Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Будет сначала возрастать, а затем убывать



Дифракция.

Экран с отверстием освещается точечный монохроматическим источником. На втором экране наблюдается результат дифракции Френеля от круглого отверстия. Выберите возможные варианты наблюдаемой картины, если известно, что оказалось открытым нечётное число френелевских зон.

1; 3; 5

 

Монохроматическая волна интенсивностью J падает на круглое отверстие диаметра d, открывающего для точки наблюдения P одну зону Френеля. Определите во сколько раз интенсивность в точке P больше, чем J? (амплитуде в точке P соответствует один из векторов, показанных на фазовой диаграмме)

4) 4.0

 

Свет от точечного источника S дифрагирует на круглом отверстии D. Амплитуде в точке P соответствует на векторной диаграмме вектор AB. Экран с отверстием заменяется диском того же диаметра. Выберите новый вектор, соответствующий амплитуде в точке P.

BO

 

На экране P наблюдается дифракция Френеля на круглом отверстии D от точечного монохроматического источника S. По заданному распределению интенсивности в плоскости экрана вдоль оси x, определите, какое число зон Френеля открывает отверстие.

 

Свет от точечного монохроматического источника S дифрагирует на круглом отверстии D. Амплитуде в точке P соответствует на векторной диаграмме вектор AB. Во сколько раз нужно увеличить диаметр отверстия, чтобы этой же точке соответствовал вектор AC?

2) 1.73

 

Экран с отверстием освещается точечным монохроматическим источником. На экране наблюдается результат дифракции Френеля от круглого отверстия. Введите номер правильно варианта наблюдаемой картины, если известно что оказались открыты пять френелевских зон.

Плоская монохроматическая волна (расстояние a велико) с интенсивностью J падает по нормали на круглое отверстие с диаметром d. Определите, во сколько раз интенсивность волны в точке P больше, чем J, если её амплитуде соответствует вектор AB, показанный на векторной диаграмме?

3) 2.0

Свет от источника S дифрагирует на круглом отверстии D. Выберите на фазовой диаграмме вектора, соответствующие амплитудам в точке P, если: 1) отверстие открывает почти 7 первых зон; 2) вместо экрана с отверстием диск того же диаметра; 3) экрана нет вообще

AB, 2. BC, 3. AC

На экране P наблюдается дифракция Френеля на круглом отверстии D от точечного монохроматического источника S. Введите число открытых френелевских зон по заданному распределению интенсивности в плоскости экрана вдоль оси x.

Между точечным источником S и точкой наблюдения P находится экран с отверстием, радиус которого можно изменять. При некотором значении R амплитуда в точке P соответствует вектору AB1. Что произошло с радиусом отверстия, если вектор амплитуды переместился в положение AB2?

Увеличится в 1.29 раза

Экран с отверстием освещается точечным монохроматическим источником. На экране наблюдается результат дифракции Френеля от круглого отверстия. Введите номер правильного варианта наблюдаемой картины, если известно, что оказались открытыми шесть френелевских зон.

4)

Амплитуде дифрагированной волны в точке P соответствует вектор AB, показанный на фазовой диаграмме. Как будет изменяться интенсивность в точке P по мере увеличения диаметра отверстия до размера, которому будет соответствовать вектор амплитуды AC?

Будет сначала возрастать, а затем убывать

Свет от источника S дифрагирует на круглом отверстии D. Выберете на фазовой диаграмме вектора, соответствующие амплитудам в точке P, если: 1) отверстие открывает почти три первые зоны; 2) вместо экрана с отверстием – диск того же диаметра; 3) экрана нет вообще.

AB, 2. BC, 3. AC

Свет от точечного монохроматического источника S дифрагирует на круглом отверстии D. Параметры a, b и d таковы, что для точки P открыто 1.5 зоны Френеля. На векторной диаграмме сложения вторичных найдите вектор, соответствующий амплитуде в точке P.

AC

На рисунке представлены распределение дифрагированного на щели плоского монохроматического излучения в трёх плоскостях P1, P2 и P3. Оцените (в сантиметрах) дистанцию Рэлея R, условно отделяющую области дифракции в ближней и дальней зоне. Ширина щели 150 мкм, L = 0, 45 мкм.

1) 5.0

 

Экран с отверстием освещается точечным монохроматическим источником. На экране наблюдается результат дифракции Френеля от круглого отверстия. Введите номер правильного варианта наблюдаемой картины, если известно, что оказалось открытым чётное число френелевских зон.

2; 4

 

Свет от точечного монохроматического источника S дифрагирует на круглом отверстии D. Параметры a, b и d и длина волны таковы, что амплитуде в точке P соответствует на векторной диаграмме сложения вторичных волн вектор AB. Введите число френелевских зон, открытых для точки P.

1) 0, 5

 

Монохроматическая волна падает на круглое отверстие изменяемого диаметра d и создаёт на экране P картину дифракции Френеля. Пользуясь предложенной фазовой диаграммой, определите, какой номер соответствует самому большому отверстию (A), а какой – самой большой интенсивности в центре (B)?

