Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Общие сведения об элементах систем



Любая система регулирования движения поездов состоит из от­дельных элементов, связанных между собой. В этих системах ис­пользуют в основном электрические элементы, в которых одна из величин (входная или выходная) или обе являются электри­ческими (ток, напряжение). В дальнейшем будем рассматривать только электрические элементы.

В зависимости от выполняемых функций в системах регулиро­вания движения поездов используются следующие элементы: дат­чики, электрические фильтры, реле, трансмиттеры, стабилизаторы, усилители, дешифраторы, трансформаторы, двигатели, распреде­лители и др.

Электрический датчик предназначен для измерения или преобразования неэлектрических величин в электрические и осу­ществляет качественное преобразование воздействия. Примером та­ких датчиков могут служить магнитная педаль ПБМ-56, с помо­щью которой контролируется прибытие поезда на станцию при полуавтоматической блокировке, а также в других системах регу­лирования движения, и рельсовая цепь, с помощью которой конт­ролируется наличие или отсутствие подвижной единицы на изоли­рованном путевом участке.

Электрический фильтр пропускает электрические сиг­налы (напряжение, ток) одних частот и препятствует пропуску сиг­налов других частот; он осуществляет количественное преобразо­вание воздействия, полученного от предыдущего элемента, и передачу его на последующий элемент.

Реле преобразует электрическую величину (ток, напряжение) в механическую (перемещение якоря), которая снова преобразуется в электрическую величину посредством замыкания или размыка­ния электрического контакта.

Трансмиттер вырабатывает кодовые сигналы, используемые в работе систем регулирования движения поездов. Стабилиза­тор поддерживает постоянство выходной величины при измене­нии входной величины в известных пределах. Усилитель слу­жит для повышения амплитуды электрических сигналов и осуществляет количественное преобразование воздействия. Дешиф­ратор расшифровывает принятый код и передает воздействие на последующий элемент, осуществляя качественное его преобразова­ние. Трансформатор осуществляет количественное преобра­зование напряжения. Двигатель преобразует электрическую энергию в механическое движение с целью воздействия на объект автоматического управления или регулирования. Распредели­тель обеспечивает распределение как во времени, так и по от­дельным электрическим цепям поданную на его вход серию им­пульсов.

Таким образом, элементы являются составной частью систем ре­гулирования движения, которые выполняют ответственные функ­ции по регулированию и обеспечению безопасности движения по­ездов. Поэтому к элементам систем регулирования движения предъявляется ряд требований. Элементы должны быть простыми по конструкции и принципу действия, обладать высокой надежно­стью действия и защищенностью от помех, иметь малые габарит­ные размеры и массу, легко заменяться в системе и быть доступны­ми для ремонта и профилактических осмотров. При отказе работы элемента должны полностью исключаться в системе положения, опасные для движения поездов.

Исходя из конкретных условий эксплуатации, к элементам мо­жет предъявляться и ряд дополнительных требований. Например, к элементам, которые размещаются на локомотивах и в релейных шкафах на пути, предъявляются требования по виброустойчивос­ти, защите от атмосферных воздействий и пыли.

Общие сведения о реле

В системах регулирования движения поездов применяются реле, с помощью которых производят различные переключения электри­ческих цепей для осуществления схемных зависимостей между со­стоянием пути, положением стрелок и показанием сигнала, необхо­димых для обеспечения безопасности движения поездов.

Реле представляет собой элемент, в котором при плавном изме­нении входной величины (тока, напряжения) происходит скачко­образное изменение выходной величины (перемещение якоря у контактных реле, изменение внутреннего электрического или магнитного сопротивления у бесконтактных реле).

Большое распространение получили электрические контактные реле, в частности, электромагнитные, у которых скачкообразное из­менение тока во входной цепи достигается физическим ее разры­вом. Такие реле просты и надежны в работе и обеспечивают неза­висимое переключение большого числа выходных цепей. Реле имеет два устойчивых состояния: рабочее (под током), при котором реле возбуждено и якорь его притянут, т.е. замкнуты верхние (фронто­вые) контакты; нерабочее (без тока), при котором реле обесточено и якорь отпущен, т.е. замкнуты нижние (тыловые) контакты.

