Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Коллекторские Свойства горных пород



ВВЕДЕНИЕ

Нефть стала известна людям более четырёх тысяч лет тому назад.

На заре цивилизации нефть не играла большой роли в быту и технике. До нас дошли скупые сведения о том, что она применялась греками, египтянами и ассирийцами преимущественно для медицинских целей, в строительном деле (асфальт), при изготовлении туши, в военном деле (" греческий огонь" ), а также для освещения комнат и смазки колёс.

Признание как дешёвого топлива и источника ценных продуктов нефть получила только за последние сто лет. В данный момент развитие техники и промышленности невозможно себе представить без использования нефти и продуктов её переработки.

Из нефти вырабатываются горючее для двигателей внутреннего сгорания, топлива для газовых турбин и котельных установок, смазочные масла, битумы для дорожных покрытий, сажа для резиновой промышленности, кокс для электродов и множество других промышленных и потребительских товаров.

Газы – попутные, природные, газы нефтепереработки, ароматические углеводороды, жидкие и твёрдые парафины – незаменимое сырьё для нефтехимической промышленности.

На базе этого дешёвого газового и нефтяного сырья производятся полимерные материалы, синтетические волокна, каучук, моющие средства, спирты, альдегиды и многие другие ценные материалы.

Развитие научно-технической базы человечества, освоение и ввод в эксплуатацию крупнейших по запасам нефти и газа месторождений осуществляется на основе достижений прогресса в области физики нефтяного пласта. Полученные новые данные относительно нефтяных и газовых пластов, коллекторских и фильтрационных свойств горных пород (пористость, проницаемость, насыщенность, электропроводность), физических свойств пластовых жидкостей и газов, фазовых состояний предельных углеводородных систем успешно применяются на практике.

Прогресс в области физики пласта, посредством более совершенного проектирования системы разработки, способствует поведению грамотной эксплуатации нефтяных и газовых месторождений, разработке и внедрению методов повышения компонентоотдачи пластов.

Современный инженер-нефтяник, занимающийся рациональной разработкой нефтяных и газовых месторождений, должен хорошо знать геологическое строение залежи, её физическую характеристику, физические и физико-химические свойства нефти, газа и воды, насыщающих породу; должен уметь правильно обработать и оценить данные, которые получены при вскрытии пласта и при его последующей эксплуатации. Эти данные позволяют определить начальные запасы углеводородов в залежи. Они необходимы для объективного представления о процессах, происходящих в пласте на различных стадиях его разработки. На этом комплексе сведений основывается проектирование разработки месторождения, выбор тех или иных методов искусственного воздействия на залежь, если это признаётся необходимым.

Настоящий учебник посвящен описанию свойств пористых сред и насыщающих их жидкостей и газов и их испоv льзованию в практических расчётах.

Коллекторские Свойства горных пород

 

ТИПЫ ПОРОД-КОЛЛЕКТОРОВ

 

Подавляющая часть нефтяных и газовых месторождений приурочена к коллекторам трёх типов – гранулярным, трещинным и смешанного строения. К первому типу относятся коллекторы, сложенные песчано-алевритовыми породами, поровое пространство которых состоит из межзерновых полостей. Подобным строением порового пространства характеризуются также некоторые пласты известняков и доломитов. В чисто трещиноватых коллекторах (сложенных преимущественно карбонатами) поровое пространство образуется системой трещин. При этом участки коллектора между трещинами представляют собой плотные малопроницаемые нетрещиноватые блоки пород, поровое пространство которых практически не участвует в процессах фильтрации. На практике, однако, чаще всего встречаются трещиноватые коллекторы смешанного типа, поровое пространство которых включает как системы трещин, так и поровое пространство блоков, а также каверны и карст.

Анализ показывает, что около 60% запасов нефти в мире приурочено к песчаным пластам и песчаникам, 39% – к карбонатным отложениям, 1% – к выветренным метаморфическим и изверженным породам. Следовательно, породы осадочного происхождения – основные коллекторы нефти и газа.

В связи с разнообразием условий формирования осадков коллекторские свойства пластов различных месторождений могут изменяться в широких пределах. Характерные особенности большинства коллекторов – слоистость их строения и изменение во всех направлениях свойств пород, толщины пластов и других параметров.

