Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Пишите мощные заголовки и описания



Каждая оптимизированная страница должна иметь как тег title, так и тег description, которые идут отдельно от видимой чести контента. Заголовки и описания в большинстве случаев видны в поисковой выдаче и именно от них зависит количество кликов по ссылкам.

Title (заголовок): title каждой оптимизированной страницы – это одно из самых важных мест для оптимизации. Title должен состоять из 8-10 слов.

Так как заголовок является кликабельной ссылкой в поисковой выдаче, то он должен нести ценность для тех, кто производит поиск. Заголовки не должны быть информативными или нести информацию, которой нет в тексте.

Descriptions (описания): описания также используются в поисковой выдаче и несут дополнительную информацию, которая не смогла уместиться в заголовке. В описаниях следует использовать как основные ключевые слова, так и поддерживающие. Описание должно давать пользователю как можно больше информации в ограниченном по размеру абзаце. Описание должно состоять из 30-50 слов.

Используя все эти компоненты как единое целое даст вам очень сильную, хорошо оптимизированную страницу, которая придется по нраву как поисковикам, так и посетителям. Хорошее ранжирование – это не всегда хорошо. Ведь страница должна генерировать прибыль! Любая страница может получать трафик. А оптимизированная страница должна получать не только трафик, но и являться частью процесса по получению конверсии.

 


Геоинформационные технологии. Базовые пространственные объекты и их представление в ГИС. Векторная и растровая модель данных в ГИС. Экономическое обоснование целерациональности применение в ГИС на объекте экономики. Примеры типовых решений.

 

Геоинформатика (GIS tehnology, geo-informatics) - наука, технология и производственная деятельность по научному обоснованию, проектированию, созданию, эксплуатации и использованию географических информационных систем, по разработке геоинформационных технологий, или ГИС-технологий (GIS tehnology), по прикладным аспектам, или приложениям ГИС (GIS application) для практических или геонаучных целей.

Геоинформационные технологии - (GIS tehnology) - син. ГИС-технологии - технологическая основа создания географических информационных систем, позволяющая реализовать функциональные возможности ГИС.

Географическая информационная система (geographic(al) information system, GIS, spatial information system) - син. геоинформационная система, ГИС - информационная система, обеспечивающая сбор, хранение, обработку, доступ, отображение и распространение пространственно-координированных данных (пространственных данных).

ГИС могут использоваться:

а) как информационные системы (визуальные базы данных), задачей которых является хранение информации о пространственных объектах и выдача ее по запросам с визуализацией объектов;

б) как информационные система с элементами обработки результатов топографо-геодезических съемок с дальнейшим занесением их в базу данных;

в) как комплексы, обслуживающие полный цикл по производству картографической продукции, начиная со сбора и обработки исходной информации и заканчивая подготовкой оригинал-макетов карт.

Для работы ГИС требуются мощные аппаратные средства: запоминающие устройства большой емкости, подсистемы отображения, оборудование высокоскоростных сетей.

В основе любой ГИС лежит информация о каком-либо участке земной поверхности: стране, континенте или городе. База данных организуется в виде набора слоев информации. Основной слой содержит географически привязанную карту местности (топооснова). На него накладываются другие слои, несущие информацию об объектах, находящихся на данной территории: коммуникации, промышленные объекты, земельные участки, почвы, коммунальное хозяйство, землепользование и другие. В процессе создания и наложения слоев друг на друга между ними устанавливаются необходимые связи, что позволяет выполнять пространственные операции с объектами посредством моделирования и интеллектуальной обработки данных. Как правило, информация представляется графически в векторном виде, что позволяет уменьшить объем хранимой информации и упростить операции по визуализации. С графической информацией связана текстовая, табличная, расчетная информация, координационная привязка к карте местности, видеоизображения, аудиокомментарии, база данных с описанием объектов и их характеристик. ГИС позволяет извлечь любые типы данных, визуализировать их. Многие ГИС включают аналитические функции, которые позволяют моделировать процессы, основываясь на картографической информации.