По принципу действия реле СЦБ подразделяются на электро­магнитные, у которых при протекании электрического тока по об­мотке возникает магнитное поле, которое действует на подвижный якорь, притягивая его к сердечнику и переключая связанные с яко­рем контакты, и индукционные, которые работают под действием переменного магнитного поля, создаваемого одним элементом реле, с током, индуцированным в подвижном секторе магнитным полем другого элемента.

Рис. 1.2. Устройство реле

 

В зависимости or рода питающего тока реле могут быть посто­янного, переменного и постоянно-переменного тока.

Электромагнитное реле постоянного тока (рис. 1.2, а) состоит из катушки 3, надетой на сердечник 4, ярма 5, подвижного якоря 2 и связанных с ним контактов 1. Катушка, или обмотка реле служит для создания магнитного потока, а сердечник — для его усиления. Ярмо предназначено для получения непрерывного магнитопровода, подвижной частью которого является якорь. При отсутствии тока в катушке реле якорь отпущен, замкнут нижний (тыловой) кон­такт О—Т. При пропускании тока в катушке создается магнитный поток, сердечник намагничивается и притягивает к себе якорь, в результате чего размыкается контакт О—Т и замыкается верхний (фронтовой) контакт О—Ф. У такого реле якорь притягивается при прохождении тока по катушке в любом направлении, поэтому это реле называют нейтральным.

Реле, у которого якорь переключается в зависимости от направ­ления прохождения тока в катушке, называется поляризованным. По­ляризованное реле (рис. 1.2, 6) состоит из сердечника 1, на который надеты катушки 2 и 6, соединенные последовательно, из постоян­ного магнита 3, поляризованного якоря 5 и связанных с ним кон­тактов 4. Постоянный магнит обеспечивает переключение якоря при изменении направления тока в обмотке реле и удерживает якорь в заданном положении при отсутствии тока в обмотке.

Для пояснения работы поляризованных реле применяют два тер­мина: прямая и обратная полярность постоянного тока. У каждого реле к определенному (основному) выводу катушки подключается плюсовой полюс, а к другому выводу — минусовой полюс источ­ника питания. При таком подключении полюсов источника пита­ния принято считать, что ток в катушке будет проходить всегда от плюсового вывода к минусовому. Такое направление тока в катуш­ке называется прямой полярностью тока, а направление тока в катушке реле при подключении к основному ее выводу ми­нусового, а к другому — плюсового полюса источника питания на­зывается обратной полярностью тока. Например, если на вывод А катушки (см. рис. 1.2, б) подается плюсовой полюс ис­точника питания (+), а на вывод Б — минусовой (-), то направле­ние тока в катушке от вывода А к выводу Б считается прямой по­лярностью тока. Если же к выводу Б катушки подключен плюсовой полюс источника питания (+), а к выводу А — минусовой (—), то направление тока, протекающего от вывода Б к выводу А, считает­ся обратной полярностью тока.

При отсутствии тока в катушках реле якорь под действием по­тока Фп постоянного магнита (показан штриховой линией) удер­живается в том положении, в котором он находился в момент вык­лючения тока. На рис 1.2, б поляризованный якорь занимает левое положение, которое соответствует прохождению в катушках тока прямой полярности, и замыкает нормальный контакт О—Н. При прохождении тока обратной полярности в катушках создается маг­нитный поток Фк (показан сплошной линией), который имеет на­правление от вывода Б к выводу А, и под полюсными наконечни­ками сердечника взаимодействует с магнитным потоком Фп постоянного магнита (показан штриховой линией). В левом зазоре сердечника магнитные потоки направлены навстречу друг другу, т.е. Фк—Фп, в правом — в одну сторону, т.е. Фь+Фп. Якорь под действием более сильного магнитного поля переключается вправо, замыкая переведенный контакт О—П.

При прохождении тока прямой полярности происходит измене­ние направления магнитного потока Фк, отчего в правом зазоре магнитный поток Фп вычитается из Фк, а в левом Фп и Фк склады­ваются, как показано на рис. 1.2, б. Вследствие увеличения магнит­ного поля у левого сердечника якорь переключается к левому сер­дечнику, замыкая нормальный контакт О—Н.

Включение реле характеризуется напряжением (током) срабаты­вания, при котором происходит притяжение якоря и замыкание фронтовых контактов. Выключение реле характеризуется напряже­нием (током) отпускания, при котором происходит отпускание яко­ря и замыкание тыловых контактов.

