Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Волны. Продольные и поперечные. Уравнение волны.



Волна́ — изменение состояния среды или физического поля (возмущение), распространяющееся либо колеблющееся в пространстве и времени или в фазовом пространстве. Другими словами, «…волнами или волной называют изменяющееся со временем пространственное чередование максимумов и минимумов любой физической величины — например, плотности вещества, напряжённости электрического поля, температуры[1]». волны, рассматриваемый параметр которых (смещение молекул, механическое напряжение, и т.д.) изменяется периодически вдоль оси распространения, называютсяпродольными волнами. Если колебания происходят перпендикулярно оси распространения волны (как у электромагнитных волн, например), то такие волны называютсяпоперечными.

Если взаимосвязь между частицами среды осуществляется силами упругости, возникающими вследствие деформации среды при передаче колебаний от одних частиц к другим, то волны называются упругими. К ним относятся звуковые, ультразвуковые, сейсмические и др. волны. На первой анимации изображён процесс распространения продольной упругой волны в решётке, состоящей из шариков, соединённых упругими пружинками. Каждый шарик колеблется по гармоническому закону в продольном направлении, совпадающем с направлением распространения волны. Амплитуда каждого шарика одинакова и равна A, а фаза колебаний линейно растёт с увеличением номера шарика на Dj т.е.

x0=Asin(wt); x1=Asin(wt+Dj); x2=Asin(wt+2Dj); x3=Asin(wt+3Dj); и т.д.

где w -частота волны, t - время, Dj - изменение фазы от шарика к шарику

В поперечной волне колебания происходят в направлении, перпендикулярном направлению распространения волны. Как и в случае продольных волн амплитуды колебаний всех шариков одинаковы, а фаза линейно изменяется от шарика к шарику

y0=Bsin(wt); y1=Bsin(wt+Dj); y2=Bsin(wt+2Dj); y3=Bsin(wt+3Dj); и т.д.

В общем виде уравнение распространения волны может быть записано в виде: z =Acos(wt - kx), где z - координата, по которой происходит движение частиц, x - координата оси, вдоль которой распространяется волна, k - волновое число, равноеw / v, v - скорость распространения волны. Зная частоту волны и скорость её распространения, мы можем найти сдвиг фаз между соседними шариками (частицами): Dj = (w / v)a, где a - расстояние между шариками в решётке.

· Термодинамический и молекулярно-кинетический методы изучения макроскопических тел. Изопроцессы.

Молекулярная физика и термодинамика — разделы физики, в которых изучаются макроскопические процессы в телах, связанные с очень большим числом в телах атомов и молекул. Для исследования этих процессов используют два принципиально различных и взаимно дополняющих друг друга метода: статистический (молекулярно-кинетический) и термодинамический. Первый лежит в основе молекулярной физики, второй — термодинамики. Молекулярная физика — раздел физики, изучающий строение и свойства вещества исходя из молекулярно-кинетических представлений, которые основываны на том, что все тела состоят из молекул, находящихся в непрерывном хаотическом движении.
Процессы, которые изучает молекулярная физика, есть результат совокупного действия огромного числа молекул. Физические законы поведения огромного числа молекул, которые являются статистическими закономерностями, изучаются статистическими методами. Данные методы основаны на том, что свойства макроскопической системы в конечном счете определяются свойствами частиц системы, особенностями характеристик их движения и усредненными значениями динамических характеристик этих частиц (чаще всего это скорости, энергии и т. д.). Например, температура тела характеризуется скоростью хаотического движения его молекул, но поскольку в разные моменты времени разные молекулы имеют различные скорости, то температура может быть выражена только через усредненную характеристику скорости движения молекул, например ее среднее арифметическое. Нельзя говорить о температуре одной молекулы. Значит, макроскопические характеристики тел имеют физический смысл только для большого числа молекул. Термодинамика — раздел физики, изучающий общие свойства макроскопических систем, находящихся в состоянии термодинамического равновесия, и процессы перехода между этими состояниями. Термодинамика не исследует микропроцессы, лежащие в основе этих превращений. Этим термодинамический метод отличается от статистического. Термодинамика имеет основой два начала — фундаментальные законах, которые установленны в результате обобщения опытных данных. Термодинамика имеет гораздо более широкую область применения, чем молекулярно-кинетической теория, ибо не существует таких областей физики и химии, где нельзя было бы применять термодинамический метод. С другой стороны, термодинамический метод достаточно ограничен: термодинамика как наука ничего не говорит о микроскопическом строении вещества, о механизме явлений, а лишь дает связи между макроскопическими свойствами вещества. Термодинамика и молекулярно-кинетическая теория взаимно дополняют друг друга, при этом образуя единое целое, но отличаясь различными методами исследования. Термодинамика работает с термодинамической системой — совокупностью макроскопических тел, взаимодействующие и обменивающиеся энергией как между собой, так и с другими телами (внешней средой). Основа термодинамического метода — определение состояния термодинамической системы, состояние которой задается термодинамическими параметрами (или параметрами состояния) — множеством физических величин, которые характеризуют свойства термодинамической системы. Чаще всего в качестве параметров состояния выбирают температуру, давление удельный объем и давление.

процессы, называемые изопроцессами, при которых один их параметров состояния остаётся неизменным. Существует три изопроцесса: изотермический, изобарический (изобарный) и изохорический (изохорный). Изотермическим называют процесс, происходящий при неизменной температуре (Т= соnst); изобарическим процессом - при постоянном давлении (P = const), изохорическим - при неизменном объёме (V= const).Изотермическим процессом называется процесс, протекающий при постоянной температуре. Из уравнения состояния идеального газа следует, что при постоянной температуре, массе и составе газа произведение давления на объем должно оставаться постоянным. Графиком изотермы (кривой изотермического процесса) является гипербола. Уравнение называют законом Бойля-Мариотта.Изобарным процессом называется процесс, протекающий при неизменном давлении, массе и составе газа.Для изобарического процесса справедлив закон Гей-Люссака. Из уравнения Менделеева - Клапейрона следует. Если масса и давление газа постоянны, то иСоотношение называется законом Гей-Люссака: для данной массы газа при постоянном давлении объём газа пропорционален его температуре. На рис. 26.2 показан график зависимости объёма от температуры.Изохорным процессом называется процесс, протекающий при неизменном объеме, массе и составе газа.В случае изохорического процесса справедлив закон Шарля. Из уравнения Менделеева - Клапейрона следует, что. Если масса и объём газа постоянны, то иУравнение называют законом Шарля: для данной массы газа при постоянном объёме давление газа пропорционально его температуре.


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 323; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.014 с.)
Главная | Случайная страница | Обратная связь