A – 1; B – 3

 

Точечный монохроматический источник S освещает непрозрачный диск D. На экране P в центре геометрической тени наблюдается светлое пятно (т.н. пятно Пуассона). Определите, что будет происходить с картиной на экране при постепенном увеличении диаметра диска.

AC

Амплитуде дифрагированной волны в точке Р соответствует вектор AB, показанный на фазовой диаграмме. Как изменится интенсивности в точке P, если диаметр отверстии увеличивают, добиваясь для той же точки амплитуды АС?

Вообще не изменится

Экран с отверстием освещается точечным монохроматическим источником. На втором экране наблюдается результат дифракции Френеля от круглого отверстия. Выберите возможные варианты наблюдаемой картины, если известно что оказалось открытым нечетное число френелевоких зон.

2) 4)

На экране Р наблюдается дифракция Френеля на круглом отверстии D от точечного монохроматического источника S. Введите число открытых френелевоких зон по заданному распределению интенсивности в плоскости экрана вдоль оси x.

4)

Точечный источник света S (длина волны 0.5мкм) расположен на расстоянии а = 100 см перед экраном с круглым отверстием диаметра 2.0 мм. Найти расстояние b (в метрах) до точки наблюдения Р, для которой амплитуда волны изображается вектором АВ на векторной диаграмме.

2) 2.0

Плоская монохроматическая волна падает на непро­зрачный экран с круглым отверстием. Точка наблю­дения Р удаляется вдоль оси х от плоскости экрана в области дифракции Френеля. Выберите верные ут­верждения, касающиеся картины дифракции в точке P.

2) 2.0

Плоская монохроматическая волна (расстояние a велико, лямбда = 450 нм) с интенсивностью J0 падает по нормали на круглое отверстие с R = 1.2 мм. Найти интенсивность в точке P при b = 3.2 м. Амплитуде в точке P соответствует один из векторов, показанных на векторной диаграмме.

5) 4 * J0

Наблюдается дифракция плоской монохроматической волны на полубесконечном непроницаемом экране. Введите номер правильного варианта распределения интенсивности света вдоль оси x.

3)

Монохроматическая волна интенсивностью J0 падает на круглое отверстие диаметра d, открывающего для точки наблюдения P одну зону Френеля. Определите, во сколько раз интенсивность в точке P больше, чем J0? (амплитуде в точке P соответствует один из векторов, показанных на фазовой диаграмме)

J0

Точечный монохроматический источник S освещает непрозрачный диск D. На экране P в центре геометрической тени наблюдается светлое пятно (т. н. пятно Пуассона). Определите, что будет происходить с картиной на экране при постепенном увеличении диаметра диска.

Формулы.

 

уравнение Гельмгольца для поля монохроматической световой волны, распространяющейся в немагнитной среде (m=1) с показателем преломления n; ko=2p/lo – волновой вектор, обратный длине волны

 

(grad L)2=n2

уравнение эйконала (оптического пути), где L = const – геометрический волновой фронт

 

ds=dL/n

расстояние между соседними волновыми фронтами увеличивается по мере уменьшения показателя преломления, и наоборот; во всех средах (n> 1) dL> ds

оптический путь между двумя точками равен скорости света в вакууме, умноженной на время прохождения лучом расстояния между этими точками

 

в неоднородной среде световые лучи изгибаются в сторону увеличения показателя преломления

 

n1sina= n2sinb

закон Снеллиуса: луч преломлённый лежит в плоскости падения, а синусы углов падения и преломления связаны отношением показателей преломления

 

sina= n2/n1

угол падения, при котором возникает эффект полного внутреннего отражения (ПВО)

 

зависимость минимального угла отклонения smin от показателя преломления призмы n и угла в вершине призмы q; угол s минимален в случае симметрического хода лучей (a1=a2)

 

инвариант Аббе для прохождения лучами раздела сред линза-среда; R – радиус кривизны раздела сред; a1 – геометрический ход луча в среде, a2 – геометрический ход луча в линзе

 

формула сферической преломляющей поверхности

 

оптическая сила сферической преломляющей поверхности

 

переднее фокусное расстояние сферической преломляющей поверхности

 

заднее фокусное расстояние сферической преломляющей поверхности

 

фокусные расстояния прямо пропорциональны показателям преломления сред, у которых они расположены

 

оптическая сила сферического зеркала

 

линейное или поперечное увеличение – отношение размера изображения к размеру предмета

 

формула тонкой линзы в среде

 

оптическая сила тонкой линзы

 

фокусное расстояние тонкой линзы

Дифракция.

Экран с отверстием освещается точечный монохроматическим источником. На втором экране наблюдается результат дифракции Френеля от круглого отверстия. Выберите возможные варианты наблюдаемой картины, если известно, что оказалось открытым нечётное число френелевских зон.