К конструкции реле предъявляют высокие требования надежно­сти, долговечности и четкости работы, так как от правильной ра­боты реле зависят безопасность движения поездов и бесперебойное действие систем регулирования движения.

По надежности действия реле бывают первого (I) и низшего клас­сов надежности. Класс надежности определяется сочетанием следу­ющих основных факторов: наличием гарантии возврата якоря под действием собственного веса при выключении тока в обмотке реле, степенью несвариваемости фронтовых контактов, состоянием кон­тактной системы — открытая или закрытая.

К реле I класса надежности относятся такие, у которых возврат якоря при выключении тока в обмотке обеспечивается с максималь­ной гарантией под действием веса якоря, а для контактных поверх­ностей применяются несвариваемые материалы, контактная же си­стема закрытая. Такие реле применяются во всех ответственных схемах, обеспечивающих безопасность движения, без дополнитель­ного схемного контроля отпускания якоря реле.

К реле низших классов надежности относятся такие, у которых отпускание якоря гарантируется в меньшей степени и происходит под действием веса якоря и реакции контактных пружин, и у кото­рых возможно сваривание контактов. Эти реле используют в схе­мах, непосредственно не связанных с обеспечением безопасности движения поездов (в схемах контроля и индикации). Если такие реле применяют в ответственных цепях, то обязателен схемный контроль притяжения и отпускания якоря реле.

По числу рабочих позиций реле делятся на двух- и трехпозиционные. По числу контактных групп реле бывают одноконтактные (с одной контактной группой) и многоконтактные (с двух-, четы­рех*, шести- и восьмиконтактными группами), а также одно-, двух- и многообмоточные. По времени срабатывания реле подразделя­ют на: быстродействующие — с временем срабатывания на притя­жение и отпускание якоря до 0, 03 с; нормальнодействующие — с временем срабатывания до 0, 2 с; медленнодействующие — с вре­менем срабатывания до 1, 5 с; временные — с временем срабатыва­ния свыше 1, 5 с.

По мощности, необходимой для срабатывания реле (притяже­ние якоря реле), реле подразделяют на маломощные, у которых мощ­ность срабатывания 1...3 Вт; средней мощности 3...10 Вт; мощные — более 10 Вт.

В эксплуатируемых системах регулирования движения исполь­зуются в основном штепсельные реле, которые отличаются от реле с контактно-болтовым соединением конструкцией и спосо­бом включения в схемы.

Реле СЦБ имеют определенное условное обозначение (маркиров­ку), состоящее из букв и цифр, занимающих определенное место в обозначении. Первая буква или сочетание двух первых букв в обо­значении указывает на физический принцип действия реле: Н — ней­тральное, П — поляризованное, К — комбинированное, СК — само­удерживающее комбинированное, И — импульсное, ДС — двухэлементное секторное (индукционное реле переменного тока). Буква М, стоящая на втором месте в условном обозначении штеп­сельных реле, указывает на малогабаритное исполнение реле. У реле, предназначенных для использования в автоблокировке, на первом месте стоят две буквы АН: первая буква А указывает на то, что реле автоблокировочное малогабаритное, а вторая буква — на принцип действия реле. У пусковых реле в условном обозначении имеется буква П, а у реле с выпрямителем — буква В. Штепсельное соединение реле с другими приборами обозначается буквой Ш.

В обозначении медленнодействующих реле присутствует допол­нительная буква: М — обозначает реле с замедлением на отпуска­ние якоря с помощью медной гильзы, Т — реле с замедлением на срабатывание с помощью термоэлемента.

После указанных букв ставится цифра, характеризующая число контактных групп (НМШ1, АНШ2, НМПШЗ и т.д.). Второе число, отделенное дефисом, обозначает сопротивление обмотки реле по­стоянному току в омах (НМШМ2—640, НМПШ2—400 и т.д.).

У некоторых типов реле эта система обозначений не выдержи^ вается. Так, в обозначении аварийных и огневых реле (АСШ, ОМШ) первая буква характеризует назначение реле.

Наряду с электрическими контактными реле все большее приме-1 нение получают полупроводниковые приборы релейного действия (бесконтактные реле) и микроэлектронные приборы, использующие интегральные микросхемы и микропроцессорную технику.

