Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


НАЗНАЧЕНИЕ И ОСНОВНЫЕ ФУНКЦИИ ПРОЦЕССОРА



Центральный процессор (ЦП; англ. central processing unit, CPU, дословно - центральное вычислительное устройство) - исполнитель машинных инструкций, часть аппаратного обеспечения компьютера или программируемого логического контроллера, отвечающий за выполнение операций, заданных программами.

Современные ЦП, выполняемые в виде отдельных микросхем (чипов), реализующих все особенности, присущие данного рода устройствам, называют микропроцессорами. С середины 1980-х последние практически вытеснили прочие виды ЦП, вследствие чего термин стал всё чаще и чаще восприниматься как обыкновенный синоним слова «микропроцессор». Тем не менее, это не так: центральные процессорные устройства некоторых суперкомпьютеров даже сегодня представляют собой сложные комплексы больших (БИС) и сверхбольших интегральных схем (СБИС).

Изначально термин «Центральное процессорное устройство» описывал специализированный класс логических машин, предназначенных для выполнения сложных компьютерных программ. Вследствие довольно точного соответствия этого назначения функциям существовавших в то время компьютерных процессоров, он естественным образом был перенесён на сами компьютеры. Начало применения термина и его аббревиатуры по отношению ккомпьютерным системам было положено в 1960-е годы. Устройство, архитектураи реализация процессоров с тех пор неоднократно менялись, однако их основные исполняемые функции остались теми же, что и прежде.

Ранние ЦП создавались в виде уникальных составных частей для уникальных, и даже единственных в своём роде, компьютерных систем. Позднее от дорогостоящего способа разработки процессоров, предназначенных для выполнения одной единственной или нескольких узкоспециализированных программ, производители компьютеров перешли к серийному изготовлению типовых классов многоцелевых процессорных устройств. Тенденция к стандартизации компьютерных комплектующих зародилась в эпоху бурного развития полупроводниковых элементов, мейнфреймов и миникомпьютеров, а с появлением интегральных схем она стала ещё более популярной. Создание микросхем позволило ещё больше увеличить сложность ЦП с одновременным уменьшением их физических размеров. Стандартизация и миниатюризация процессоров привели к глубокому проникновению основанных на них цифровых устройств в повседневную жизнь человека. Современные процессоры можно найти не только в таких высокотехнологичных устройствах, как компьютеры, но и в автомобилях, калькуляторах, мобильных телефонах и даже в детскихигрушках. Чаще всего они представлены микроконтроллерами, где помимо вычислительного устройства на кристалле расположены дополнительные компоненты (память программ и данных, интерфейсы, порты ввода/вывода, таймеры, и др.). Современные вычислительные возможности микроконтроллера сравнимы с процессорами персональных ЭВМ десятилетней давности, а чаще даже значительно превосходят их показатели.

Большинство современных процессоров для персональных компьютеров, в общем, основаны на той или иной версии циклического процесса последовательной обработки информации, изобретённого Джоном фон Нейманом.

Д. фон Нейман придумал схему постройки компьютера в 1946 году [6, c. 115]. Важнейшие этапы этого процесса приведены ниже. В различных архитектурах и для различных команд могут потребоваться дополнительные этапы. Например, для арифметических команд могут потребоваться дополнительные обращения к памяти, во время которых производится считывание операндов и запись результатов. Отличительной особенностью архитектуры фон Неймана является то, что инструкции и данные хранятся в одной и той же памяти.

Этапы цикла выполнения:

1. Процессор выставляет число, хранящееся в регистре счётчика команд, нашину адреса, и отдаёт памяти команду чтения;

2. Выставленное число является для памяти адресом; память, получив адрес и команду чтения, выставляет содержимое, хранящееся по этому адресу, на шину данных, и сообщает о готовности;

3. Процессор получает число с шины данных, интерпретирует его как команду (машинную инструкцию) из своей системы команд и исполняет её;

4. Если последняя команда не является командой перехода, процессор увеличивает на единицу (в предположении, что длина каждой команды равна единице) число, хранящееся в счётчике команд; в результате там образуется адрес следующей команды;

5. Снова выполняется п. 1.