Нефтяной пласт представляет собой горную породу, пропитанную нефтью, газом и водой.

Под горной породой понимается естественный твердый минеральный агрегат определенного состава и строения, образующий в земной коре тела различной формы и размера. Горные породы делятся на три группы: осадочные, изверженные (магматические) и метаморфические. Осадочные породы возникают в результате преобразования в термических условиях поверхностной части земной коры осадков, представляющих собой выпавшие механическим или химическим путем продукты разрушения более древних пород, изверженных вулканов, жизнедеятельности организмов и растений.

Свойства горной породы вмещать (обусловлено пористостью горной породы) и пропускать (обусловлено проницаемостью) через себя жидкости и газы называются фильтрационно-ёмкостными свойствами (ФЕС).

Фильтрационные и коллекторские свойства пород нефтяных пластов характеризуются следующими основными показателями:

- - гранулометрическим составом пород (см. раздел лаборат. практикума);

- - пористостью;

- - проницаемостью;

- - насыщенностью пород водой, нефтью и газом;

- - удельной поверхностью;

- - капиллярными свойствами;

- - механическими свойствами.

Рассмотрим подробнее каждый из этих параметров.

 

ПОРИСТОСТЬ

Под пористостью горной породы понимается наличие в ней пор (пустот). Пористость характеризует способность горной породы вмещать жидкости и газы.

В зависимости от происхождения различают следующие виды пор:

1. 1. Поры между зёрнами обломочного материала (межкристаллические поры), промежутки между плоскостями наслоения - это первичные поры, образовавшиеся одновременно с формированием породы.

2. 2. Поры растворения образовавшиеся в результате циркуляции подземных вод, за счёт процессов растворения минеральной составляющей породы активными флюидами образуются поры, например выщелачивания, вплоть до образование карста.

3. 3. Поры и трещины, возникшие под влиянием химических процессов, приводящие к сокращению объема породы. Например, превращение известняка (СаСО3) в доломит (СаСО3· МgСО3). При доломитизации идёт сокращение объёмов породы приблизительно на 12%, что приводит к увеличению объема пор. Аналогично протекает и процесс каолинизации – Al2O3· 2SiO2· H2O.

4. 4. Пустоты и трещины, образованные за счёт эрозионных процессов, выветривания, кристаллизации.

5. 5. Пустоты и трещины, образованные за счёт тектонических процессов, напряжений в земной коре.

Виды пор (2) - (5) – это, так называемые, вторичные поры, возникающие при геолого-минералогических или химических процессах.

Объём пор зависит от:

- - формы зёрен и размера зёрен;

- - сортировки зёрен (чем лучше отсортирован материал, тем выше пористость);

- - укладки зёрен, например, при кубической укладке пористость составляет » 47, 6%, при ромбической укладке – 25, 96% (см. рис. 1.1);

Рис. 1.1. Различная укладка сферических зёрен одного размера, составляющих пористый материал: а – менее плотная кубическая укладка, б – более компактная ромбическая укладка

- - однородности и окатанности зёрен;

- - вида цемента (см. рис. 1.2).

 

 

Рис. 1.2. Разновидности цемента горных пород

Не все виды пор заполняются флюидами: водой, газами, нефтью. Часть пор бывает изолирована, в основном, это внутренние поры.

 

ВИДЫ ПОРИСТОСТИ

 

Общая (полная, абсолютная) пористость – суммарный объём всех пор (Vпор), открытых и закрытых.

Пористость открытая эквивалентна объёму сообщающихся (Vсообщ) между собой пор и измеряется она в м3, см3.

На практике для характеристики пористости используется коэффициент пористости (m), выраженный в долях или в процентах.

Коэффициент общей (полной, абсолютной) пористости (mп) зависит от объема всех пор:

 

. (1.1)

 

Коэффициент открытой пористости (mо) зависит от объёма сообщающихся между собой пор:

. (1.2)

 

Коэффициент эффективной пористости (mэф.) оценивает фильтрацию в породе жидкости или газа, и зависит от объёма пор (Vпор фильтр), через которые идёт фильтрация.

