Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Классификация компьютерных сетей. Отличительные признаки, краткие характеристики.



1. Локальная вычислительная сеть (ЛВС или LAN – Local Area Network) – объединение небольшого числа компьютеров (до 100) в рамках одной организации или предприятия и в ограниченном пространстве (комната, этаж, здание). Такие сети имеют очень широкое распространение благодаря своей мобильности и простоте, служат для автоматизации небольших производственных процессов, взаимодействия отделов и отдельных сотрудников. Компьютеры ЛВС соединяются обычно сравнительно короткими проводами (десятки метров), что даёт высокую скорость передачи информации. Чаще всего топология ЛВС – «звезда», «линия» или «кольцо».

2. Корпоративная или региональная сеть создаётся крупными предприятиями (корпорациями), банками, средствами массовой информации или территориями для обмена информацией между удалёнными абонентами. Эта информация часто специального назначения, поэтому для неё повышены меры защиты и ограничения доступа. Используются как проводные, так и беспроводные средства связи и топология «дерево».

3. Глобальная сеть образуется в результате объединения сетей различного масштаба, использования полного комплекса средств связи и соединений и охватывает информационным полем всю земную поверхность. Сегодня такой сетью является Internet – одно из высших достижений человечества в области информационных технологий.

Классификация сетей по приоритету:

1. Одноранговые сети, в которых все компьютеры и, соответственно, абоненты равноправны по отношению друг к другу. Как правило, это ЛВС для обеспечения совместного использования дисковых ресурсов и периферийного оборудования (принтер, сканер и др.). Это требует высокой степени ответственности абонентов по отношению к защите информации от потерь.

2. Сети «клиент-сервер» имеют более крупный масштаб или это ЛВС, в которой повышены требования к доступу и защите информации. В таких сетях один или несколько компьютеров выделяются для обслуживания потребностей абонентов и называются серверами (от англ. to serve – обслуживать). Они должны обладать высокой производительностью, большими объёмами внутренней и внешней памяти, возможностью постоянной работы, средствами защиты электропитания, часто даже для них не обязательны монитор и клавиатура. Остальные компьютеры сети называются клиентами или рабочими станциями, и им не обязательно иметь жёсткие диски и дисководы. Возможности рабочих станций во многом определяются разрешениями, которые им предоставлены сервером.

Классификация сетей по способу соединения (топологии):

a. линейная сеть, в которой все компьютеры подключены к общему каналу связи (кабелю), содержит только два конечных узла и имеет только один путь между любыми двумя узлами;

b. сеть « кольцо », в которой к каждому узлу подсоединены только две ветви;

c. сеть « звезда », в которой имеется только один промежуточный узел;

d. сеть « дерево », построенная по иерархической модели модели.

Центральный процессор, назначение и основные функциональные элементы.

Центральный процессор (ЦП) - это центральный блок персонального компьютера, предназначенный для управления работой всех остальных блоков и выполнения арифметических и логических операций над информацией.

ЦП выполняет следующие основные функции:

 чтение и дешифрацию команд из основной памяти;

 чтение данных из основной памяти и регистров адаптеров внешних устройств;

 прием и обработку запросов и команд от адаптеров на обслуживание внешних устройств;

 обработку данных и их запись в основную память и регистры адаптеров внешних устройств;

 выработку управляющих сигналов для всех прочих узлов и блоков компьютера.

В состав микропроцессора входят следующие устройства.

1. Арифметико-логическое устройство - предназначено для выполнения всех арифметических и логических операций над числовой и символьной информацией.

2. Устройство управления - координирует взаимодействие различных частей компьютера. Выполняет следующие основные функции:

 формирует и подает во все блоки машины в нужные моменты времени определенные сигналы управления (управляющие импульсы), обусловленные спецификой выполнения различных операций;

 формирует адреса ячеек памяти, используемых выполняемой операцией, и передает эти адреса в соответствующие блоки компьютера;

 получает от генератора тактовых импульсов обратную последовательность импульсов.

Модификация адресов в ЭВМ. Назначение индексных, базовых (сегментных) регистров.

 

ЭВМ имеется множество режимов адресации, которые позволяют

a)определять полный адрес памяти меньшим числом бит, тем самым, сокращая длину команды;

b)обращаться к ячейкам памяти, адреса которых вычисляются во время выполнения программы, что обеспечивает удобный доступ к данным различной структуры;

c)вычислять адрес памяти относительно позиции команды или относительно другого объекта таким образом, что программу можно загружать в любую область памяти без всяких изменений адресов в программе.

Рассмотрим основные способы формирования адресов операндов в современных ЭВМ и опишем их основные особенности.

