страница | Обратная связь