Реле постоянного тока

Реле постоянного тока по принципу действия являются электро­магнитными, а по конструкции подразделяются на следующие типы:

Нейтральные реле НМШ, НШ, АНШ. Это двухпозиционные реле с одним якорем, который притягивается к полюсам катушек при прохождении через них постоянного тока в любом направлении, т.е. реле нейтральны к полярности постоянного тока. Все эти реле относятся к 1 классу надежности и могут быть нормально- и мед­леннодействующими. По принципу действия относятся к электро­магнитным.

Нейтральное малогабаритное штепсельное реле типа НМШ (рис. 1.3, а) состоит из сердечника 4 с надетыми на него катушками 5 и 6, Г-образного ярма 2 и якоря 7 с противовесом 3. Бронзовый упор

8 на якоре исключает его залипание, так как он пре­пятствует касанию якоря в притянутом положении к полюсу сердечника 4. Якорь двумя тягами 9 уп­равляет контактной систе­мой. Фронтовые контак­ты Ф-1 изготавливают из угля с серебряным напол­нением, а общие О 11 и тыловые Т 10 — из сереб­

ра. Такое сочетание мате­риалов исключает сваривание фронтовых контактов с общими при пропускании по ним тока значительной величины.

Условное обозначение реле и его контактов, а также нумерация контактов показаны на рис. 1.3, б.

Реле РЭЛ (рис. 1.4) имеет две независимые обмотки 2, каждая из которых состоит из двух катушек, расположенных на разных сер­дечниках. Магнитная система реле разветвленная, содержит якорь 5, ярмо / и два сердечника 11, на каждом из которых расположено по две катушки. Якорь закреплен на ярме при помощи скобы 6 и может свободно поворачиваться при работе реле. На якоре при­креплена бронзовая пластина 4, которая обеспечивает зазор между якорем и обоими сердечниками. Для утяжеления якоря имеются два груза 3, которые закреплены на якоре изгибом планки 7.

Контактная система содержит восемь независимых контактов. Каждый переключающий контакт состоит из фронтового 8, под­вижного 9 и тылового 10 контактов. Контактная система выполне­на в виде отдельного узла, закрепленного на ярме. Контакты раз­мещены в один ряд. Реле закрыто прозрачным колпаком и запломбировано.

Поляризованное реле ИМШ. Оно двухпозиционное, имеет в маг­нитной системе постоянный магнит, под действием которого якорь переключается из одного положения в другое в зависимости от на­правления тока в обмотке реле. Реле ИМШ быстродействующее и не относится к реле 1 класса надежности. Оно предназначено для импульсной работы, их магнитная система может выполняться с ней­тральной регулировкой якоря и с регулировкой на преобладание, т.е. с возвращением его в исходное положение при выключении тока.

Поляризованные импульсные реле нашли широкое применение в устройствах СЦБ в качестве путевых реле в перегонных рельсо­вых цепях, так как они обладают высокой чувствительностью и большой скоростью срабатывания от импульсов тока. Импульсные реле в цепях постоянного тока благодаря регулировке положения якоря в магнитной системе могут работать от токов одного направ­ления или токов разных направлений, т.е. обладают избирательно­стью к направлению постоянного тока. В устройствах СЦБ наи­большее распространение получили импульсные малогабаритные штепсельные реле типа ИМШ.

Импульсное малогабаритное реле ИМШ. Оно состоит (рис. 1.5, а) из постоянного магнита 2, катушки 3, внутри которой расположен легкий якорь, укрепленный снизу на металлическом основании 8 с подвижными контактами 6, магнитопровод 4 с четырьмя полюс­ными наконечниками 1 в виде винтов. Детали магнитной системы смонтированы на корпусе 7 и закрыты колпаком с ручкой. Контак­тная система состоит из контактов неподвижных 5 и подвижных б. Переключение якоря и контактов происходит при прохождении че­рез катушку импульса тока. Условное обозначение импульсного реле

л его контактов показаны на рис. 1.5, б, где плюсовой вывод обмот­ки реле и положение контакта Н, замыкающегося при прохожде­нии тока прямой полярности, изображены вертикальной чертой.

Действие импульсного реле аналогично поляризованному, од­нако при удалении от нейтральной линии верхнего и нижнего лево­го полюсных наконечников получается регулировка реле с преоб­ладанием влево, а при удалении от нейтральной линии верхнего левого и правого нижнего полюсных наконечников — с преоблада­нием вправо. В этом случае импульсное реле будет работать только от импульсов определенной полярности и не срабатывать от им­пульсов другой полярности. Настройка реле на работу с магнит­ным преобладанием якоря производится посредством смещения винтов полюсных наконечников 1 от нейтральной линии. Это свой­ство импульсного поляризованного реле используется в импульс­ных рельсовых цепях постоянного тока для защиты от ложного сра­батывания при замыкании изолирующих стыков в смежных рельсовых цепях.