28. Видеотерминальные устройства.

Видеотерминал состоит из видеомонитора (дисплея) и видеоконтроллера (адаптера). Видеоконтроллеры входят в состав системного блока ПК (находятся на видеокарте, устанавливаемой в разъем материнской платы), а видеомониторы - это внешние устройства ПК.

Видеомониторы

Видеомонитор, дисплей или просто монитор - устройство отображения текстовой и графической информации на экране (в стационарных ПК -на экране электронно-лучевой трубки (ЭЛТ), в портативных ПК - на жидкокристаллическом плоском экране).

Рассмотрим дисплей на базе ЭЛТ.

В состав монитора входят: панель ЭЛТ, блок разверток, видеоусилитель, блок питания и др. В зависимости от вида управляющего лучом сигнала мониторы бывают аналоговые и цифровые.

Аналоговые мониторы позволяют более качественно, с большим количеством полутонов и цветовых оттенков формировать изображение на экране.

Размер экрана монитора задается обычно величиной его диагонали в дюймах: от 10 до 21 дюйма (наиболее типичное значение - 14 дюймов).

Важной характеристикой монитора является частота его кадровой развертки. Смена изображений (кадров) на экране с частотой 25 Гц воспринимается глазом как непрерывное движение, но глаз при этом из-за мерцания экрана быстро устает. Для большей устойчивости изображения и снижения усталости глаз у современных качественных мониторов поддерживается частота смены кадров на уровне 70 - 80 Гц; при этом частота строчной развертки достигает 40-50 кГц и возрастает полоса частот видеосигнала.

Поскольку частота разверток в мониторе должна быть согласована с частотными характеристиками видеоадаптера, более удобны мультичастотные мониторы, автоматически подстраивающиеся под адаптер (например, мультичастотные мониторы с частотами кадровой и строчной разверток соответственно 50 - 120 Гц и 30 - 60 кГц).

Строчная развертка может быть построчной и чересстрочной, последняя позволяет получить большую разрешающую способность, но снижает вдвое фактическую кадровую частоту, т.е. - увеличивает мерцание экрана. Поэтому предпочтительнее построчная развертка (есть мониторы, работающие и в том, и в другом режиме - sпри необходимости получения большего разрешения включается чересстрочная развертка).

Разрешающая способность мониторов. Видеомониторы обычно могут работать в двух режимах: текстовом и графическом.

В текстовом режиме изображение на экране монитора состоит из символов расширенного набора ASCII, формируемых знакогенератором (возможны примитивные рисунки, гистограммы, рамки, составленные с использованием символов псевдографики).

В графическом режиме на экран выводятся более сложные изображения и надписи с различными шрифтами и размерами букв, формируемых из отдельных мозаичных элементов - пикселей (pixel - picture element).

Разрешающая способность мониторов нужна прежде всего в графическом режиме и связана с размером пикселя.

Измеряется разрешающая способность максимальным количеством пикселей, размещающихся по горизонтали и по вертикали на экране монитора. Зависит разрешающая способность как от характеристик монитора, так, даже в большей степени, и от характеристик видеоадаптера.

Стандартные значения разрешающей способности современных мониторов; 640х480, 800х600, 1024х768, 1600х1200, но реально могут быть и иные значения.

Важной характеристикой монитора, определяющей четкость изображения на экране, является размер зерна (точки, dot pitch) люминофораэкрана монитора. Чем меньше зерно, тем, естественно, выше четкость и тем меньше устает глаз. Величина зерна мониторов имеет значения от 0, 41 до 0, 18 мм.

Следует иметь в виду, что у мониторов с большим зерном не может быть достигнута высокая разрешающая способность (например, экран с диагональю 14 дюймов имеет ширину 265 мм, для получения разрешающей способности 1024 точки по горизонтали размер зерна не должен превышать 265/1024 = 0, 22 мм, в противном случае пиксели сливаются и изображение не будет четким).

