Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Закономерность осуществимости и потенциальной эффективности систем



Исследования взаимосвязи сложности структуры системы со сложностью ее поведения позволили получить количественные выражения предельных законов для таких качеств системы, как надежность, помехоустойчивость, управляемость и др. На основе этих законов оказалось возможным получение количественных оценок порогов осуществимости систем с точки зрения того или иного качества, а объединяя качества — предельные оценки жизнеспособности и потенциальной эффективности сложных систем.

 

3.6. Закономерность целеобразования

Эти закономерности были получены в результате многочисленных исследований специалистами в различных научных областях (философия, психология, кибернетика), что позволило сформулировать некоторые общие закономерности процессов обоснования и структуризации целей в конкретных условиях совершенствования сложных систем. К их числу относятся следующие закономерности:

 

3.6.1. Зависимость представления о цели и формулировки цели от стадии познания объекта (процесса). Анализ понятия «цель» позволяет сделать вывод, что, формулируя цель, нужно стремиться отразить в формулировке или в способе представления цели ее активную роль в познании и в то же время сделать ее реалистичной, направить с ее помощью деятельность на получение определенного результата. При этом формулировка цели и представление о ней зависит от стадии познания объекта и в процессе развития представления об объекте цель может переформулироваться. Коллектив, формирующий цель, должен определить, в каком смысле на данном этапе рассмотрения объекта употребляется понятие цель, к какой точке «условной шкалы» («идеальное устремление в будущее» — «конкретный результат деятельности») ближе принимаемая формулировка цели.

 

3.6.2. Зависимость цели от внутренних и внешних факторов. При анализе причин возникновения цели нужно учитывать как внешние по отношению к выделенной системе факторы (внешние потребности, мотивы, программы), так и внутренние потребности, мотивы, программы («самодвижение» целостности). При этом цели могут возникать на основе противоречий как между внешними и внутренними факторами, так и между внутренними факторами, имевшимися ранее и вновь возникающими в находившейся в постоянном самодвижении целостности. Это очень важное отличие организационных «развивающихся», открытых систем от технических (замкнутых, закрытых) систем. Теория управления техническими системами оперирует понятием цели только по отношению к. внешним факторам, а в открытых, развивающихся системах цель формируется внутри системы, и внутренние факторы, влияющие на формирование целей, являются такими же объективными, как и внешние.

 

3.6.3. Возможность сведения задачи формирования общей (главной, глобальной) цели к задаче структуризации цели. Анализ процессов формулирования глобальной цели в сложной системе показывает, что эта цель возникает в сознании руководителя или коллектива не как единичное понятие, а как некоторая, достаточно «размытая» область. На любом уровне цель возникает вначале в виде «образа» цели. При этом достичь одинакового понимания общей цели всеми исполнителями, по-видимому, принципиально невозможно без ее детализации в виде упорядоченного или неупорядоченного набора взаимосвязанных подцелей, которые делают ее понятной и более конкретной для разных исполнителей. Таким образом, задача формулирования общей цели в сложных системах должна быть сведена к задаче структуризации цели.

3.7. Следующие закономерности являются продолжением двух первых применительно к структурам цели.

3.7.1. Зависимость способа представления структуры целей от стадии познания объекта или процесса (продолжение первой закономерности). Наиболее распространенным способом представления структур целей является древовидная иерархическая структура. Существуют и другие способы отображения: иерархия со «слабыми» связями, табличное или матричное представление, сетевая модель. Иерархическое и матричное описание — это декомпозиция цели в пространстве, сетевая модель — декомпозиция во времени. Промежуточные подцели могут формулироваться по мере достижения предыдущей, что может использоваться как средство управления. Перспективным представляется развертывание иерархических структур во времени, т.е. сочетание декомпозиции цели в пространстве и во времени.

3.7.2. Проявление в структуре целей закономерности целостности. В иерархической структуре целей, как и в любой иерархической структуре, закономерность целостности проявляется на каждом уровне иерархии. Применительно к структуре целей это означает, что достижение целей вышележащего уровня не может быть полностью обеспечено достижением подцелей, хотя и зависит от них, и что потребности, мотивы, программы, влияющие на формирование целей, нужно исследовать на каждом уровне иерархии.