Непосредственная адресация.В этом самом простом режиме адресации операнд, подлежащий обработке, размещается непосредственно в самой команде и передается в процессор следом за выборкой кода операции команды. Данный режим адресации применяется тогда, когда операндом является константа, не изменяющаяся во время выполнения программы. Примером применения такого режима адресации может служить загрузка некоторого адреса в регистр процессора.

Абсолютная или прямая адресация.Этот режим адресации также достаточно прост. Часть команды является адресом операнда в памяти. Из-за своей простоты этот режим используется во многих ЭВМ. Этот способ адресации достаточно быстр, так как при поиске адреса не требуется никаких дополнительных вычислений. Однако указание полного прямого адреса операнда в команде требует много бит, особенно в ЭВМ с большим объемом адресного пространства. Кроме этого стоит отметить, что если в командах программы указаны полные адреса ее операндов, программа оказывается “жестко привязанной” к конкретным адресам памяти. Это не всегда оправдано, так как часто желательно иметь возможность размещать программы в произвольных участках памяти достаточного размера, к тому же иногда возникает необходимость переместить программу на другое место в памяти. Поэтому для устранения этих недостатков многие ЭВМ используют короткие разновидности прямой адресации (см. ниже относительную адресацию). Такие методы адресации обеспечивают доступ к ограниченной части адресного пространства.

 

Регистровая адресация.В данном режиме операнд находится в одном из регистров процессора и в команде просто указывается номер требуемого регистра. Команда с регистровой адресацией будет достаточно короткой. Кроме того, для выборки операндов процессору не требуется достаточно длительная операция обращения к памяти, поскольку регистры встроены в сам процессор. По этим причинам команды с регистровой адресацией являются самыми “быстрыми” командами. Для увеличения скорости работы программ необходимо стремиться к тому, чтобы часто используемые данные по возможности постоянно находились в регистрах центрального процессора.

Регистровая косвенная адресация.В этом режиме адресации регистр или пара регистров процессора содержат адрес операнда, и в команде указывается номер регистра с адресом. Адрес может храниться в специализированном указательном регистре или регистре общего назначения. Этот способ адресации получил очень широкое распространение и по быстродействию приближается к прямой адресации, так как адрес содержится внутри регистра процессора и для его выборки не требуется производить сравнительно длительную операцию обращения к памяти. Загрузка указательных регистров производится либо с использованием непосредственной адресации, либо адрес вычисляется в процессе работы программы, что требуется при просмотре массивов, в процедурах передачи данных и т.д.

Адресация с автоуменьшением или автоувеличением.При адресации с автоувеличением адрес операнда вычисляется практически так же, как и при косвенной регистровой адресации. После выборки операнда, адрес, находящийся в регистре процессора автоматически увеличивается на 1 для указания следующего байта, на 2 - для указания поля из двух байт и т.д., при этом размер операнда определяется кодом операции. Отличие адресации с автоуменьшением состоит в том, что перед выборкой операнда содержимое регистра уменьшается на 1, 2 и т.д. в соответствии с размером операнда. Эти два типа адресации позволяют эффективно обрабатывать массивы однотипных данных.

Примерами такой адресации являются цепочечная адресация в процессоре 8086 или автоинкрементная и автодекрементная адресация в процессорах СМ. По существу разновидностью этого метода адресации является также стековая адресация. В процессорах СМ использование автоинкрементного режима по отношению к программному счетчику (который обладает там теми же свойствами, что и любой регистр общего назначения) позволяет получить абсолютный режим адресации.

 

Неявная или подразумеваемая адресация. При таком способе адресации в команде явно не указывается адрес одного или нескольких операндов. Операнды в командах с неявной адресацией могут находиться, например, в выделенных для этой команды регистрах процессора, или некоторый выделенный и заранее известный регистр процессора может содержать адрес операнда. Примерами команд с неявной адресацией могут служить многие команды микропроцессоров семейства 8086. Рассмотрим команду организации цикла со счетчиком повторения. В этой команде не указывается явно, какой из регистров содержит счетчик цикла и предполагается, что перед выполнением команды счетчик цикла размещен в регистре - счетчике процессора (регистре CX). Другой пример - команды пересылки блоков данных, которые имеются у многих процессоров (например, REP MOVSBв 8086). Адреса операндов в этой команде явно не указываются и определяются двумя индексными регистрами процессора, куда они должны быть предварительно загружены. При выборке операндов неявно используется адресация с автоувеличением или автоуменьшением.