 

(1.3)

 

Для зернистых пород, содержащих малое или среднее количество цементирующего материала, общая и эффективная пористость примерно равны. Для пород, содержащих большое количество цемента, между эффективной и общей пористостью наблюдается существенное различие.

Для коэффициентов пористости всегда выполняется соотношение:

 

mп > mo > mэф. (1.4)

 

Для хороших коллекторов коэффициент пористости лежит в пределах 15-25%. Поровые каналы нефтяных пластов условно подразделяются на три группы:

- - субкапиллярные - размер пор < 0, 0002 мм, практически непроницаемые: глины, глинистые сланцы, эвапориты (соль, гипс, ангидрит);

- - капиллярные - размер пор от 0, 0002 до 0, 5 мм;

- - сверхкапиллярные - размер пор > 0, 5 мм.

По крупным (сверхкапиллярным) каналам и порам движение нефти, воды, газа происходит свободно, а по капиллярам – при значительном участии капиллярных сил.

В субкапиллярных каналах жидкость удерживается межмолекулярными силами (силами притяжения стенок каналов), поэтому практически никакого движения не происходит.

Породы, поры которых представлены в основном субкапиллярными каналами, независимо от пористости практически непроницаемы для жидкостей и газов (глины, глинистые сланцы).

ПРОНИЦАЕМОСТЬ

Проницаемость – это фильтрующий параметр горной породы, характеризующий её способность пропускать через себя жидкости и газы при перепаде давления.

Абсолютно непроницаемых тел в природе нет. При сверхвысоких давлениях все горные породы проницаемы. Однако при сравнительно небольших перепадах давления в нефтяных пластах многие породы в результате незначительных размеров пор оказываются практически непроницаемыми для жидкостей и газов (глины, сланцы и т.д.).

Хорошо проницаемыми породами являются: песок, песчаники, доломиты, доломитизированные известняки, алевролиты, а так же глины, имеющие массивную пакетную упаковку (рис. 1.4).

 

Рис. 1.4. Пример массивной пакетной упаковки глин – фильтрация происходит через каналы между пакетами

Рис. 1.5. Пример упорядоченной пакетной упаковки глин – фильтрация практически не происходит

 

К плохо проницаемым относятся: глины, с упорядоченной пакетной упаковкой (рис. 1.5), глинистые сланцы, мергели, песчаники, с обильной глинистой цементацией. Для существующих типов каналов (субкапиллярные, капиллярные, трещины), фильтрация идет, в основном, через капилляры, каналы и трещины.

 

ВИДЫ ПРОНИЦАЕМОСТИ

 

Проницаемость абсолютная (физическая) – это проницаемость пористой среды для газа или однородной жидкости при выполнении следующих условиях:

1. 1. Отсутствие физико-химического взаимодействия между пористой средой и этим газом или жидкостью.

2. 2. Полное заполнение всех пор среды этим газом или жидкостью.

Для продуктивных нефтяных пластов эти условия не выполняются.

Проницаемость фазовая (эффективная) – это проницаемость пористой среды для данного газа или жидкости при одновременном наличии в порах другой фазы (жидкости или газа) или системы (газ-нефть, нефть-вода, вода-газ, газ-нефть-вода).

При фильтрации смесей коэффициент фазовой проницаемости намного меньше абсолютной проницаемости и неодинаков для пласта в целом.

Относительная проницаемость – отношение фазовой проницаемости к абсолютной.

Проницаемость горной породы зависит от степени насыщения породы флюидами, соотношения фаз, физико-химических свойств породы и флюидов.

Фазовая и относительная проницаемости для различных фаз зависят от нефте-, газо- и водонасыщенности порового пространства породы, градиента давления, физико-химических свойств жидкостей и поровых фаз.

Насыщенность – ещё один важный параметр продуктивных пластов, тесно связанный с фазовой проницаемостью: водонасыщенность (Sв), газонасыщенность (Sг), нефтенасыщенность (Sн).

Предполагается, что продуктивные пласты сначала были насыщены водой. Водой были заполнены капилляры, каналы, трещины.