Основные сферы применения ГИС:

• геодезические, астрономо-геодезические и гравиметрические работы;

• топологические работы;

• картографические и картоиздательские работы;

• аэросъемочные работы;

• формирование и ведение банков данных перечисленных выше работ для всех уровней управления Российской Федерации, для отображения политического устройства мира, атласа автомобильных и железных дорог, границ РФ и зарубежных стран, экономических зон и т.д.

Но какими бы сложными не были функции, выполняемые той или иной ГИС, в любом случае информационная система работает с пространственными объектами и различными видами их представления. Поэтому можно говорить: данные, обрабатываемые ГИС, есть ни что иное как электронные карты. Электронная карта организована как множество слоев, функциональным назначением которых является объединение пространственных объектов (точнее набора данных характеризующих их в визуальной базе данных), имеющих какие-либо общие свойства. Такими свойствами могут быть:

- принадлежность к одному типу пространственных объектов (слой зданий, слой гидрообъектов, слой административных границ и т.д.);

- отображение на карте одним цветом;

- представление на карте одинаковыми графическими примитивами (линиями, точками, полигонами) и т.д.

Кроме того, слой может добавлять свойства объектам. Например, объекты, принадлежащие слою, не могут быть отредактированы, удалены, показаны и т.д.

Многослойная организация электронной карты при наличии гибкого механизма управления слоями позволяет объединить и отобразить гораздо большее количество информации, чем на обычной карте. В качестве отдельных слоев можно также представить исходные данные, в процессе обработки которых получается карта. Данные на этих слоях, как правило, могут обрабатываться как в интерактивном режиме так в полуавтоматическом и автоматическом.

ГИС содержит данные о пространственных объектах в форме их цифровых представлений (векторных, растровых, квадротомических и иных), включает соответствующий задачам набор функциональных возможностей ГИС, в которых реализуются операции геоинформационных технологий, или ГИС-технологий (GIS tehnology), поддерживается программным, аппаратным, информационным, нормативно-правовым, кадровым и организационным обеспечением.

Векторная графика - самая ранняя форма компьютерной графики. Ее основные примитивы - точка (узел), линия (край) и плоскость. Поскольку точка и плоскость представляют собой особые случаи линии, часто говорят о векторной графике как о линейной графике.

Растровая графика - новейшая форма компьютерной графики. Центральный элемент - пиксель. В настоящее время благодаря высокой степени разрешения экранов растрового изображения различают пассивную и интерактивную визуализацию. Распределение растровых точек представляет собой иерархический метод обращения в пространственном хранении данных, при этом область, подлежащая обработки, делится на растровые ячейки одинаковой величины. Обращение дано через индексы строк и столбцов, которые можно организовать как матрицы.

По территориальному охвату различают глобальные или планетарные ГИС (global GIS), субконтинентальные ГИС, национальные ГИС, зачастую имеющие статус государственных, региональные ГИС (regional GIS), субрегиональные ГИС и локальные или местные ГИС (lokal GIS).

ГИС различаются предметной областью информационного моделирования, к примеру, городские ГИС, или муниципальные ГИС, МГИС (urban GIS), природоохранные ГИС (environmental GIS) и т.п.; среди них особое наименование, как особо широко распространенные, получили земельные информационные системы.

Проблемная ориентация ГИС определяется решаемыми в ней задачами (научными и прикладными), среди них инвентаризация ресурсов (в том числе кадастр), анализ, оценка, мониторинг, управление и планирование, поддержка принятия решений.

Интегрированные ГИС, ИГИС (integrated GIS, IGIS) совмещают функциональные возможности ГИС и систем цифровой обработки изображений (материалов дистанционного зондирования) в единой интегрированной среде.

Полимасштабные или масштабно-независимые ГИС (multiscale GIS) основаны на множественных, или полимасштабных представлениях пространственных объектов (multiple representation, multiscale representation), обеспечивая графическое или картографическое воспроизведение данных на любом из избранных уровней масштабного ряда на основе единственного набора данных с наибольшим пространственным разрешением.

Пространственно-временные ГИС (spatio-temporal GIS) оперируют пространственно-временными данными.