Изолированность. Совокупность объектов, образующих систему, и связи между ними можно ограничить от их окружения и рассматривать изолированно.

Коммуникативность. Изолированность системы является относительной. Закономерность коммуникативности проявляется в том, что система не изолирована от других систем, а связана множеством коммуникаций со средой, представляющей собой сложное и неоднородное образование, содержащее подсистему (одного уровня с рассматриваемой), задающую требования и ограничения исследуемой системе. Таким образом, коммуникативность характеризует взаимосвязанность системы со средой.

Идентифицируемость. Каждая составная часть системы (элемент) может быть отделена от других составляющих, то есть идентифицирована.

Множественность. Каждый элемент системы обладает собственным поведением и состоянием, отличным от поведения и состояния других элементов и системы в целом.

Наблюдаемость. Все без исключения входы и выходы системы либо контролируемы наблюдателем, либо наблюдаемы.

Неопределенность. Наблюдатель не может одновременно фиксировать все свойства и отношения элементов системы и именно с целью их выявления осуществляет исследование.

Отображаемость. Язык наблюдателя имеет достаточно общих элементов с естественным языком исследуемого объекта, чтобы отобразить все те свойства и отношения, которые нужны для решения задачи.

Нетождественность отображения. Знаковая система наблюдателя отлична от знаковой системы проявления свойств объектов и их отношений, система строится с помощью перекодирования в новую знаковую систему; неизбежная при этом потеря информации определяет нетождественность системы исследуемому объекту.

Понимание рассмотренных закономерностей закладывает основы системного мышления и позволяет перейти к рассмотрению вопросов, связанных с системным представлением сложных объектов и процессов, а также решаемых в этих системах крупных проблем.

 

Контрольные вопросы

 

1. Особенности понятия закономерности систем.

2. Аксиома Парето. Нахождение оптимальной области по Парето.

3. Приведите примеры систем с выполнением закономерности целостности.


Тема 4

«Методы и модели теории систем»

Рассматривается понятие моделирования, уровни и виды моделирования, понятие модели, модель «черный ящик», принципы и подходы к построению моделей.

Моделирование является одним из основных методов исследования окружающей действительности и инструментом в научной и практической деятельности специалистов многих отраслей деятельности человека.

Моделирование связано с выяснением или воспроизведением свойств какого-либо реального или создаваемого объекта, процесса или явления с помощью другого объекта, процесса или явления.

Моделирование — это построение, совершенствование, изучение и применение моделей реально существующих или проектируемых объектов (процессов и явлений).

Моделирование – метод исследования систем на основе переноса изучаемых свойств системы на объекты другой природы.

Процесс моделирования – построение модели и исследование характеристик системы с целью прогнозирования поведения системы при различных режимах.

Выделяют четыре типа моделей: физические, электрические, математические и ситуационные.

Физические модели основаны на использовании эффекта масштаба в случае возможности пропорционального изменения всего комплекса изучаемых свойств. Примеры: манекены в ателье, модель гидроэлектростанции, глобус.

Электрические модели основаны на возможности построить из емкостей, индуктивностей и сопротивлений электрическую цепь эквивалентную любому дифференциальному уравнению. Пример: аналоговые машины.

Математические модели представляют собой систему математических уравнений или неравенств адекватно описывающую изучаемое явление или процесс.

Ситуационной моделью называют описание ситуации, в которой предстоит действовать изучаемому объекту, часто не содержащее полной информации и предполагающее включение человека или животного в качестве изучаемого объекта. Пример: деловые игры, тренажеры, ролевые игры, спектакли.

При моделировании важно следить за адекватностью отображения свойств системы на построенную модель. Различают гомоморфные и изоморфные модели.

Гомоморфизм отображение части свойств оригинала на модель.

Изоморфизм взаимно однозначное отображение соответствие между оригиналом и моделью в области изучаемых свойств.

Цель моделирования понять и изучить качественную и количественную природу явления, отразить существенные для исследования черты явления в пригодной для использования в практической деятельности форме.

Почему мы прибегаем к использованию моделей вместо попыток «прямого взаимодействия с реальным миром»? Можно назвать три основные причины.