1; 3; 5

 

Монохроматическая волна интенсивностью J падает на круглое отверстие диаметра d, открывающего для точки наблюдения P одну зону Френеля. Определите во сколько раз интенсивность в точке P больше, чем J? (амплитуде в точке P соответствует один из векторов, показанных на фазовой диаграмме)

4) 4.0

 

Свет от точечного источника S дифрагирует на круглом отверстии D. Амплитуде в точке P соответствует на векторной диаграмме вектор AB. Экран с отверстием заменяется диском того же диаметра. Выберите новый вектор, соответствующий амплитуде в точке P.

BO

 

На экране P наблюдается дифракция Френеля на круглом отверстии D от точечного монохроматического источника S. По заданному распределению интенсивности в плоскости экрана вдоль оси x, определите, какое число зон Френеля открывает отверстие.

 

Свет от точечного монохроматического источника S дифрагирует на круглом отверстии D. Амплитуде в точке P соответствует на векторной диаграмме вектор AB. Во сколько раз нужно увеличить диаметр отверстия, чтобы этой же точке соответствовал вектор AC?

2) 1.73

 

Экран с отверстием освещается точечным монохроматическим источником. На экране наблюдается результат дифракции Френеля от круглого отверстия. Введите номер правильно варианта наблюдаемой картины, если известно что оказались открыты пять френелевских зон.

Плоская монохроматическая волна (расстояние a велико) с интенсивностью J падает по нормали на круглое отверстие с диаметром d. Определите, во сколько раз интенсивность волны в точке P больше, чем J, если её амплитуде соответствует вектор AB, показанный на векторной диаграмме?

3) 2.0

Свет от источника S дифрагирует на круглом отверстии D. Выберите на фазовой диаграмме вектора, соответствующие амплитудам в точке P, если: 1) отверстие открывает почти 7 первых зон; 2) вместо экрана с отверстием диск того же диаметра; 3) экрана нет вообще

AB, 2. BC, 3. AC

На экране P наблюдается дифракция Френеля на круглом отверстии D от точечного монохроматического источника S. Введите число открытых френелевских зон по заданному распределению интенсивности в плоскости экрана вдоль оси x.

Между точечным источником S и точкой наблюдения P находится экран с отверстием, радиус которого можно изменять. При некотором значении R амплитуда в точке P соответствует вектору AB1. Что произошло с радиусом отверстия, если вектор амплитуды переместился в положение AB2?

Увеличится в 1.29 раза

Экран с отверстием освещается точечным монохроматическим источником. На экране наблюдается результат дифракции Френеля от круглого отверстия. Введите номер правильного варианта наблюдаемой картины, если известно, что оказались открытыми шесть френелевских зон.

4)

Амплитуде дифрагированной волны в точке P соответствует вектор AB, показанный на фазовой диаграмме. Как будет изменяться интенсивность в точке P по мере увеличения диаметра отверстия до размера, которому будет соответствовать вектор амплитуды AC?

Будет сначала возрастать, а затем убывать

Свет от источника S дифрагирует на круглом отверстии D. Выберете на фазовой диаграмме вектора, соответствующие амплитудам в точке P, если: 1) отверстие открывает почти три первые зоны; 2) вместо экрана с отверстием – диск того же диаметра; 3) экрана нет вообще.

AB, 2. BC, 3. AC

Свет от точечного монохроматического источника S дифрагирует на круглом отверстии D. Параметры a, b и d таковы, что для точки P открыто 1.5 зоны Френеля. На векторной диаграмме сложения вторичных найдите вектор, соответствующий амплитуде в точке P.

AC

На рисунке представлены распределение дифрагированного на щели плоского монохроматического излучения в трёх плоскостях P1, P2 и P3. Оцените (в сантиметрах) дистанцию Рэлея R, условно отделяющую области дифракции в ближней и дальней зоне. Ширина щели 150 мкм, L = 0, 45 мкм.

1) 5.0

 

Экран с отверстием освещается точечным монохроматическим источником. На экране наблюдается результат дифракции Френеля от круглого отверстия. Введите номер правильного варианта наблюдаемой картины, если известно, что оказалось открытым чётное число френелевских зон.

2; 4

 

Свет от точечного монохроматического источника S дифрагирует на круглом отверстии D. Параметры a, b и d и длина волны таковы, что амплитуде в точке P соответствует на векторной диаграмме сложения вторичных волн вектор AB. Введите число френелевских зон, открытых для точки P.

1) 0, 5

 

Монохроматическая волна падает на круглое отверстие изменяемого диаметра d и создаёт на экране P картину дифракции Френеля. Пользуясь предложенной фазовой диаграммой, определите, какой номер соответствует самому большому отверстию (A), а какой – самой большой интенсивности в центре (B)?

A – 1; B – 3

 

Точечный монохроматический источник S освещает непрозрачный диск D. На экране P в центре геометрической тени наблюдается светлое пятно (т.н. пятно Пуассона). Определите, что будет происходить с картиной на экране при постепенном увеличении диаметра диска.


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 863; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.078 с.)
Главная | Случайная страница | Обратная связь