Совместно с компьютерами IBM PC могут использоваться различные типы мониторов, как монохромные, так и цветные.

Монохромные мониторы. Они значительно дешевле цветных, но имеют большую разрешающую способность.

Среди монохромных чаще других используются:

• монохромные моим горы прямого управления - обеспечивают высокую разрешаюшую способность при отображении текстовых и псевдографических символов, но не предназначены для формирования графических изображений, построенных из отдельных пикселей; работают совместно только с монохромными видеоконтролерами;

• композитные монохромные мониторы - обеспечивают качественное отображение и символьной, и графической информации при совместной работе с цветным графическим адаптером (но выдают, естественно, монохромное: зеленое или чаще всего янтарное изображение).

Цветные мониторы. В качестве цветных мониторов используются:

• композитные цветные мониторы и телевизоры - обеспечивают и цвет, и графику, но имеют довольно низкую разрешающую способность;

• цветные RGB-мониторы - являются, пожалуй, самыми качественными, обладающими высокой разрешающей способностью и графики, и цвета (RGB - Red-Green-Blue - красный - зеленый - синий, используют для каждого из этих цветовых сигналов свой провод, а в композитных - все три цветовых сигнала идут по одному проводу), RGB-мониторы работают совместно с цветным графическим контроллером. В портативных ПК часто используются видеопанели различного типа, например электролюминесцентные, жидкокристаллические и др.

Для настольных компьютеров используются различные типы. видеомониторов: CD (Color Display - цветной дисплей), ECD (Enhanced CD - улучшенный цветной дисплей) и PGS (Professional Grafics System - профессиональная графическая система) и др. (табл. 4.9).

Наибольшую разрешающую способность с хорошей передачей полутонов из применяемых в настоящее время мониторов имеют монохромные композитные мониторы с черно-белым изображением типа " paper white" (используемые часто в настольных издательских системах); их разрешающая способность при совместной работе с видеоконтроллером типа SVGA: 1280х1024 пикселей.

Среди прочих характеристик мониторов следует отметить: наличие плоского или выпуклого экрана (первый вариант предпочтительнее: большая прямоугольность изображения, меньшие блики); уровень высокочастотного радиоизлучения (увеличивается с увеличением полосы частот видеосигнала, но значительно уменьшается при хорошем экранировании - мониторы с низким уровнем излучения типа LR (Low Radiation); наличие защиты экрана от электростатических полей - мониторы типа AS (Anti Static); наличие системы энергосбережения - мониторы типа G (Green) и др.

Видеоконтроллеры (видеоадаптеры) являются внутрисистемными устройствами, непосредственно управляющими мониторами и выводом информации на их экран. Видеоконтроллер содержит: схему управления ЭЛТ, растровую память (видеопамять, хранящую воспроизводимую на экране информацию и использующую поле видеобуфера в ОП), сменные микросхемы ПЗУ (матрицы знаков), порты ввода-вывода.

Основные характеристики видеоконтроллера; режимы работы (текстовый и графический), воспроизведение цветов (монохромный и цветной), число цветов или число полутонов (в монохромном), разрешающая способность (число адресуемых на экране монитора пикселей по горизонтали и вертикали), емкость и число страниц в буферной памяти (число страниц - это число запоминаемых текстовых экранов, любой из которых путем прямой адресации может быть выведен на отображение в мониторе), размер матрицы символа (количество пикселей в строке и столбце матрицы, формирующей символ на экране монитора), разрядность шины данных, определяющая скорость обмена данными с системной шиной, и др.

Важная характеристика - емкость видеопамяти, она определяет количество хранимых в памяти пикселей и их атрибутов.

Принтеры…. http: //thl.narod.ru/sait/GLAVES2/GLAVA4/gl_4_5.htm

29. Функциональные группы ЛВС. Управление взаимодействием устройств в сети.

См вопр.5 и 6

 

30. Принтеры и сканеры.

Принтеры (печатающие устройства) - это устройства вывода данных из ЭВМ, преобразующие информационные ASCII-коды в соответствующие им графические символы (буквы, цифры, знаки и т.п.) и фиксирующие эти символы на бумаге.