В качестве приемника импульсов переменного тока еще применя­ется импульсное малогабаритное штепсельное реле ИМВШ-110. От­личительной особенностью этого реле по сравнению с реле ИМШ является то, что внутри И М ВШ-110 на корпусе зак­реплена панель с выпрямителем, состоящим из че­тырех кремниевых диодов. Кроме этого, свойство избирательности к направлению тока импульсно­го поляризованного реле у реле ИМВШ не исполь­зуется, так как переменный ток поступает в обмот­ку через выпрямитель, т.е. всегда в одном направлении.

В настоящее время вместо реле ИМВШ распро­странение получило реле ИВГ (импульсное с вып­рямительной приставкой герконовое). Оно имеет нейтральную систему. На полюсном наконечни­ке сердечника установлен ртутный магнитоуправляемый геркон (герметизированный контакт). Геркон (рис. 1.6) состоит из стеклянного бал­лона 5, по концам которого впаяны неподвижные 4, 3 и подвижная 1 плоские контактные пружины.

При воздействии магнитного поля подвижная контактная пружина 1 перемещается, размыкая тыловой и замыкая фронтовой контакты. На контактную поверхность 2 при работе геркона по капиллярам подвижной контактной пружины 1 постоянно поступает ртуть. Сма­чивание контактов ртутью обеспечивает их низкое и стабильное пе­реходное сопротивление. Контактные пружины геркона герметизи­рованы и не подвергаются окислению и загрязнению, поэтому геркон обладает высокой надежностью. Число срабатываний герконового реле в десятки и даже сотни раз больше, чем у обычного электромаг­нитного реле.

Комбинированные реле КМШ, КШ. Они трехпозиционные с ней­трально поляризованной системой, имеющей один нейтральный и один поляризованный якорь. Нейтральный якорь этих реле устро­ен и работает так же, как и у нейтральных реле, т.е. его переключе­ние не зависит от полярности постоянного тока в обмотке реле. Переключение поляризованного якоря из одного положения в дру­гое у таких реле происходит в зависимости от направления тока в обмотке реле. При возбуждении комбинированных реле первым сра­батывает поляризованный якорь, а затем притягивается нейтраль­ный якорь, а при смене полярности тока в обмотке реле происхо­дит кратковременное отпускание якоря. Комбинированные реле по времени срабатывания относятся к нормально действующим.

Комбинированное малогабаритное реле типа КМШ. Оно состо­ит (рис. 1.7, а) из двух катушек 1 и 4, надетых на сердечники 2, ней­трального якоря 7 и постоянного магнита 3, с которым связан по­ляризованный якорь 5. Нейтральный и поляризованный якоря с помощью тяг 6 и 8 переключают контакты. Условные обозначения комбинированного реле и его контактов показаны на рис. 1.7, б.

Если ток в катушках реле отсутствует, то поляризованный якорь занимает всегда одно из крайних положений, а именно то, в кото­ром он находился в момент выключения тока; нейтральный якорь при этом отпущен. Магнитный поток постоянного магнита развет­вляется на два параллельных магнитных потока Фп1 и Фп,. Так как поляризованный якорь находится в крайнем левом положении, то благодаря меньшему воздушному зазору слева магнитный поток Фп1 в этом сердечнике получает приращение Фп и за счет этого пре­вышает магнитный поток Фп2 в правом сердечнике. Из-за разности

Рис 1 7 Комбинированное реле КМШ

 

этих потоков якорь удерживается у левого сердечника. При про­пускании тока через катушки в сердечниках возникает магнитный поток Фк, который разветвляется по двум параллельным ветвям: через нейтральный и поляризованный якоря. Магнитный поток Фк в правом сердечнике совпадает по направлению с магнитным пото­ком Фп„ а в левом сердечнике направлен навстречу магнитному потоку Фп1, поэтому в правом сердечнике магнитный поток усили­вается (Фп2 + Фк), а в левом — ослабляется (Фп1 — Фк). Вследствие этого поляризованный якорь переключается в правое положение, замыкая общие контакты с переведенными. Затем под действием части потока Фк, проходящего через нейтральный якорь, он притя­гивается, замыкая общие контакты с фронтовыми.