Индексная адресацияудобна для обращения к массивам и таблицам. Для образования исполнительного адреса к адресной части команды прибавляется смещение из индексного регистра, называемое индексом (см. рис. 14). Индексный регистр является программно - доступным, и его содержимое может изменяться, что позволяет изменять исполнительные адреса без модификации адресной части команды. В качестве индексных регистров используются один или несколько специализированных регистров, в некоторых ЭВМ их функции выполняют регистры общего назначения. Когда индексный режим используется для доступа к массиву, адрес в команде соответствует базовому адресу массива, а значение индексного регистра - индексу компоненты массива.

Относительная адресация.Основное назначение относительной адресации - преодолеть недостатки прямой адресации, сохранив при этом ее внешнюю простоту и эффективность. При относительной адресации в команде указывается не полный адрес операнда, а сокращенный адрес, обычно называемый смещением. В процессе выполнения команды полный адрес операнда вычисляется путем суммирования смещения, указанного в команде с некоторой величиной, которая называется базовым адресом. Существует два способа расширения адреса, указанного в короткой форме.

Первый способ называется самоопределяющейся относительной адресацией.В этом случае смещение, указанное в команде, складывается с адресом самой команды (обычно это текущее содержимое программного счетчика). Такой способ широко используется в командах условной передачи управления многих процессоров. Анализ программ показывает, что команды условной передачи управления чаще всего осуществляют переход на небольшое расстояние (до плюс - минус 100 - 200 байт). Поэтому во многих ЭВМ адрес перехода хранится в виде числа со знаком - короткого (8 бит) смещения целевого адреса относительно адреса команды ветвления (программного счетчика). При выполнении команды смещение просто суммируется с программным счетчиком. Применение относительной адресации в данном случае сокращает длину команды и повышает скорость ее выполнения. Другим примером может служить относительная адресация в процессорах СМ. В командах с относительной адресацией содержится смещение, которое при вычислении адреса операнда суммируется с содержимым программного счетчика. Отметим, что при таком способе адресации не нужно явно указывать, откуда брать базовый адрес (в качестве него всегда выступает программный счетчик). Поэтому этот способ адресации иногда называют неявным базированием.

Второй вид относительной адресации называется базовой адресацией.При базовой адресации смещение, указываемое в команде, складывается с базовым адресом, хранящимся в регистре базы процессора (см. рис. 15). Смещение обычно имеет длину меньше, чем длина базового адреса, которая, в свою очередь, должна быть такой, чтобы в качестве базового можно было указать любой из возможных адресов. В качестве регистра базы может использоваться специализированный регистр базы или один из регистров общего назначения. В любом случае одна из команд программы должна явно загрузить в регистр базы значение базового адреса и, кроме того, программист должен тем или иным способом указать, какой из регистров выступает в качестве базового. Поэтому этот способ адресации часто называют адресацией с явным базированием.

 

Разновидностью базовой адресации является сегментная адресация, применяемая в процессорах семейства 8086. Так как процессор 8086 может обрабатывать числа длиной 16 бит, все его адресные регистры являются 16-ти битными. Это обеспечивает доступ к адресному пространству размером 216 = 65536 байт или 64К байт (1К = 1024). Такой блок непосредственно адресуемой памяти называется сегментом. Любой исполнительный адрес формируется в виде суммы базового адреса начала сегмента (он всегда кратен 16) и смещения до нужной ячейки внутри сегмента. Базовый адрес сегмента задается 16-битной величиной, хранимой в сегментном регистре. Физический 20- разрядный адрес памяти (см. рис. 16) получается суммированием содержимого сегментного регистра умноженного на 16 (умножение двоичного числа на 16 эквивалентно сдвигу влево на 4 разряда) и 16-разрядного смещения относительно начала сегмента. Используя 20-разрядные адреса, процессор 8086 может адресовать память объемом 220 = 1024К = 1048576 = 1М байт. Сегменты жестко не привязываются к определенным адресам памяти и могут частично или полностью перекрываться. Термин сегментная адресация введен для того, чтобы подчеркнуть, что размер сегментного регистра хранящего базовый адрес сегмента меньше длины физического адреса, в то время как термин базовая адресация обычно подразумевает, что длина базового регистра равна или больше длины физического адреса памяти.

Основными достоинствами относительной адресации и ее разновидностей является, во-первых, то, что длина указываемого в команде адреса меньше длины физического адреса, а это позволяет сократить длину команд, во-вторых, программа с относительной адресацией не зависит от конкретного места ее расположения в памяти. При изменении положения программы в памяти достаточно только правильно настроить регистры, содержащие базовые адреса.


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 989; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.015 с.)
Главная | Случайная страница | Обратная связь