Реализация геоинформационных проектов (GIS project), создание ГИС в широком смысле слова, включает следующие этапы:

- предпроектное исследование (feasibility stady), в том числе изучение требований пользователя (user requirements) и функциональных возможностей используемых программных средств ГИС,

- технико-экономическое обоснование, оценка соотношения " затраты/прибыль" (costs/benefits);

- системное проектирование ГИС (GIS designing), включая стадию пилот-проекта (pilot-project), разработка ГИС (GIS development);

- тестирование на небольшом территориальном фрагменте, или тестовом участке (test area),

- прототипирование или создание опытного образца, прототипа (prototype);

- внедрение ГИС (GIS implementation), эксплуатация и использование.

Научные, технические, технологические и прикладные аспекты проектирования, создания и использования ГИС изучаются геоинформатикой.

Программное ядро ГИС можно разделить на части: инструментальные геоинформационные системы, вьюеры, векторизаторы, средства пространственного моделирования, средства дистанционного зондирования.

Инструментальные Геоинформационные системы обеспечивают ввод геопространственных данных, хранение в структурированных базах данных, реализацию сложных запросов, пространственный анализ, вывод твердых копий.

Вьюеры предназначены для просмотра введенной ранее и структурированной по правам доступа информации, позволяя при этом выполнять информационные запросы из сформированных с помощью инструментальных ГИС баз данных, в том числе выводить картографические данные на твердый носитель.

Векторизаторы растровых картографических изображений предназначены для ввода пространственной информации со сканера, включая полуавтоматические средства преобразования растровых изo6ражений в векторную форму.

Средства пространственного моделирования оперируют с пространственной информацией ориентированной на частные задачи типа моделирования процесса распространения загрязнений, моделирование геологических явлений, анализ рельефа местности.

Средства дистанционного зондирования предназначены для обработки и дешифрования цифровых изображений земной поверхности, полученных с борта самолета и искусственных спутников.

Лучшим продуктом в мире профессиональных ГИС считается Arc/Info for Windows NT.

Из множества программ, которые можно назвать ГИС-обеспечением можно рекомендовать следующие: Map Objects v.1.2; Map Objects Internet Server; Spatial Data Engine v.2.1.1.

ГИС-вьюеры - это программы, выполняющие функции только просмотра и конвертирования различных форматов, используемых для ГИС. Наиболее часто используются два таких продукта: WinGIS v.3.2 (PROGIS); BusinessMap Pro (ESRI).

К настольным ГИС относятся MapInfo Professional (MapInfo); PC ARC/INFO v.3.5.1 (ESRI); ArcView GIS v.3.0a (ESRI); Spatial Analyst (ESRI); Network Analyst (ESRI).

К системам пространственной обработки относятся Surfer v.6.0 (Golden Software, Inc.) и авторские разработки НРЦГИТ.

Геоинформационная система MapInfo была разработана в конце 80-х годов фирмой Mapping Information Systems Corporation (U.S.A.). ГИС MapInfo работает на платформах РС (Windows 3.x/95/98/NT), PowerPC (MacOS), Alpha, RISC (Unix). Файлы данных и программы MapBasic переносимы с платформы на платформу без конвертации.

Пакет MapInfo специально спроектирован для обработки и анализа информации, имеющей адресную или пространственную привязку. Операции, поддерживающие общение с базой данных, настолько просты, что достаточно небольшого опыта работы с любой базой данных, чтобы сразу использовать возможности компьютерной картографии в сфере Вашей деятельности. MapInfo - это картографическая база данных. Встроенный мощный язык запросов SQL MM, благодаря географическому расширению, позволяет организовать выборки с учетом пространственных отношений объектов, таких как удаленность, вложенность, перекрытие, пересечение, площадь и т.п. Запросы к базе данных можно сохранять в виде шаблонов для многократного использования. В MapInfo имеется возможность поиска и нанесения объектов на карту по координатам, адресу или системе индексов.

MapInfo позволяет редактировать и создавать электронные карты. Оцифровка возможна как с помощью дигитайзера (графического планшета), так и по сканированному изображению. MapInfo поддерживает растровые форматы GIF, JPEG, TIFF, PCX, BMP, TGA (Targa), BIL (SPOT- спутниковые фотографии). Универсальный транслятор MapInfo импортирует карты созданные в форматах других геоинформационных и САПР-систем: AutoCAD (DXF, DWG), Intergraph/MicroStation Design (DGN), ESRI Shape файл, AtlasGIS, ARC/INFO Export (E00). Цифровая информация с GPS (навигационных приборов глобального позиционирования) и других электронных приборов вводится в MapInfo без использования дополнительных программ.