Первая причина — сложность реальных объектов. Число факторов, которые относятся к решаемой проблеме, выходит за пределы человеческих возможностей. Поэтому одним из выходов (а часто единственным) в сложившейся ситуации является упрощение ситуации с помощью моделей, в результате чего уменьшается разнообразие этих факторов до уровня восприимчивости специалиста.

Вторая причина — необходимость проведения экспериментов. На практике встречается много ситуаций, когда экспериментальное исследование объектов ограничено высокой стоимостью или вовсе невозможно (опасно, вредно, ограниченность науки и техники на современном этапе).

Третья причина — необходимость прогнозирования. Важное достоинство моделей состоит в том, что они позволяют «заглянуть в будущее», дать прогноз развития ситуации и определить возможные последствия принимаемых решений.

Среди других причин можно назвать следующие:

• исследуемый объект либо очень велик (модель Солнечной системы), либо очень мал (модель атома);

• процесс протекает очень быстро (модель двигателя внутреннего сгорания) или очень медленно (геологические модели);

• исследование объекта может привести к его разрушению (модель самолета, автомобиля).

 

Цели моделирования

Человек в своей деятельности обычно вынужден решать две задачи — экспертную и конструктивную.

В экспертной задаче на основании имеющейся информации описывается прошлое, настоящее и предсказывается будущее. Суть конструктивной задачи заключается в том, чтобы создать нечто с заданными свойствами.

Для решения экспертных задач применяют так называемые описательные модели, а для решения конструктивных — нормативные.

 

Описательное моделирование

Описательные модели (дескриптивные, познавательные) предназначены для описания свойств или поведения реальных (существующих) объектов. Они являются формой представления знаний о действительности.

Примеры. План города, отчет о деятельности фирмы, психологическая характеристика личности.

Можно назвать следующие цели описательного моделирования в зависимости от решаемых задач:

• изучение объекта (научные исследования) — наиболее полно и точно отразить свойства объекта;

• управление — наиболее точно отразить свойства объекта в рабочем диапазоне изменения его параметров;

• прогнозирование — построить модель, способную наиболее точно прогнозировать поведение объекта в будущем;

• обучение - отразить в модели изучаемые свойства объекта. Построение описательной модели происходит по следующей схеме: наблюдение, кодирование, фиксация (рис. 4.1).

Рис. 4.1 Последовательность построения описательной модели

 

Модель объекта можно построить, только наблюдая за ним. То, что мы наблюдаем, необходимо закодировать либо с помощью слов, либо символов, в частности, математических, либо графических образов, либо в виде физических предметов, процессов или явлений. И наконец, закодированные результаты наблюдения надо зафиксировать в виде модели.

Уровни моделирования

В настоящее время при анализе и синтезе сложных систем получил развитие системный подход, который отличается от классического (или индуктивного) подхода. Согласно последнему, система рассматривается с позиций перехода от частного к общему и синтезирует (конструирует) систему путём слияния её элементов, разрабатываемых раздельно. Системный подход предполагает последовательный переход от общего к частному, когда в основе рассмотрения лежит цель, причём исследуемый объект выделяется из окружающей среды.

Системный подход позволяет решить проблему построения сложной системы с учётом всех факторов и возможностей, пропорциональных их значимости, на всех этапах исследования системы и построения её модели. Системный подход означает, что каждая система является интегрированным целым даже тогда, когда она состоит из отдельных разобщённых подсистем. Таким образом, в основе системного подхода лежит рассмотрение системы как интегрированного целого, причём это рассмотрение при разработке начинается с главного: формулировки цели функционирования.

Построение модели системы относится к числу системных задач, при решении которых синтезируют решения на базе огромного числа исходных данных. Использование системного подхода в этих условиях позволяет не только построить модель реального объекта, но и на базе этой модели выбрать необходимое количество управляющей информации в реальной системе, оценить показатели её функционирования и тем самым на базе моделирования найти наиболее эффективный вариант построения и оптимальный режим функционирования реальной системы.

В соответствии с системным подходом в процессе автоматизированного проектирования сложных систем моделирование их элементов и функциональных узлов выполняется в несколько этапов, на различных уровнях, соответствующих определённым уровням проектирования.

Методика моделирования непосредственно зависит от уровня моделирования, т.е. от степени детализации описания объекта.

