Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Первый закон Менделя или правило единообразия.



При скрещивании растений с желтыми и зелеными семенами Мендель обнаружил, что все гибриды первого поколения оказались с желтыми семенами. Он назвал этот признак доминантным. Признак, определяющий зеленую окраску семян, был назван рецессивным (отступающим, подавленным).

 

 

1. На основании полученных результатов и их анализа Мендель сформулировал свой первый закон. При скрещивании гомозиготных особей, отличающихся одной или несколькими парами альтернативных признаков, все гибриды первого поколения окажутся по этим признакам единообразными и похожими на родителя с доминантным признаком.

В случае неполного доминирования только 25% особей фенотипически похожи на родителя с доминантным признаком и 25% особей будут похожи на рецессивного по фен– типу родителя. Остальные 50% гетерозигот будут от них фенотипически отличаться. Например, от красноцветковых и белоцветковых растений львиного зева в потомстве 25% особей красные, 25% – белые, а 50% – розовые.

2. Для выявления гетерозиготности особи по определенному аллелю, т.е. наличию рецессивного гена в генотипе, используется анализирующее скрещивание. Для этого особь с доминантным признаком (АА? или Аа? ) скрещивают с гомозиготной по рецессивному аллелю особью. В случае гетерозиготности особи с доминантным признаком расщепление в потомстве будет 1: 1.

Второй закон Менделя или закон расщепления. При скрещивании гетерозиготных гибридов первого поколения между собой, во втором поколении обнаруживается расщепление по данному признаку. Это расщепление носит закономерный статистический характер: 3: 1 по фенотипу и 1: 2: 1 по генотипу. В случае скрещивания форм с желтыми и зелеными семенами в соответствии со вторым законом Менделя получают следующие результаты скрещивания.

 

 

Появляются семена как с желтой, так и с зеленой окраской.

Третий закон Менделя или закон независимого наследования при дигибридном (полигибридном) скрещивании. Этот закон выведен на основе анализа результатов, полученных при скрещивании особей, отличающихся по двум парам альтернативных признаков. Например: растение, дающее желтые, гладкие семена скрещивается с растением, дающим зеленые, морщинистые семена.

 

 

Для дальнейшей записи используется решетка Пеннета:

 

 

Во втором поколении возможно появление 4 фенотипов в отношении 9: 3: 3: 1 и 9 генотипов.

В результате проведенного анализа выяснилось, что гены разных аллельных пар и соответствующие им признаки передаются независимо друг от друга. Этот закон справедлив:

– для диплоидных организмов;

– для генов, расположенных в разных гомологичных хромосомах;

– при независимом расхождении гомологичных хромосом в мейозе и их случайном сочетании при оплодотворении.

В соответствии с гипотезой чистоты гамет в сперматозоиде или яйцеклетке в норме всегда находится только одна из гомологичных хромосом данной пары. Именно поэтому при оплодотворении восстанавливается диплоидный набор хромосом данного организма. Расщепление – это результат случайного сочетания гамет, несущих разные аллели.

Хромосомная теория наследственности. Основоположник хромосомной теории Томас Гент Морган, американский генетик, Нобелевский лауреат. Морган и его ученики установили, что:

– каждый ген имеет в хромосоме определенный локус (место);

– гены в хромосоме расположены в определенной последовательности;

– наиболее близко расположенные гены одной хромосомы сцеплены, поэтому наследуются преимущественно вместе;

– группы генов, расположенных в одной хромосоме, образуют группы сцепления;

– число групп сцепления равно гаплоидному набору хромосом у гомогаметных особей и n+1 у гетерогаметных особей;

– между гомологичными хромосомами может происходить обмен участками (кроссинговер); в результате кроссинговера возникают гаметы, хромосомы которых содержат новые комбинации генов;

– частота (в %) кроссинговера между неаллельными генами пропорциональна расстоянию между ними;

– набор хромосом в клетках данного типа (кариотип) является характерной особенностью вида;

– частота кроссинговера между гомологичными хромосомами зависит от расстояния между генами, локализованными в одной хромосоме. Чем это расстояние больше, тем выше частота кроссинговера. За единицу расстояния между генами принимается 1 морганида (1% кроссинговера) или процент появления кроссоверных особей. При значении этой величины в 10 морганид можно утверждать, что частота перекреста хромосом в точках расположения данных генов равна 10% и что в 10% потомства будут выявлены новые генетические комбинации.

Генетика пола. Наследование, сцепленное с полом. У-хромосома мужчин не содержит многих аллелей, имеющихся в Х-хромосоме. Признаки, определяемые генами половых хромосом, называются сцепленными с полом. Характер наследования зависит от распределения хромосом в мейозе. У гетерогаметных полов признаки, сцепленные с Х-хромосомой и не имеющие аллеля в У-хромосоме, проявляются даже в том случае, когда ген, определяющий развитие этих признаков, рецессивен. У человека У-хромосома передается от отца к сыновьям, а Х-хромосома к дочерям. Вторую хромосому дети получают от матери. Это всегда Х-хромосома. Если мать несет патологический рецессивный ген в одной из Х-хромосом (например, ген дальтонизма или гемофилии), но при этом сама не больна, то она является носительницей. В случае передачи этого гена сыновьям они могут оказаться больными данным заболеванием, ибо в У-хромосоме нет аллеля, подавляющего патологический ген. Пол организма определяется в момент оплодотворения и зависит от хромосомного набора образовавшейся зиготы. У птиц гетерогаметными являются самки, а гомогаметными – самцы.

Пример наследования, сцепленного с полом. Мать имеет потовые железы, но она носительница рецессивного признака – Хр Х, отец здоров – ХУ. Гаметы матери – Хр, X. Гаметы отца – X, У.

От этого брака могут родиться дети со следующими генотипами и фенотипами:

 

 

Генотип – это совокупность генов данного организма. У человека по последним данным около 35 тыс. генов.

Генотип, как единая функциональная система организма, сложился в процессе эволюции. Признаком системности генотипа является взаимодействие генов.

Аллельные гены (точнее, их продукты – белки) могут взаимодействовать друг с другом:

в составе хромосом – примером является полное и неполное сцепление генов;

в паре гомологичных хромосом – примерами являются полное и неполное доминирование, независимое проявление аллельных генов.


3.6. Изменчивость признаков у организмов: модификационная, мутационная, комбинативная. Виды мутаций и их причины. Значение изменчивости в жизни организмов и в эволюции. Норма реакции


Поделиться:



Последнее изменение этой страницы: 2017-03-15; Просмотров: 496; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.013 с.)
Главная | Случайная страница | Обратная связь