В MapInfo можно работать с данными в форматах Excel, Access, xBASE, Lotus 1-2-3 и текстовом формате. Конвертация файлов данных не требуется. К записям в этих файлах добавляются картографические объекты. Данные разных форматов могут использоваться одновременно в одном сеансе работы. Из MapInfo имеется доступ к удаленным базам данных ORACLE, SYBASE, INFORMIX, INGRES, QE Lib, DB2, Microsoft SQL и др.

В MapInfo имеется 5 основных типов окон: Карта, Список, Легенда, График и Отчет. В окне Карта доступны инструменты редактирования и создания картографических объектов, масштабирования, изменения проекций и другие функции работы с картой. Связанная с картографическими объектами информация может быть представлена в виде таблицы в окне Список. В окне График данные из таблиц можно показать в виде графиков и диаграмм различных типов. В окне Легенда отображены условные обозначения объектов на карте и тематических слоях. В окне Отчет предоставляются средства масштабирования, макетирования, а также сохранения шаблонов многолистных карт. Работая с MapInfo, можно формировать и распечатывать отчеты с фрагментами карт, списками, графиками и надписями. При выводе на печать MapInfo использует стандартные драйверы операционной системы.

Тематическая картография является мощным средством анализа и наглядного представления пространственных данных. На тематической карте легко понять связи между различными объектами и увидеть тенденции в развитии различных явлений. В MapInfo можно создавать тематические карты следующих основных типов: картограммы, столбчатые и круговые диаграммы, метод значков, плотность точек, метод качественного фона и непрерывной поверхности-грид. Сочетание тематических слоев и методов буферизации, районирования, слияния и разбиения объектов, пространственной и атрибутивной классификации позволяет создавать синтетические многокомпонентные карты с иерархической структурой легенды.

MapInfo - открытая система. Язык программирования MapBasic позволяет создавать на базе MapInfo собственные ГИС. MapBasic поддерживает обмен данными между процессами (DDE, DLL, RPC, XCMD, XFCN), интеграцию в программу SQL-запросов. Совместное использование MapInfo и среды разработки MapBasic дает возможность каждому создать свою собственную ГИС для решения конкретных прикладных задач.

Локализация пакета MapInfo/MapBasic Professional проведена так, чтобы он работал с русскими данными без проблем, т.е. сортировка и индексация проводится по правилам русского языка. В поставку Русской версии MapInfo включены библиотеки условных знаков, ряд утилит и CAD-функций, которые расширяют возможности пакета, согласно требованиям российского рынка геоинформационных систем.

 

В настоящее время в соответствии с требованиями новых информационных технологий создаются и функционируют многие системы управления, связанные с необходимостью отображения информации на электронной карте:

• геоинформационные системы;

• системы федерального и муниципального управления;

• системы проектирования;

• системы военного назначения и т.д.

Эти системы управления регулируют деятельность технических и социальных систем, функционирующих в некотором операционном пространстве (географическом, экономическом и т.п.) с явно выраженной пространственной природой.

При решении задач социального и технического регулирования в системах управления используется масса пространственной информации: топография, гидрография, инфраструктура, коммуникации, размещение объектов.

Графическое представление какой-либо ситуации на экране компьютера подразумевает отображение различных графических образов. Сформированный на экране ЭВМ графический образ состоит из двух различных с точки зрения среды хранения частей — графической «подложки» или графического фона и других графических объектов. По отношению к этим другим графическим образам «образ-подложка» является «площадным», или пространственным двухмерным изображением. Основной проблемой при реализации геоинформационных приложений является трудность формализованного описания конкретной предметной области и ее отображения на электронной карте.

Таким образом, геоинформационные технологии предназначены для широкого внедрения в практику методов и средств работы с пространственно-временными данными, представляемыми в виде системы электронных карт, и предметно-ориентированных сред обработки разнородной информации для различных категорий пользователей.