При миграции (аккумуляции) углеводороды, вследствие меньшей плотности, стремятся к верхней части пласта, выдавливая вниз воду. Вода легче всего уходит из трещин и каналов, из капилляров вода плохо уходит в силу капиллярных явлений. Таким образом, в пласте остаётся связанная вода.

Чтобы определить количество углеводородов, содержащихся в продуктивном пласте, необходимо определить насыщенность порового пространства породы водой, нефтью и газом.

Водонасыщенность SВ – отношение объёма открытых пор, заполненных водой к общему объёму пор горной породы. Аналогично определение нефте- и газонасыщенности:

. (1.35)

 

Обычно для нефтяных месторождений остаточная водонасыщенность изменяется в диапазоне: SВ = 6 - 35% (пласт считается созревшим для разработки, если остаточная водонасы­щенность в среднем (SВ) < 25%; нефтенасыщенность: SН = 65 - 94%, в зависимости от " созревания" пласта.

Для месторождений параметр насыщенности нормирован и равен единице (Sнасыщ = 1) или 100%. То есть, для нефтяных месторождений справедливо следующее соотношение:

 

SН + SВ = 1. (1.36)

 

Для газонефтяных месторождений:

 

SВ + SН + SГ = 1, Sг = 1 – (SB + SH). (1.37)

 

Остаточная водонасыщенность, обусловленная капиллярными силами, не влияет на основную фильтрацию нефти и газа. На практике насыщенность породы определяют в лабораторных условиях по керновому материалу (см. раздел лаборат. практикума).

Фазовая (эффективная), относительная проницаемости, насыщенность горных пород определяются экспериментально. На рисунке 1.11 представлены результаты экспериментального исследования газо-водо-нефтяного потока при одновременном содержании в пористой среде нефти, воды и газа. Опытами установлено, что в зависимости от объёмного насыщения порового пространства различными компонентами возможно одно-, двух- и трёхфазное движение. Результаты исследования представлены в виде треугольной диаграммы (рис. 1.11).

Вершины треугольника соответствуют стопроцентному насыщению породы одной из фаз; стороны, противолежащие вершинам, – нулевому насыщению породы этой фазой. Кривые, проведённые на диаграмме, ограничивают возможные области одно-, двух-, и трёхфазного потока.

 

Рис. 1.11. Области распространения одно-, двух- и трёхфазного потоков:

1. – 5% воды; 2. – 5% нефти; 3. – 5% газа.

 

При водонасыщенности до 25% нефте- и газонасыщенность пород максимальная: 45-75%, а относительная фазовая проницаемость для воды равна нулю. При увеличении водонасыщенности до 40%, фазовая проницаемость для нефти и газа уменьшается в 2-2, 5 раза. При увеличении водонасыщенности до 80% фильтрация газа и нефти в пласте стремится к нулю.

При газонасыщенности меньше 10% и нефтенасыщенности меньше 23% в потоке будет практически одна вода. При газонасыщенности меньше 10% движение газа не будет происходить. При содержании в породе газа свыше 33 –35% фильтроваться будет один газ.

При нефтенасыщенности меньше 23% движение нефти не будет происходить. При содержании воды от 20 до 30% и газа от 10 до 18% фильтроваться может только одна нефть.

Заштрихованные промежуточные области, примыкающие к сторонам треугольника, отвечают двухфазным потокам: газ – вода, газ – нефть, вода – нефть.

Область совместного движения в потоке всех трех фаз выделена двойной штриховкой. Для несцементированных песков она находится в следующих пределах насыщенности: нефтью от 23 до 50%, водой от 33 до 64%, газом от 14 до 30%.

 

УДЕЛЬНАЯ ПОВЕРХНОСТЬ

Под удельной поверхностью (Sуд.) горных пород понимается суммарная поверхность всех ее зерен в единице объема породы. Удельная поверхность характеризует степень дисперсности породы. С увеличением дисперсности удельная поверхность породы возрастает. Удельная поверхность возрастает с уменьшением диаметра зерен и коэффициента пористости. Экспериментально измерить удельную поверхность реальных коллекторов очень сложно. В коллекторах всегда присутствуют поры различного диаметра. Удельная поверхность зависит и от фазовой проницаемости, и от адсорбционной способности пород. Оценивают удельную поверхность по эмпирическим соотношениям, по величинам пористости (m) и проницаемости (kпр), например, по формуле Козени:

 

Sуд. = 7· 105 (m· √ m) / (√ kпр.). (1.38)

 

Если выразить проницаемость в мкм2, то получим удельную поверхность в м23. Выражение (1.38) один и вариантов формулы Козени.

