Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Постулат постоянства скорости света



Исторически важную роль при построении СТО сыграл второй постулат Эйнштейна, утверждающий, что скорость света c не зависит от скорости движения источника и одинакова во всех инерциальных системах отсчёта. Именно при помощи этого постулата и принципа относительности Альберт Эйнштейн в 1905 г. получил преобразования Лоренца с фундаментальной константой c, имеющей смысл скорости света. С точки зрения описанного выше аксиоматического построения СТО второй постулат Эйнштейна оказывается теоремой теории и непосредственно следует из преобразований Лоренца (см. релятивистское сложение скоростей). Тем не менее, в силу его исторической важности, такой вывод преобразований Лоренца широко используется в учебной литературе.

Необходимо отметить, что световые сигналы, вообще говоря, не требуются при обосновании СТО. Хотя неинвариантность уравнений Максвелла относительно преобразований Галилея привела к построению СТО, последняя имеет более общий характер и применима ко всем видам взаимодействий и физических процессов. Фундаментальная константа c, возникающая в преобразованиях Лоренца, имеет смысл предельной скорости движения материальных тел. Численно она совпадает со скоростью света, однако этот факт связан с безмассовостью электромагнитных полей. Даже если бы фотон имел отличную от нуля массу, преобразования Лоренца от этого бы не изменились. Поэтому имеет смысл различать фундаментальную скорость c и скорость света cem. Первая константа отражает общие свойства пространства и времени, тогда как вторая связана со свойствами конкретного взаимодействия. Чтобы измерить фундаментальную скорость c, нет необходимости проводить электродинамические эксперименты. Достаточно, воспользовавшись, например, релятивистским правилом сложения скоростей по значениям скорости некоторого объекта относительно двух ИСО, получить значение фундаментальной скорости c.

Непротиворечивость теории относительности

Теория относительности является логически непротиворечивой теорией. Это означает, что из её исходных положений нельзя логически вывести некоторое утверждение одновременно с его отрицанием. Поэтому множество так называемых парадоксов (подобных парадоксу близнецов) являются кажущимися. Они возникают в результате некорректного применения теории к тем или иным задачам, а не в силу логической противоречивости СТО.

Справедливость теории относительности, как и любой другой физической теории, в конечном счёте проверяется эмпирически. Кроме этого, логическая непротиворечивость СТО может быть доказана аксиоматически. Например, в рамках группового подхода показывается, что преобразования Лоренца могут быть получены на основе подмножества аксиом классической механики. Этот факт сводит доказательство непротиворечивости СТО к доказательству непротиворечивости классической механики. Действительно, если следствия из более широкой системы аксиом являются непротиворечивыми, то они, тем более, будут непротиворечивыми при использовании только части аксиом. С точки зрения логики противоречия могут возникать, когда к уже существующим аксиомам добавляется новая аксиома, не согласующаяся с исходными. В аксиоматическом построении СТО, описанном выше, этого не происходит, поэтому СТО является непротиворечивой теорией.

Геометрический подход

Возможны другие подходы к построению специальной теории относительности. Следуя Минковскому и более ранней работе Пуанкаре, можно постулировать существование единого метрического четырёхмерного пространства-времени с 4-координатами (ct, x, y, z). В простейшем случае плоского пространства метрика, определяющая расстояние между двумя бесконечно близкими точками, может быть евклидовой или псевдоевклидовой (см. ниже). Последний случай соответствует специальной теории относительности. Преобразования Лоренца при этом являются поворотами в таком пространстве, которые оставляют неизменным расстояние между двумя точками.

Возможен ещё один подход, в котором постулируется геометрическая структура пространства скоростей. Каждая точка такого пространства соответствует некоторой инерциальной системе отсчёта, а расстояние между двумя точками — модулю относительной скорости между ИСО. В силу принципа относительности все точки такого пространства должны быть равноправными, а, следовательно, пространство скоростей является однородным и изотропным. Если его свойства задаются римановой геометрией, то существует три и только три возможности: плоское пространство, пространство постоянной положительной и отрицательной кривизны. Первый случай соответствует классическому правилу сложения скоростей. Пространство постоянной отрицательной кривизны (пространство Лобачевского) соответствует релятивистскому правилу сложения скоростей и специальной теории относительности.

Различная запись преобразования Лоренца

Пусть координатные оси двух инерциальных систем отсчёта S и S' параллельны друг другу, (t, x, y, z) — время и координаты некоторого события, наблюдаемого относительно системы S, а (t', x', y', z') — время и координаты того же события относительно системы S'. Если система S' движется равномерно и прямолинейно со скоростью v относительно S, то справедливы преобразования Лоренца:

где c -скорость света. При скоростях много меньше скорости света ( ) преобразования Лоренца переходят в преобразования Галилея:

Подобный предельный переход является отражением принципа соответствия, согласно которому более общая теория (СТО) имеет своим предельным случаем менее общую теорию (в данном случае — классическую механику).

Преобразования Лоренца можно записать в векторном виде, когда скорость систем отсчёта направлена в произвольном направлении (не обязательно вдоль оси x):

где — фактор Лоренца, и — радиус-векторы события относительно систем S и S'.

Следствия преобразований Лоренца

Сложение скоростей

Непосредственным следствием преобразований Лоренца является релятивистское правило сложения скоростей. Если некоторый объект имеет компоненты скорости относительно системы S и — относительно S', то между ними существует следующая связь:

В этих соотношениях относительна скорость движения систем отсчёта v направлена вдоль оси x. Релятивистское сложение скоростей, как и преобразования Лоренца, при малых скоростях ( ) переходит в классический закон сложения скоростей.

Если объект движется со скоростью света вдоль оси x относительно системы S, то такая же скорость у него будет и относительно S': . Это означает, что скорость является инвариантной (одинаковой) во всех ИСО.

Замедление времени

Если часы неподвижны в системе , то для двух последовательных событий имеет место . Такие часы перемещаются относительно системы по закону , поэтому интервалы времени связаны следующим образом:

Важно понимать, что в этой формуле интервал времени измеряется одними движущимися часами . Он сравнивается с показаниями нескольких различных, синхронно идущих часов, расположенных в системе , мимо которых движутся часы . В результате такого сравнения оказывается, что движущиеся часы идут медленнее неподвижных часов. С этим эффектом связан так называемый парадокс близнецов.

Если часы движутся с переменной скоростью относительно инерциальной системы отсчёта, то время, измеряемое этими часами (т. н. собственное время), не зависит от ускорения, и может быть вычислено по следующей формуле:

где при помощи интегрирования, суммируются интервалы времени в локально инерциальных системах отсчёта (т. н. мгновенно сопутствующих ИСО).


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 377; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.015 с.)
Главная | Случайная страница | Обратная связь