Основным классом данных геоинформационных систем (ГИС) являются координатные данные, содержащие геометрическую информацию и отражающие пространственный аспект. Основные типы координатных данных: точка (узлы, вершины), линия (незамкнутая), контур (замкнутая линия), полигон (ареал, район). На практике для построения реальных объектов используют большее число данных (например, висячий узел, псевдоузел, нормальный узел, покрытие, слой и др.). На рис. 5.1 показаны основные из рассмотренных элементов координатных данных [29].

Рассмотренные типы данных имеют большее число разнообразных связей, которые можно условно разделить на три группы:

• взаимосвязи для построения сложных объектов из простых элементов;

• взаимосвязи, вычисляемые по координатам объектов;

• взаимосвязи, определяемые с помощью специального описания и семантики при вводе данных.

Основой визуального представления данных при использовании ГИС-технологий является графическая среда, основу которой составляют векторные и растровые (ячеистые) модели.

Векторные модели основаны на представлении геометрической информации с помощью векторов, занимающих часть пространства, что требует при реализации меньшего объема памяти. Используются векторные модели в транспортных, коммунальных, маркетинговых приложениях ГИС.

В растровых моделях объект (территория) отображается в пространственные ячейки, образующие регулярную сеть. Каждой ячейке растровой модели соответствует одинаковый по размерам, но разный по характеристикам (цвет, плотность) участок поверхности. Ячейка модели характеризуется одним значением, являющимся средней характеристикой участка поверхности. Эта процедура называется пикселизацией. Растровые модели делятся на регулярные, нерегулярные и вложенные (рекурсивные или иерархические) мозаики. Плоские регулярные мозаики бывают трех типов: квадрат (рис. 5.2), треугольник (рис. 5.3) и шестиугольник.

Квадратная форма удобна при обработке больших объемов информации, треугольная — для создания сферических поверхностей. В качестве нерегулярных мозаик используют треугольные сети неправильной формы (Triangulated Irregular Network — TIN) и полигоны Тиссена (рис. 5.4). Они удобны для создания цифровых моделей отметок местности по заданному набору точек.

Таким образом, векторная модель содержит информацию о местоположении объекта, а растровая о том, что расположено в той или иной точке объекта. Векторные модели относятся к бинарным или квазибинарным. Растровые позволяют отображать полутона.

Основной областью использования растровых моделей является обработка аэрокосмических снимков.

Цифровая карта может быть организована в виде множества слоев (покрытий или карт подложек). Слои в ГИС представляют набор цифровых картографических моделей, построенных на основе объединения (типизации) пространственных объектов, имеющих общие функциональные признаки. Совокупность слоев образует интегрированную основу графической части ГИС. Пример слоев интегрированной ГИС представлен на рис. 5.5.

Важным моментом при проектировании ГИС является размерность модели. Применяют двухмерные модели координат (2D) и трехмерные (3D). Двухмерные модели используются при построении карт, а трехмерные — при моделировании геологических процессов, проектировании инженерных сооружений (плотин, водохранилищ, карьеров и др.), моделировании потоков газов и жидкостей. Существуют два типа трехмерных моделей: псевдотрехмерные, когда фиксируется третья координата и истинные трехмерные.

Большинство современных ГИС осуществляет комплексную обработку информации:

• сбор первичных данных;

• накопление и хранение информации;

• различные виды моделирования (семантическое, имитационное, геометрическое, эвристическое);

• автоматизированное проектирование;

• документационное обеспечение. Основные области использования ГИС:

• электронные карты;

• городское хозяйство;

• государственный земельный кадастр;

• экология;

• дистанционное зондирование;

• экономика;

• специальные системы военного назначения.

В табл. дана краткая характеристика современных отечественных и зарубежных ГИС [50].