 

КАРБОНАТНОСТЬ ПОРОДЫ

Под карбонатностью породы понимается содержание в ней солей угольной кислоты: известняка – СаСО3, доломита – СаСО3· МgСО3, соды – Na2СО3, поташа – K2СО3, сидерита – FeСО3 и др. Общее количество карбонатов относят обычно к СаСО3, потому, что углекислый кальций науболее распространен в породах и составляет основную часть перечисленных карбонатов. Карбонатность пород продуктивных пластов определяют в лабораторных условиях по керновому материалу газометрическим методом (см. раздел лаборат. практикума). Метод основан на химическом разложении солей угольной кислоты действием соляной кислоты и измерением объема углекислого газа, образовавшегося в результате реакции:

 

СаСО3, +2HCl = CO2 + CaCO3 + H2O. (1.39)

 

По объему выделившегося CO2 вычисляют весовое процентное содержание карбонатов в породе в пересчете на СаСО3.

 

СОСТАВ ПРИРОДНЫХ ГАЗОВ

 

Природные газы, добываемые из газовых, газоконденсатных и нефтяных месторождений, состоят из углеводородов (СН4 – С4Н10, и выше), а также неуглеводородных компонентов (H2S, N2, CO, CO2, Ar, H2, He и др.). Качественный состав газов нефтяного происхождения всегда одинаков, что нельзя сказать о газах вулканических извержений.

При нормальных и стандартных условиях в газообразном состоянии существуют только углеводороды С1–С4. Углеводороды С5 и выше при нормальных условиях находятся в жидком состоянии.

Газы, добываемые из чисто газовых месторождений, содержат более 95% метана (табл. 2.1).

Химический состав газа газовых месторождений, об. %

Таблица 2.1

Месторождение СН4 С2Н6 С3Н8 С4Н10 С5Н12 N2 СО2 Относит. плотность
Северо-Ставропольское 98, 9 0, 29 0, 16 0, 05 0, 4 0, 2 0, 56
Уренгойское 98, 84 0, 1 0, 03 0, 02 0, 01 1, 7 0, 3 0, 56
Шатлыкское 95, 58 1, 99 0, 35 0, 1 0, 05 0, 78 1, 15 0, 58
Медвежье 98, 78 0, 1 0, 02 1, 0 0, 1 0, 56

 

Содержание метана на газоконденсатных месторождениях колеблется от 75 - 95% (табл. 2.2).

Химический состав газа газоконденсатных месторождений, об. %

Таблица 2.2

Месторождение СН4 С2Н6 С3Н8 С4Н10 С5Н12 N2 СО2 Относит. плотность
Вуктыльское 74, 80 7, 70 3, 90 1, 80 6, 40 4, 30 0, 10 0, 882
Оренбургское 84, 00 5, 00 1, 60 0, 70 1, 80 3, 5 0, 5 0, 680
Ямбургское 89, 67 4, 39 1, 64 0, 74 2, 36 0, 26 0, 94 0, 713
Уренгойское 88, 28 5, 29 2, 42 1, 00 2, 52 0, 48 0, 01 0, 707

 

Газы, добываемые вместе с нефтью (попутный газ) представляют собой смесь метана, этана, пропан-бутановой фракции (сжиженного газа) и газового бензина. Содержание метана изменяется от 35 - 85%. Содержание тяжёлых углеводородов в попутном газе варьируется в диапазоне 20-40%, реже доходит до 60% (табл. 2.3).