· цветность (черно-белые и цветные);

· способ формирования символов (знакопечатающие и знакосинтезируюшие);

· принцип действия (матричные, термические, струйные, лазерные);

· способы печати (ударные, безударные) и формирования строк (последовательные, параллельные);

· ширина каретки (с широкой (375 - 450 мм) и узкой (250 мм) кареткой);

· длина печатной строки (80 и 132 - 136 символов);

· набор символов (вплоть до полного набора символов ASCII);

· скорость печати;

· разрешающая способность, наиболее употребительной единицей измерения является dpi (dots per inch) - количество точек на дюйм.

Матричные принтеры. В матричных принтерах изображение формируется из точек ударным способом, поэтому их более правильно называть ударно-матричные принтеры, тем более что и прочие типы знакосинтезирующих принтеров тоже чаще всего используют матричное формирование символов, но безударным способом. Тем не менее " матричные принтеры" - это их общепринятое название, поэтому и будем его придерживаться.

Матричные принтеры могут работать в двух режимах - текстовом и графическом.

В текстовом режиме на принтер посылаются коды символов, которые следует распечатать, причем контуры символов выбираются из знакогенератора принтера.

В графическом режиме на принтер пересылаются коды, определяющие последовательность и местоположение точек изображения.

В игольчатых (ударных) матричных принтерах печать точек осуществляется тонкими иглами, ударяющими бумагу через красящую ленту. Каждая игла управляется собственным электромагнитом. Печатающий узел перемещается в горизонтальном направлении, и знаки в строке печатаются последовательно. Многие принтеры выполняют печать как при прямом, так и при обратном ходе. Количество иголок в печатающей головке определяет качество печати. Недорогие принтеры имеют 9 игл. Матрица символов в таких принтерах имеет размерность 7х9 или 9х9 точек. Более совершенные матричные принтеры имеют 18 игл и даже 24.

Качество печати матричных принтеров определяется также возможностью вывода точек в процессе печати с частичным перекрытием за несколько проходов печатающей головки.

Струйные принтеры. В печатающей головке этих принтеров вместо иголок имеются тонкие трубочки - сопла, через которые на бумагу выбрасываются мельчайшие капельки красителя (чернил). Это безударные печатающие устройства. Матрица печатающей головки обычно содержит от 12 до 64 сопел. В последние годы в их совершенствовании достигнут существенный прогресс: созданы струйные принтеры, обеспечивающие разрешающую способность до 20 точек/мм и скорость печати до 500 зн./с при отличном качестве печати, приближающемся к качеству лазерной печати. Имеются цветные струйные принтеры.

Лазерные принтеры. В них применяется электрографический способ формирования изображений, используемый в одноименных копировальных аппаратах. Лазер служит для создания сверхтонкого светового луча, вычерчивающего на поверхности предварительно заряженного светочувствительного барабана контуры невидимого точечного электронного изображения - электрический заряд стекает с засвеченных лучом лазера точек на поверхности барабана. После проявления электронного изображения порошком красителя (тонера). налипающего на разряженные участки, выполняется печать - перенос тонера с барабана на бумагу и закрепление изображения на бумаге разогревом тонера до его расплавления.

Лазерные принтеры обеспечивают наиболее качественную печать с разрешением до 50 точек/мм (1200 dpi) и скорость печати до 1000 зн./с. Широко используются цветные лазерные принтеры. Например, лазерный принтер фирмы Tektronix (США) Phaser 550 имеет разрешение и по горизонтали, и по вертикали 1200 dpi; скорость цветной печати - 5 страниц формата А4 в минуту, скорость монохромной печати - 14 стр./мин.

СКАНЕРЫ

Сканер - это устройство ввода в ЭВМ информации непосредственно с бумажного документа. Можно вводить тексты, схемы, рисунки, графики, фотографии и другую графическую информацию.

Черно-белые сканеры могут считывать штриховые изображения и полутоновые. Штриховые изображения не передают полутонов или, иначе, уровней серого. Полутоновые позволяют распознать и передать 16, 64 или 256 уровней серого.