№ п/п Наименование ГИС, фирма-разработчик Назначение Достоинства  
ER Mapper (ER Mapping) Обработка больших объемов фотограмметрической информации, тематическое картографирование (геофизика, природные ресурсы, лесное хозяйство) Точность, печать карт, визуализация трехмерного изображения, библиотека алгоритмов  
ГеоДраф, ГеоГраф (Россия) Построение картографической структуры с многослойным отображением данных, создание электронных атласов (городское хозяйство) Большое количество приложений, возможность использования Borland C++, Visual Basic, Delphi  
ArGIS, Московский ГУ геодезии и картографии (Россия) Построение цифровых моделей рельефа с использованием аэрокосмических снимков Использование небольшого объема вычислительных ресурсов, библиотека условных знаков  
ArcCAD, ESRI - институт исследования систем окружающей среды Связывание карт и базы данных, пространственный анализ (инженерные и бизнес приложения, транспортные перевозки, гражданское строительство) Использование языка высокого интеллекта AutoLISP, наличие всех стандартных средств ГИС-технологий, возможность обработки данных в AutoCAD и Arclnfo  
Arc View, ESRI Создание, анализ, вывод картографических данных (бизнес, наука, образование, управление, социология, демография, экология, транспорт, городское хозяйство) Поддержка реляционных СУБД, развитая деловая графика (форма просмотра, табличная форма, форма диаграмм, создание макета), создание профессионально оформленной картографической информации, разработка собственных приложений, взаимодействие с другими приложениями  
AtlasGIS, Strategic Mapping INC (США) Полнофункциональная информационная картографическая система для анализа и презентаций Легкость и гибкость программного обеспечения, настольный вариант  
SICAD/open, Siemens Nixdorf (Германия) Обработка геоинформационных данных по распределенной технологии Системный продукт для рабочих станций, работа со стандартными СУБД INFORMIX и ORACLE  
Star, Star Informatic Интегрированная модульная среда, проектирование, анализ и оценка сетей (канализация, водо-, энерго-, теплоснабжение, связь, дороги) Наличие тематических ориентированных модулей, приложений для управления моделями данных и построения цифровых моделей  
Small World CIS, Small World Systems Ltd, (Великобритания) Географическая операционная система для моделирования пространственно-связанных объектов Полная мультиплатформ-ность (HP, IBM, SUN, DEC)  
CADdy, ZIEGLER Informatics GmbH Создание кадастровых и геоинформационных систем (топографическая съемка, создание электронных топографических карт, ведение банка топографических и географических данных, представление и визуализация различных трехмерных объектов, городское хозяйство, промышленность) Использование объектно-ориентированной технологии, развитая модульная структура, разработка пользовательских приложений с использованием Си  
МОЕ, IntegrafMGE Применение технологий САПР для задач ГИС, поддержка рабочего процесса ГИС и картографии в любой отрасли Выбор операционной среды (MS Windows, Windows NT, DOS, UNIX), модульная структура, большой набор инструментов анализа и запросов (одновременное открытие восьми видов одной модели объекта), интерактивный пользовательский интерфейс
Maplnfo Поиск географических объектов, работа с базами данных, обработка данных геодезических измерений, компьютерный дизайн и подготовка к изданию картографических документов Выбор операционной среды (MS Windows, Windows NT, DOS, UNIX), универсальность, настольный вариант
Arclnfo Создание геоинформационных систем, создание и ведение земельных, лесных, геологических и других кадастров, проектирование транспортных сетей, оценка природных ресурсов Сетевой и независимый варианты использования (для IBM PC с ограничениями), простота в эксплуатации, набор драйверов для выбора мониторов, дигитайзеров, плоттеров
Панорама (Россия) Построение и обработка цифровых и электронных карт, ведение картографической и атрибутивной баз данных Наличие специального интерфейса поиска объектов электронной карты по характеристикам базы данных, применение простых средств для реализации
ERDAS Imagine, ERDAS Обработка аэрокосмических снимков Модульная система, графический интерфейс, гипертекстовая система, простота в обучении, доступность для различных платформ

Понятие технического обеспечения. Состав комплекса технических средств связи и управления современного объекта экономики. Критерии выбора технических средств связи и управления. Цифровая интеграция служб, услуг, обслуживания

 

Основу технического обеспечения информационных технологий составляют компьютеры, являющиеся ядром любой информационной системы. Первоначально компьютеры были созданы для реализации большого объема вычислений, представляющих длинные цепочки итераций. Главным требованием при этом были высокая точность и минимальное время вычислений. Такие процессы характерны для числовой обработки.