 

Химический состав газа нефтяных месторождений (попутного газа), об. %

Таблица 2.3

Месторождение СН4 С2Н6 С3Н8 С4Н10 С5Н12 N2 СО2 Относит. плотность
Бавлинское 35, 0 20, 7 19, 9 9, 8 5, 8 8, 4 0, 4 1, 181
Ромашкинское 19, 1 17, 8 8, 0 6, 8 8, 0 1, 5 1, 125
Самотлорское 53, 4 7, 2 15, 1 8, 3 6, 3 9, 6 0, 1 1, 010
Узеньское 50, 2 20, 2 16, 8 7, 7 3, 0 2, 3 1, 010

 

Тяжёлым нефтям свойственны сухие попутные нефтяные газы, с преобладанием метана. Коэффициент сухости (k сух.) пропорционален содержанию метана:

(2.1)

 

Под тяжелыми УВ понимается суммарное содержание углеводородов от этана (С2Н6) и выше.

Лёгким нефтям свойственны жирные попутные газы. Коэффициент жирности (k жирн.) пропорционален содержанию тяжелых углеводородов:

 

(2.2)

 

 

ИСТОЧНИКИ ПЛАСТОВОЙ ЭНЕРГИИ

 

Приток жидкости и газа из пласта в скважины происходит под действием сил, на природу и величину которых влияют виды и запасы пластовой энергии. В зависимости от геологического строения района и залежи приток нефти, воды и газа к скважинам обусловливается:

1) 1) напором краевых вод;

2) 2) напором газа, сжатого в газовой шапке;

3) 3) энергией газа, растворенного в нефти и в воде и выделяющегося из них при снижении давления;

4) 4) упругостью сжатых пород;

5) 5) гравитационной энергией.

В зависимости от вида преимущественно проявляющейся энергии вводят понятия режимов работы залежи: водонапорный, режим газовой шапки (газонапорный), растворенного газа, упругий или упруговодонапорный, гравитационный и смешанный.

Водонапорный режим газовых месторождений, так же как и нефтя­ных залежей, возникает при наличии активных краевых вод или при искусственном заводнении пласта. Газовый режим залежи (или режим расширяющегося газа) возникает при условии, когда единственным источником является энергия сжатого газа, т. е. когда пластовые воды не активны.

Запасы пластовой энергии расходуются на преодоление сил вязкого трения при перемещении жидкостей и газов к забоям скважин, на преодоление капиллярных и адгезионных сил.

СИЛЫ, ДЕЙСТВУЮЩИЕ В ЗАЛЕЖИ

Гидравлические сопротивления во время движения жидкости в пористой среде про­порциональны скорости потока и вязкости жидкостей. Эти сопротивления аналогичны сопротивлению трения при движении жидкости в трубах. Но в отличие от движения жидкости в трубах характер ее течения в микронеоднородной пористой среде имеет свои особенности. По результатам наблюдений за движением воды и нефти в пористой среде установлено, что в области водонефтяного контакта вместо раздельного фронтового движения фаз перемещается смесь воды и нефти. Жидкости в капиллярных каналах разбиваются на столбики и шарики, которые на время закупоривают поры пласта вследствие проявления капиллярных сил. Подобное образование смеси наблюдалось и в единичных капиллярах.

Чтобы представить механизм проявления капиллярных сил при движении водонефтяной смеси, остающейся позади водонефтяного контакта, рассмотрим условия пере­мещения столбика нефти в цилиндрическом капилляре, заполненном и смоченном водой (рис. 5.1).

 

Рис. 5.1. Схема деформации капли нефти при её сдвиге в капилляре.

 

Под действием капиллярных сил столбик нефти будет стремиться принять шаро­образную форму, оказывая при это давление Р на пленку воды между стенками капил­ляра и столбиком нефти:

, (5.1)

 

где s – поверхностное натяжение на границе нефть-вода;
R – радиус сферической поверхности столбика нефти;

r – радиус ее цилиндрической поверхности.

Под действием давления, развиваемого менисками, происходит отток жидкости из слоя, отделяющего столбик нефти от стенок капилляра, продолжающийся до тех пор, пока пленка не достигнет равновесного состояния. Эти пленки обладают аномальными свойствами, в частности повышенной вязкостью, и поэтому они неподвижны. Следовательно, с началом движения столбика нефти в капилляре возникнет сила трения, обусловленная давлением нефти на стенки капилляра. Кроме того, прежде чем столбик нефти сдвинется с места, мениски на границах фаз деформи­руются и займут положение, изображенное пунктирными линиями.