Цветные сканеры работают и с черно-белыми, и с цветными оригиналами. В первом случае они могут использоваться для считывания и штриховых, и полутоновых изображений.

В цветных сканерах используется цветовая модель RGB: сканируемое изображение освещается через вращающийся RGB-светофильтр или от последовательно зажигаемых трех цветных ламп; сигнал, соответствующий каждому основному цвету, обрабатывается отдельно. Число передаваемых цветов колеблется от 256 до 65536 (стандарт High Color) и даже до 16, 7 млн. (стандарт True Color).

Разрешающая способность сканеров составляет от 75 до 1600 dpi (dot per inch).

Конструктивно сканеры бывают ручные и настольные. Настольные, в свою очередь, делятся на планшетные, роликовые и проекционные.

Ручные сканеры конструктивно самые простые: они вручную перемещаются по изображению. С их помощью за один проход вводится лишь небольшое количество строчек изображения (их захват обычно не превышает 105 мм). У ручных сканеров имеется индикатор, предупреждающий оператора о превышении допустимой скорости сканирования. Эти сканеры имеют малые габариты и низкую стоимость. Скорость сканирования 5-50 мм/с (зависит от разрешающей способности).

31. Классификация ЭВМ.

Рассмотрим некоторые из наиболее популярных классификаций:

· по принципу действия. Критерием деления вычислительных машин здесь является форма представления информации, с которой они работают

1. аналоговые (АВМ) - вычислительные машины непрерывного действия, работают с информацией, представленной в непрерывной (аналоговой) форме, т.е. в виде непрерывного ряда значений какой-либо физической величины (чаще всего электрического напряжения).
Аналоговые вычислительные машины весьма просты и удобны в эксплуатации; программирование задач для решения на них, как правило, нетрудоемкое; скорость решения задач изменяется по желанию оператора и может быть сделана сколь угодно большой (больше, чем у ЦВМ), но точность решения задач очень низкая (относительная погрешность 2-5%).На АВМ наиболее эффективно решать математические задачи, содержащие дифференциальные уравнения, не требующие сложной логики.

2. цифровые (ЦВМ) - вычислительные машины дискретного действия, работают с информацией, представленной в дискретной, а точнее, в цифровой форме.

3. гибридные (ГВМ) - вычислительные машины комбинированного действия, работают с информацией, представленной и в цифровой, и в аналоговой форме; они совмещают в себе достоинства АВМ и ЦВМ. ГВМ целесообразно использовать для решения задач управления сложными быстродействующими техническими комплексами.
Наиболее широкое применение получили ЦВМ с электрическим представлением дискретной информации - электронные цифровые вычислительные машины, обычно называемые просто электронными вычислительными машинами (ЭВМ), без упоминания об их цифровом характере.

· по назначению

1. универсальные (общего назначения) - предназначены для решения самых различных технических задач: экономических, математических, информационных и других задач, отличающихся сложностью алгоритмов и большим объемом обрабатываемых данных. Они широко используются в вычислительных центрах коллективного пользования и в других мощных вычислительных комплексах.

2. проблемно-ориентированные - служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими объектами; регистрацией, накоплением и обработкой относительно небольших объемов данных; выполнением расчетов по относительно несложным алгоритмам; они обладают ограниченными по сравнению с универсальными ЭВМ аппаратными и программными ресурсами. К проблемно-ориентированным ЭВМ можно отнести, в частности, всевозможные управляющие вычислительные комплексы

3. специализированные - используются для решения узкого крута задач или реализации строго определенной группы функций. Такая узкая ориентация ЭВМ позволяет четко специализировать их структуру, существенно снизить их сложность и стоимость при сохранении высокой производительности и надежности их работы. К специализированным ЭВМ можно отнести, например, программируемые микропроцессоры специального назначения; адаптеры и контроллеры, выполняющие логические функции управления отдельными несложными техническими устройствами, агрегатами и процессами; устройства согласования и сопряжения работы узлов вычислительных систем.

