Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Вопрос 14. Дискретные случайные величины. Функция распределения, ее свойства.



Случайная величина называется дискретной случайной величиной, если она принимает не более чем счетное число значений. Задание дискретной случайной величины по определению равносильно заданию закона распределения случайной величины в следующем виде:

Где

Следующее утверждение отражает связь между функцией распределения дискретной случайной величины и законом распределения случайной величины.

Утверждение 1: Закон распределения и функция распределения дискретной случайной величины взаимно однозначно определяют друг друга.

Законом распределения дискретной случайной величины называют соответствие между ее возможными значениями и вероятностями их появления. Закон распределения можно задать таблично, аналитически (в виде формулы) и графически (в виде многоугольника распределения).

Графическое задание закона распределения представлено на рис

Учитывая, что при экспериментах фиксируются значения случайной величины , закон распределения д.с.в. даем в виде таблицы

хi x1 x2 ... xn
pi p1 p2   pn

 

Соотношение между возможными значениями случайной величины и их вероятностями называется законом распределения дискретной случайной величины.

Закон распределения может быть задан аналитически, в виде таблицы или графически.

Таблица соответствия значений случайной величины и их вероятностей называется рядом распределения.

Графическое представление этой таблицы называется многоугольником распределения. При этом сумма все ординат многоугольника распределения представляет собой вероятность всех возможных значений случайной величины, а, следовательно, равна единице.


Вопрос 15. Математическое ожидание д.с.в.

Закон распределения полностью характеризует случайную величину. Однако, когда невозможно найти закон распределения, или этого не требуется, можно ограничиться нахождением значений, называемых числовыми характеристиками случайной величины. Эти величины определяют некоторое среднее значение, вокруг которого группируются значения случайной величины, и степень их разбросанности вокруг этого среднего значения.

Определение. Математическим ожиданием дискретной случайной величины называется сумма произведений всех возможных значений случайной величины на их вероятности.

Математическое ожидание существует, если ряд, стоящий в правой части равенства, сходится абсолютно.

С точки зрения вероятности можно сказать, что математическое ожидание приближенно равно среднему арифметическому наблюдаемых значений случайной величины.

Свойства математического ожидания

1) Математическое ожидание постоянной величины равно самой постоянной.

2) Постоянный множитель можно выносить за знак математического ожидания.

3) Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий.

Это свойство справедливо для произвольного числа случайных величин.

4) Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых.

Это свойство также справедливо для произвольного числа случайных величин.

Теорема. Математическое ожидание М(Х) числа появления события А в п независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании.


Вопрос 16. Биноминальный закон распределения

Дискретная случайная величина X имеет биномиальный закон распределения, если она принимает значения 0, 1, 2, ..., m, ..., n с вероятностями

где 0< p< 1, q=1-p, m=0, 1, 2, ..., n.

Биномиальный закон распределения представляет собой закон распределения числа X=m наступлений события A в n независимых испытаниях, в каждом из которых оно может произойти с одной и той же вероятностью p.

Ряд распределения биномиального закона имеет вид:

xi ... m ... n
pi qn ... ... pn

 

Математическое ожидание и дисперсия случайной величины Х, распределенной по биномиальному Закону, определяются формулами


Вопрос 17. Закон Пуассона

Распределение Пуассона моделирует случайную величину, представляющую собой число событий, произошедших за фиксированное время, при условии, что данные события происходят с некоторой фиксированной средней интенсивностью и независимо друг от друга.

Дискретная случайная величина X имеет закон распределения Пуассона, если она принимает значения 0, 1, 2, ..., m, ... (бесконечное, но счётное множество значений) с вероятностями

При условии закон распределения Пуассона является предельным случаем биномиального закона. Так как при этом вероятность p события A в каждом испытании мала, то закон распределения Пуассона называют часто законом редких явлений.

События появляются независимо друг от друга с постоянной интенсивностью, которая характеризуется параметром a, a=n*p


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 287; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.016 с.)
Главная | Случайная страница | Обратная связь