Разность давлений, созданных менисками, будет создавать силу, противодействующую внешнему перепаду давлений – капиллярное давление:

 

. (5.2)

 

Описанное явление, сопровождающееся действием дополнительных сопротивлений при движении пузырьков газа и несмешивающихся жидкостей в капиллярных каналах, впервые исследовано Жаменом и названо его именем – эффект Жамена. Многочисленные эффекты Жамена возникают также при движении газоводонефтяных смесей в пористой среде. Дополнительное сопротивление и капиллярное давление для единичных столбиков могут быть невелики. Но в пористой среде столбики образуются в больших количествах, и на преодоление капиллярных сил затрачивается значительная часть пластовой энергии. Капиллярные силы способствуют уменьшению проницаемости фаз.

В пористой среде водонефтяная смесь движется в капиллярах переменного сечения, при этом происходит деформация капель. При переходе глобул и шариков нефти, воды или газа из широкой части канала в суженную вследствие неравенства радиусов кривизны менисков возникает дополнительное противодавление.

 

ВВЕДЕНИЕ

Нефть стала известна людям более четырёх тысяч лет тому назад.

На заре цивилизации нефть не играла большой роли в быту и технике. До нас дошли скупые сведения о том, что она применялась греками, египтянами и ассирийцами преимущественно для медицинских целей, в строительном деле (асфальт), при изготовлении туши, в военном деле (" греческий огонь" ), а также для освещения комнат и смазки колёс.

Признание как дешёвого топлива и источника ценных продуктов нефть получила только за последние сто лет. В данный момент развитие техники и промышленности невозможно себе представить без использования нефти и продуктов её переработки.

Из нефти вырабатываются горючее для двигателей внутреннего сгорания, топлива для газовых турбин и котельных установок, смазочные масла, битумы для дорожных покрытий, сажа для резиновой промышленности, кокс для электродов и множество других промышленных и потребительских товаров.

Газы – попутные, природные, газы нефтепереработки, ароматические углеводороды, жидкие и твёрдые парафины – незаменимое сырьё для нефтехимической промышленности.

На базе этого дешёвого газового и нефтяного сырья производятся полимерные материалы, синтетические волокна, каучук, моющие средства, спирты, альдегиды и многие другие ценные материалы.

Развитие научно-технической базы человечества, освоение и ввод в эксплуатацию крупнейших по запасам нефти и газа месторождений осуществляется на основе достижений прогресса в области физики нефтяного пласта. Полученные новые данные относительно нефтяных и газовых пластов, коллекторских и фильтрационных свойств горных пород (пористость, проницаемость, насыщенность, электропроводность), физических свойств пластовых жидкостей и газов, фазовых состояний предельных углеводородных систем успешно применяются на практике.

Прогресс в области физики пласта, посредством более совершенного проектирования системы разработки, способствует поведению грамотной эксплуатации нефтяных и газовых месторождений, разработке и внедрению методов повышения компонентоотдачи пластов.

Современный инженер-нефтяник, занимающийся рациональной разработкой нефтяных и газовых месторождений, должен хорошо знать геологическое строение залежи, её физическую характеристику, физические и физико-химические свойства нефти, газа и воды, насыщающих породу; должен уметь правильно обработать и оценить данные, которые получены при вскрытии пласта и при его последующей эксплуатации. Эти данные позволяют определить начальные запасы углеводородов в залежи. Они необходимы для объективного представления о процессах, происходящих в пласте на различных стадиях его разработки. На этом комплексе сведений основывается проектирование разработки месторождения, выбор тех или иных методов искусственного воздействия на залежь, если это признаётся необходимым.

Настоящий учебник посвящен описанию свойств пористых сред и насыщающих их жидкостей и газов и их испоv льзованию в практических расчётах.