· по размерам и функциональным возможностям

1. сверхбольшие (суперЭВМ)

2. большие

3. малые

4. мини

5. сверхмалые (микроЭВМ)

32. Основные понятия программного обеспечения.

Программа (program, routine) - упорядоченная последовательность команд (инструкций) компьютера для решения задачи.

Программное обеспечение (sowtware) - совокупность программ обработки данных и необходимых для их эксплуатации документов.

Программы предназначены для машинной реализации задач. Термины задачи и приложение имеют очень широкое употребление в контексте информатики и программного обеспечения.

Задача (problem, task) - проблема, подлежащая решению. Приложение (application) - программная реализация на компьютере решения задачи.

Таким образом, задача означает проблему, подлежащую реализации с использованием средств информационных технологий, а приложение - реализованное на компьютере решение по задаче. Приложение, являясь синонимом слова " программа", считается более удачным термином и широко используется в информатике.

Существует большое число разнообразных классификаций задач. С позиций специфики разработки и вида программного обеспечения будем различать два класса задач - технологические и функциональные.

Технологические задачи ставятся и решаются при организации технологического процесса обработки информации на компьютере. Технологические задачи являются основой для разработки сервисных средств программного обеспечения в виде утилит, сервисных программ, библиотек процедур и др., применяемых для обеспечения работоспособности компьютера, разработки других программ или обработки данных функциональных задач.

Функциональные задачи требуют решения при реализации функций управления в рамках информационных систем предметных областей. Например, управление деятельностью торгового предприятия, планирование выпуска продукции, управление перевозкой грузов и т.п. Функциональные задачи в совокупности образуют предметную область и полностью определяют ее специфику.

Предметная (прикладная) область (application domain) - совокупность связанных между собой функций, задач управления, с помощью которых достигается выполнение поставленных целей.

К основным характеристикам функциональных задач, уточняемым в процессе ее формализованной постановки, относятся:

-цель или назначение задачи, ее место и связи с другими задачами;

-условия решения задачи с использованием средств вычислительной техники;

-содержание функций обработки входной информации при решении задачи;

-требоования к периодичности решения задачи;

-ограничения по срокам и точности выходной информации;

-состав и форма представления выходной информации;

-источники входной информации для решения задачи;

-пользователи задачи (кто осуществляет ее решение и пользуется результатами решение и пользуется результатами решения).

Алгоритм - система точно сформулированных правил, определяющая процесс преобразования допустимых исходных данных (входной информации) в желаемый результат (выходную информацию) за конечное число шагов.

Алгоритм решения задачи имеет ряд обязательных свойств:

-дискретность - разбиение процесса обработки информации на более простые этапы (шаги выполнения), выполнение которых компьютером или человеком не вызывав! затруднений;

-определенность алгоритма - однозначность выполнения каждого отдельного шага преобразования информации;

-выполнимость - конечность действий алгоритма решения задач, позволяющая получить желаемый результат при допустимых исходных данных за конечное число шагов;

-массовость - пригодность алгоритма для решения определенного класса задач.

Программирование - теоретическая и практическая деятельность, связанная с созданием программ.

33. Модель взаимодействия открытых систем.

Сетевая модель OSI (англ. open systems interconnection basic reference model — базовая эталонная модель взаимодействия открытых систем, сокр. ЭМВОС; 1978 г) — сетевая модель стека сетевых протоколов OSI/ISO (ГОСТ Р ИСО/МЭК 7498-1-99).

В настоящее время основным используемым стеком протоколов является TCP/IP, разработанный ещё до принятия модели OSI и вне связи с ней.

" Просто представь себе тачку, стремящуюся к финишу", первые буквы слов в которой так же соответствуют первым буквам названий уровней.

Прикладной уровень

Прикладной уровень (уровень приложений; англ. application layer) — верхний уровень модели, обеспечивающий взаимодействие пользовательских приложений с сетью:

· позволяет приложениям использовать сетевые службы:

· удалённый доступ к файлам и базам данных,

· пересылка электронной почты;

· отвечает за передачу служебной информации;

· предоставляет приложениям информацию об ошибках;

· формирует запросы к уровню представления.