Каждому уровню моделирования ставится в соответствие определённое понятие системы, элемента системы, закона функционирования элементов системы в целом и внешних воздействий.

В зависимости от степени детализации описания сложных систем и их элементов можно выделить три основных уровня моделирования.

1. Уровень структурного или имитационного моделирования сложных систем с использованием их алгоритмических моделей (моделирующих алгоритмов) и применением специализированных языков моделирования, теорий множеств, алгоритмов, формальных грамматик, графов, массового обслуживания, статистического моделирования.

2. Уровень логического моделирования функциональных схем элементов и узлов сложных систем, модели которых представляются в виде уравнений непосредственных связей (логических уравнений) и строятся с применением аппарата двухзначной или многозначной алгебры логики.

3. Уровень количественного моделирования (анализа) принципиальных схем элементов сложных систем, модели которых представляются в виде систем нелинейных алгебраических, или интегро-дифференциальных уравнений и исследуются с применением методов функционального анализа, теории дифференциальных уравнений, математической статистики.

Совокупность моделей объекта на структурном, логическом и количественном уровнях моделирования представляет собой иерархическую систему, раскрывающую взаимосвязь различных сторон описания объекта и обеспечивающую системную связность его элементов и свойств на всех стадиях процесса проектирования. При переходе на более высокий уровень абстрагирования осуществляется свёртка данных о моделируемом объекте, при переходе к более детальному уровню описания – развёртка этих данных.

На структурном уровне моделируется состав элементов объекта на низшем уровне структурирования. К структурным относятся бинарные отношения иерархической подчинённости, отношения порядка, смежности, сопряжённости, функциональной связи.

На логическом уровне моделирования каждому множеству, булевой матрице бинарных отношений или структурному графу соответствуют наборы логических отношений между входящими в них элементами, представленными в виде логических переменных.

При количественном моделировании каждому элементу множества булевой матрицы или логической переменной ставится в соответствие алгебраическая и другая количественная переменная, а логические отношения переходят в количественные отношения, например, уравнения, неравенства.

На каждом из основных уровней моделирования возможны описания объекта с различной степенью полноты и обобщения, так как существуют разные степени детализации структурных, логических и количественных свойств и отношений. Однако задача построения требуемой приближённой модели, которая бы достаточно точно отражала характерные свойства объекта или его элемента на данном уровне проектирования и в то же время являлась доступной для исследования, представляет значительные трудности.

Моделирование часто сравнивается с альтернативным методом изучения действительности: методом научных экспериментов.

Достоинствами метода моделирования являются:

универсальность,

меньшая стоимость,

меньшая продолжительность во времени для экономических моделей.

Недостатками являются:

гносеологические трудности построения адекватной модели, (гносеология - теория познания)

сбор большого количества достоверной информации,

нецелостность модели.

 


Поделиться:



Популярное:

  1. I) Получение передаточных функций разомкнутой и замкнутой системы, по возмущению относительно выходной величины, по задающему воздействию относительно рассогласования .
  2. I. Естествознание в системе науки и культуры
  3. I. Логистика как системный инструмент.
  4. I. ПОЧЕМУ СИСТЕМА МАКАРЕНКО НЕ РЕАЛИЗУЕТСЯ
  5. I. РАЗВИТИИ ЛЕКСИЧЕСКОЙ СИСТЕМЫ ЯЗЫКА У ДЕТЕЙ С ОБЩИМ НЕДОРАЗВИТИЕМ РЕЧИ
  6. II. О ФИЛОСОФСКОМ АНАЛИЗЕ СИСТЕМЫ МАКАРЕНКО
  7. II. Система обязательств позднейшего права
  8. II. Соотношение — вначале самопроизвольное, затем систематическое — между положительным мышлением и всеобщим здравым смыслом
  9. V этап. Сестринский анализ эффективности проводимого сестринского процесса.
  10. V) Построение переходного процесса исходной замкнутой системы и определение ее прямых показателей качества
  11. VI. ОБСЛЕДОВАНИЕ БОЛЬНОГО ПО ОРГАНАМ И СИСТЕМАМ
  12. VIII. Общение и система взаимоотношений


Последнее изменение этой страницы: 2017-03-11; Просмотров: 1208; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.046 с.)
Главная | Случайная страница | Обратная связь