коллекторские Свойства горных пород

 

ТИПЫ ПОРОД-КОЛЛЕКТОРОВ

 

Подавляющая часть нефтяных и газовых месторождений приурочена к коллекторам трёх типов – гранулярным, трещинным и смешанного строения. К первому типу относятся коллекторы, сложенные песчано-алевритовыми породами, поровое пространство которых состоит из межзерновых полостей. Подобным строением порового пространства характеризуются также некоторые пласты известняков и доломитов. В чисто трещиноватых коллекторах (сложенных преимущественно карбонатами) поровое пространство образуется системой трещин. При этом участки коллектора между трещинами представляют собой плотные малопроницаемые нетрещиноватые блоки пород, поровое пространство которых практически не участвует в процессах фильтрации. На практике, однако, чаще всего встречаются трещиноватые коллекторы смешанного типа, поровое пространство которых включает как системы трещин, так и поровое пространство блоков, а также каверны и карст.

Анализ показывает, что около 60% запасов нефти в мире приурочено к песчаным пластам и песчаникам, 39% – к карбонатным отложениям, 1% – к выветренным метаморфическим и изверженным породам. Следовательно, породы осадочного происхождения – основные коллекторы нефти и газа.

В связи с разнообразием условий формирования осадков коллекторские свойства пластов различных месторождений могут изменяться в широких пределах. Характерные особенности большинства коллекторов – слоистость их строения и изменение во всех направлениях свойств пород, толщины пластов и других параметров.

Нефтяной пласт представляет собой горную породу, пропитанную нефтью, газом и водой.

Под горной породой понимается естественный твердый минеральный агрегат определенного состава и строения, образующий в земной коре тела различной формы и размера. Горные породы делятся на три группы: осадочные, изверженные (магматические) и метаморфические. Осадочные породы возникают в результате преобразования в термических условиях поверхностной части земной коры осадков, представляющих собой выпавшие механическим или химическим путем продукты разрушения более древних пород, изверженных вулканов, жизнедеятельности организмов и растений.

Свойства горной породы вмещать (обусловлено пористостью горной породы) и пропускать (обусловлено проницаемостью) через себя жидкости и газы называются фильтрационно-ёмкостными свойствами (ФЕС).

Фильтрационные и коллекторские свойства пород нефтяных пластов характеризуются следующими основными показателями:

- - гранулометрическим составом пород (см. раздел лаборат. практикума);

- - пористостью;

- - проницаемостью;

- - насыщенностью пород водой, нефтью и газом;

- - удельной поверхностью;

- - капиллярными свойствами;

- - механическими свойствами.

Рассмотрим подробнее каждый из этих параметров.

 

ПОРИСТОСТЬ

Под пористостью горной породы понимается наличие в ней пор (пустот). Пористость характеризует способность горной породы вмещать жидкости и газы.

В зависимости от происхождения различают следующие виды пор:

1. 1. Поры между зёрнами обломочного материала (межкристаллические поры), промежутки между плоскостями наслоения - это первичные поры, образовавшиеся одновременно с формированием породы.

2. 2. Поры растворения образовавшиеся в результате циркуляции подземных вод, за счёт процессов растворения минеральной составляющей породы активными флюидами образуются поры, например выщелачивания, вплоть до образование карста.

3. 3. Поры и трещины, возникшие под влиянием химических процессов, приводящие к сокращению объема породы. Например, превращение известняка (СаСО3) в доломит (СаСО3· МgСО3). При доломитизации идёт сокращение объёмов породы приблизительно на 12%, что приводит к увеличению объема пор. Аналогично протекает и процесс каолинизации – Al2O3· 2SiO2· H2O.

4. 4. Пустоты и трещины, образованные за счёт эрозионных процессов, выветривания, кристаллизации.

5. 5. Пустоты и трещины, образованные за счёт тектонических процессов, напряжений в земной коре.

Виды пор (2) - (5) – это, так называемые, вторичные поры, возникающие при геолого-минералогических или химических процессах.

Объём пор зависит от:

- - формы зёрен и размера зёрен;

- - сортировки зёрен (чем лучше отсортирован материал, тем выше пористость);

- - укладки зёрен, например, при кубической укладке пористость составляет » 47, 6%, при ромбической укладке – 25, 96% (см. рис. 1.1);


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 1008; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.149 с.)
Главная | Случайная страница | Обратная связь