Протоколы прикладного уровня: RDP, HTTP, SMTP, SNMP, POP3, FTP, XMPP, OSCAR, Modbus, SIP, TELNET и другие.

Представительский уровень

Представительский уровень (уровень представления; англ. presentation layer) обеспечивает преобразование протоколов и шифрование/дешифрование данных. Запросы приложений, полученные с прикладного уровня, на уровне представления преобразуются в формат для передачи по сети, а полученные из сети данные преобразуются в формат приложений. На этом уровне может осуществляться сжатие/распаковка или кодирование/декодирование данных, а также перенаправление запросов другому сетевому ресурсу, если они не могут быть обработаны локально.

Уровень представлений обычно представляет собой промежуточный протокол для преобразования информации из соседних уровней. Это позволяет осуществлять обмен между приложениями на разнородных компьютерных системах прозрачным для приложений образом. Уровень представлений обеспечивает форматирование и преобразование кода. Форматирование кода используется для того, чтобы гарантировать приложению поступление информации для обработки, которая имела бы для него смысл. При необходимости этот уровень может выполнять перевод из одного формата данных в другой.

Уровень представлений имеет дело не только с форматами и представлением данных, он также занимается структурами данных, которые используются программами. Таким образом, уровень 6 обеспечивает организацию данных при их пересылке.

Протоколы уровня представления: AFP — Apple Filing Protocol, ICA — Independent Computing Architecture, LPP — Lightweight Presentation Protocol, NCP — NetWare Core Protocol, NDR — Network Data Representation, XDR — eXternal Data Representation, X.25 PAD — Packet Assembler/Disassembler Protocol.

Сеансовый уровень

Сеансовый уровень (англ. session layer) модели обеспечивает поддержание сеанса связи, позволяя приложениям взаимодействовать между собой длительное время. Уровень управляет созданием/завершением сеанса, обменом информацией, синхронизацией задач, определением права на передачу данных и поддержанием сеанса в периоды неактивности приложений.

Протоколы сеансового уровня: ADSP (AppleTalk Data Stream Protocol), ASP (AppleTalk Session Protocol), H.245 (Call Control Protocol for Multimedia Communication), ISO-SP (OSI Session Layer Protocol (X.225, ISO 8327)), iSNS (Internet Storage Name Service), L2F (Layer 2 Forwarding Protocol), L2TP (Layer 2 Tunneling Protocol), NetBIOS (Network Basic Input Output System), PAP (Password Authentication Protocol), PPTP (Point-to-Point Tunneling Protocol), RPC (Remote Procedure Call Protocol), RTCP (Real-time Transport Control Protocol), SMPP (Short Message Peer-to-Peer), SCP (Session Control Protocol), ZIP (Zone Information Protocol), SDP (Sockets Direct Protocol)..

Транспортный уровень

Транспортный уровень (англ. transport layer) модели предназначен для обеспечения надёжной передачи данных от отправителя к получателю. При этом уровень надёжности может варьироваться в широких пределах. Существует множество классов протоколов транспортного уровня, начиная от протоколов, предоставляющих только основные транспортные функции (например, функции передачи данных без подтверждения приема), и заканчивая протоколами, которые гарантируют доставку в пункт назначения нескольких пакетов данных в надлежащей последовательности, мультиплексируют несколько потоков данных, обеспечивают механизм управления потоками данных и гарантируют достоверность принятых данных. Например, UDPограничивается контролем целостности данных в рамках одной датаграммы, и не исключает возможности потери пакета целиком, или дублирования пакетов, нарушение порядка получения пакетов данных; TCP обеспечивает надёжную непрерывную передачу данных, исключающую потерю данных или нарушение порядка их поступления или дублирования, может перераспределять данные, разбивая большие порции данных на фрагменты и наоборот склеивая фрагменты в один пакет.