Изменение направления тока в катушках реле вызывает измене­ние направления магнитного потока Фк, что приводит к усилению магнитного потока в левом сердечнике и ослаблению в правом, в результате чего поляризованный якорь притянется к левому сердечни­ку, а нейтральный якорь будет крат­ковременно отпадать, а затем вновь притягиваться из-за перемагничивания сердечников.

Самоудерживающее комбинирован­ное реле СКШ, СКПШ. Оно трехпозиционное с магнитной системой, аналогичной магнитной системе комбинированного реле, но допол­ненной самоудерживающей магнит­ной системой для удержания нейтрального якоря в притянутом положении в момент изменения направления тока в основных ка­тушках реле. Самоудерживающая система представляет собой электромагнитное реле, установленное в нижней части контактов нейтрального якоря. Якорь удерживающего электромагнита шарнирно связан специальной тягой с нейтральным якорем основной магнитной системы реле.

Рассмотрим принцип действия самоудерживающего комбиниро­ванного реле на примере рис. 1.8, а. При изменении направления тока в катушках реле магнитный поток изменяется, в результате чего в дополнительной обмотке 5 возникает ЭДС, которая создает импульс тока в катушке 2 удерживающего электромагнита 1. Поэтому якорь 3 последнего и связанный с ним жесткой тягой нейтральный якорь 4 некоторое время удерживаются в притянутом положении. Этого вре­мени достаточно, чтобы при изменении полярности тока в катушках реле нейтральный якорь не был отпущен.

Условное обозначение самоудерживающего комбинированного реле и его контактов показаны на рис. 1.8, б.

Кодовые реле КДРШ — двухпозиционные с одним нейтральным якорем, работающим независимо от направления тока в обмотке реле. Эти реле относятся к низшему классу надежности действия, а по времени срабатывания могут быть нормально- и медленнодей­ствующими.

Кодовые реле КДР, КДРШ представляют собой электромагнит­ные реле постоянного тока облегченной конструкции. В кодовых

 

реле используются три разновидности магнитной системы: неразветвленная с Г-образным ярмом (рис. 1.9, а), разветвленная с П-образным ярмом (рис. 1.9, 6) и усиленная разветвленная в медленно­действующих реле.

Реле типа КДР (см.рис. 1.9, а) состоит из круглого сердечника 5 с надетой на него катушкой 4, ярма 6, якоря 3, контактных пружин 1. Переключение контактов осуществляется бакелитовой пластинкой 2, жестко связанной с якорем. При протекании тока через катушку якорь притягивается к сердечнику, пластинка и пружина поднима­ются вверх, размыкая и замыкая фронтовые контакты. При выклю­чении тока якорь под действием давления контактных пружин от­падает. Фронтовые контакты размыкаются, а тыловые замыкаются.

Реле КДРШ по конструкции аналогичны реле КДР, но имеют штепсельное включение. На базе кодовых реле типа КДРТ сконст­руированы трансмиттерные реле Т, которые предназначены для передачи сигнальных кодов в рельсовые цепи в устройствах авто­блокировки и автоматической локомотивной сигнализации. Трансмиттерное реле ТШ-65В работает от импульсов постоянного тока: U= 12 В, а реле ТШ-2000В работает от импульсов переменного тока напряжением 110 или 220 В. Отличительной особенностью трансмиттерных реле от кодовых является наличие усиленных контак­тов и их схемной защиты, обеспечивающей бездуговое коммутиро­вание, благодаря чему эти реле более надежны в эксплуатации, чем кодовые реле.

Все реле постоянного тока рассчитаны для работы в электрических цепях напряжением 12 или 24 В. Некоторые реле постоянного тока используют для работы в цепях переменного тока. К таким реле отно­сятся реле типа НМВШ и АНВШ, АОШ и ОМШ, АПШ и АСШ,

ИМВШ. По, принципу действия и конструкции эти реле аналогичны соответствующим типам реле постоянного тока. Отличие состоит в том, что внутри этих реле установлены выпрямительные элементы, ко­торые преобразуют переменный ток в постоянный. В обозначениях этих реле внутри кружочка, изображающего обмотку реле, показыва­ется условное обозначение выпрямительного элемента.

Основными электрическими характеристиками перечисленных типов реле являются: напряжение или ток полного подъема якоря; напряжение переброса поляризованного якоря; напряжение или ток отпускания якоря.

Реле переменного тока

В устройствах железнодорожной автоматики и телемеханики применяют двухэлементные секторные реле переменного тока типа ДСШ. Эти реле используются в качестве путевых в рельсовых це­пях переменного тока частотой 50 и 25 Гц. По принципу действия двухэлементные секторные реле относятся к индукционным. Маг­нитная система реле выполняется на сердечниках из листовой ста­ли для уменьшения потерь на гистерезис. Эти реле относятся к реле 1 класса надежности, а по времени срабатывания — к нормально- действующим.

Двухэлементное секторное реле ДСШ со штепсельным включе­нием (рис. 1.10, а) состоит из электромагнитной системы, представ­ляющей собой два разных по назначению железных сердечника с намотанными на них обмотками. Один из них называется местным элементом, другой — путевым. Эти элементы располагаются сим­метрично один относительно другого.

Местный элемент состоит из Ш-образного сердечника 1 с обмот­кой 2, которая подключается к местному источнику переменного тока напряжением 110—220 В. Путевой элемент состоит из сердечника 8 с обмоткой 9, которая подключается через рельсовую цепь к путевому трансформатору. Между полюсами сердечников местного и путевого элемента располагается алюминиевый сектор 4, который вращается на оси и при помощи коромысла 3 и тяги 5 управляет контактной сис­темой 6. В реле имеются упорные ролики 7 и 10, ограничивающие дви­жение сектора соответственно вниз и вверх.

Принцип действия реле основан на взаимодействии магнитного потока путевого элемента с током, индуцированным в секторе маг­нитным потоком местного элемента. Когда один из элементов реле находится без тока, то сектор под действием собственного веса нахо­дится в нижнем крайнем положении и своим ребром нажимает на нижний упорный ролик. При прохождении переменного тока по ка­тушке местного элемента магнитный поток, созданный током мест­ного элемента, пересекая сектор, наводит в нем ЭДС, отстоящую по фазе на 90 ° от вызвавшего его потока. В результате этого в секторе возникают вихревые токи, которые проходят под полюсами путево­го элемента, вступают во взаимодействие с его магнитным потоком и создают вращающий момент, стремящийся повернуть сектор. К ана­логичным результатам приводит взаимодействие вихревых токов, созданных магнитным потоком путевого элемента, с магнитным по­током местного элемента. При равенстве магнитных потоков и со­впадении их по фазе силы взаимодействия магнитных потоков и

 

вихревых токов будут равны и противоположно направлены, в ре­зультате чего сектор останется в нижнем положении.

Для приведения сектора во вращение в направлении его подъе­ма необходимо создать определенный сдвиг фаз между магнитны­ми потоками местного и путевого элементов или между их токами. Таким образом, максимальный вращающий момент будет при угле сдвига фаз ф = 90 0 между токами или магнитными потоками в мес­тном и путевом элементах. Этот вращающий момент перемещает сектор в верхнее положение. Вместе с сектором поворачиваются коромысло и тяга, которая переключает контакты: размыкает ты­ловые Т и замыкает фронтовые Ф. При выключении тока в путе­вом элементе магнитный поток исчезает, и под действием собствен­ного веса сектор опустится вниз и возвратит контакты в исходное положение: разомкнет фронтовые Ф и замкнет тыловые Т.

Условные обозначения реле ДСШ и его контактов приведены на рис. 1.10, 6. Основным достоинством реле ДСШ является надеж­ная фазовая избирательность, поэтому эти реле называют фазочувствительными. Свойство избирательности надежно исключает лож­ное срабатывание фазочувствительного путевого реле от источника питания смежной рельсовой цепи при замыкании изолирующих сты­ков, так как путевые обмотки реле включаются таким образом, что­бы положительный вращающий момент и подъем сектора вверх создавались только от тока своей рельсовой цепи.

Кроме этого, фазочувствительные реле обеспечивают надежную защиту от влияния помех тягового тока, отличающихся по частоте 1 от тока сигнальной частоты всего на несколько герц. Фазочувстви­тельные реле срабатывают от тока той частоты, что и частота тока в обмотке местного элемента, при определенных фазовых соотно­шениях между ними.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2017-03-11; Просмотров: 3493; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.063 с.)
Главная | Случайная страница | Обратная связь