Протоколы транспортного уровня: ATP (AppleTalk Transaction Protocol), CUDP (Cyclic UDP), DCCP (Datagram Congestion Control Protocol), FCP (Fiber Channel Protocol), IL (IL Protocol), NBF (NetBIOS Frames protocol), NCP (NetWare Core Protocol), SCTP (Stream Control Transmission Protocol), SPX (Sequenced Packet Exchange), SST (Structured Stream Transport), TCP (Transmission Control Protocol), UDP (User Datagram Protocol).

Сетевой уровень

Сетевой уровень (англ. network layer) модели предназначен для определения пути передачи данных. Отвечает за трансляцию логических адресов и имён в физические, определение кратчайших маршрутов, коммутацию и маршрутизацию, отслеживание неполадок и «заторов» в сети.

Протоколы сетевого уровня маршрутизируют данные от источника к получателю. Работающие на этом уровне устройства (маршрутизаторы) условно называют устройствами третьего уровня (по номеру уровня в модели OSI).

Протоколы сетевого уровня: IP/IPv4/IPv6 (Internet Protocol), IPX (Internetwork Packet Exchange, протокол межсетевого обмена), X.25 (частично этот протокол реализован на уровне 2), CLNP (сетевой протокол без организации соединений), IPsec (Internet Protocol Security). Протоколы маршрутизации - RIP (Routing Information Protocol), OSPF (Open Shortest Path First).

Канальный уровень

Канальный уровень (англ. data link layer) предназначен для обеспечения взаимодействия сетей на физическом уровне и контроля за ошибками, которые могут возникнуть. Полученные с физического уровня данные он упаковывает в кадры, проверяет на целостность, если нужно, исправляет ошибки (формирует повторный запрос поврежденного кадра) и отправляет на сетевой уровень. Канальный уровень может взаимодействовать с одним или несколькими физическими уровнями, контролируя и управляя этим взаимодействием.

Спецификация IEEE 802 разделяет этот уровень на два подуровня: MAC (англ. media access control) регулирует доступ к разделяемой физической среде, LLC (англ. logical link control) обеспечивает обслуживание сетевого уровня.

На этом уровне работают коммутаторы, мосты и другие устройства. Говорят, что эти устройства используют адресацию второго уровня (по номеру уровня в модели OSI).

Протоколы канального уровня: ARCnet, ATM, Controller Area Network (CAN), Econet,

Физический уровень

Физический уровень (англ. physical layer) — нижний уровень модели, предназначенный непосредственно для передачи потока данных. Осуществляет передачу электрических или оптических сигналов в кабель или в радиоэфир и, соответственно, их приём и преобразование в биты данных в соответствии с методами кодирования цифровых сигналов. Другими словами, осуществляет интерфейс между сетевым носителем и сетевым устройством.

На этом уровне также работают концентраторы, повторители сигнала и медиаконвертеры.

Функции физического уровня реализуются на всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом. К физическому уровню относятся физические, электрические и механические интерфейсы между двумя системами. Физический уровень определяет такие виды сред передачи данных как оптоволокно, витая пара, коаксиальный кабель, спутниковый канал передач данных и т. п. Стандартными типами сетевых интерфейсов, относящимися к физическому уровню, являются: V.35, RS-232, RS-485, RJ-11, RJ-45, разъемы AUI и BNC.

Протоколы физического уровня: IEEE 802.15 (Bluetooth), IRDA, EIA RS-232, EIA-422, EIA-423, RS-449, RS-485, DSL, ISDN, SONET/SDH, 802.11 Wi-Fi, Etherloop, GSM Um radio interface, ITU и ITU-T, TransferJet, ARINC 818, G.hn/G.9960.

34. Классы программных продуктов.

· Системное программное обеспечение (System Software) — совокупность программ и программных комплексов для обеспечения работы компьютера и сетей ЭВМ;

· Пакеты прикладных программ (application program package) — комплекс взаимосвязанных программ для решения задач определенного класса кон­кретной предметной области;

· Инструментарий технологии программирования — совокупность про­грамм и программных комплексов, обеспечивающих технологию разработ­ки, отладки и внедрения создаваемых программных продуктов.


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 600; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.108 с.)
Главная | Случайная страница | Обратная связь