По мере внедрения ЭВМ, их эволюционного развития, в частности, создания персональных компьютеров, стали возникать другие области применения, отличные от вычислений, например, обработка экономической информации, создание информационно-справочных систем, автоматизация учрежденческой деятельности и т.п. В данном случае не требовались высокая точность и большой объем вычислений, однако объем обрабатываемой информации мог достигать миллионов и миллиардов записей. При этом требовалось не только обработать информацию, а предварительно ее найти и организовать соответствующую процедуру вывода. Указанные процессы характерны для нечисловой обработки, требующей в большинстве случаев больших затрат машинного времени. Рассмотренные аспекты оказали решающее влияние на развитие архитектуры ЭВМ.

ЭВМ классической (фоннеймановской) архитектуры состоит из пяти основных функциональных блоков (рис. 8.4):

• запоминающего устройства (ЗУ);

• устройства управления;

• устройств управления и арифметически-логического устройства, рассматриваемых вместе и называемых центральным процессором;

• устройства ввода;

• устройства вывода.

В фоннеймановской архитектуре для обработки огромного объема информации (миллиарды байт) используется один процессор. Связь с данными осуществляется через канал обмена. Ограничения пропускной способности канала и возможностей обработки в центральном процессоре приводят к тупиковой ситуации при нечисловой обработке в случае увеличения объемов информации. Для выхода из тупика было предложено два основных изменения в архитектуре ЭВМ:

• использование параллельных процессоров и организация параллельной обработки;

• распределенная логика, приближающая процессор к данным и устраняющая их постоянную передачу.

Другой недостаток фоннеймановской архитектуры связан с организацией процесса обращения к ЗУ, осуществляемого путем указания адреса для выборки требуемого объекта из памяти. Это приемлемо для числовой обработки, но при нечисловой обработке обращение должно осуществляться по содержанию (ассоциативная адресация). Поскольку для нечисловой обработки в основном используется та же архитектура, необходимо было найти способ организации ассоциативного доступа. Он осуществляется путем создания специальных таблиц (справочников) для перевода ассоциативного запроса в соответствующий адрес. При такой организации обращения к ЗУ, называемом эмуляцией ассоциативной адресации, в случае работы с большими объемами информации резко падает производительность ЭВМ. Это связано с тем, что нечисловая обработка это не только просмотр, но и обновление данных.

Для преодоления ограничений организации памяти были предложены ассоциативные запоминающие устройства.

Таким образом, ЭВМ для нечисловой обработки должна удовлетворять следующим требованиям: ассоциативность, параллелизм, обработка в памяти. Кроме этого на более высоком уровне к архитектуре предъявляются следующие требования:

• перестраиваемость параллельных процессоров и запоминающих устройств;

• сложные топологии соединений между процессорами;

• мультипроцессорная организация, направленная на распределение функций.

Перечисленные выше ограничения и требования были реализованы в машинах баз данных (МВД).

Подытоживая выше сказанное, приведем классификацию архитектур ЭВМ, предложенную в [35]:

• архитектура с одиночным потоком команд и одиночным потоком данных (SISD);

• архитектура с одиночным потоком команд и множественным потоком данных (SIMD);

• архитектура с множественным потоком команд и одиночным потоком данных (MISD);

• архитектура с множественным потоком команд и множественным потоком данных (MIMD).

К классу SISD относятся современные фоннеймановские однопроцессорные системы. В этой архитектуре центральный процессор работает с парами «атрибут—значение». Атрибут (метка) используется для локализации соответствующего значения в памяти, а одиночная команда, обрабатывающая содержимое накопителя (регистра) и значение выдает результат. В каждой итерации из входного потока данных используется только одно значение.

К классу SIMD относят большой класс архитектур, основная структура которых состоит из одного контроллера, управляющего комплексом одинаковых процессоров. В зависимости от возможностей контроллера и процессорных элементов, числа процессоров, организации поиска и характеристик маршрутных и выравнивающих сетей выделяют четыре типа SIMD:

матричные процессоры, организованы так, что при выполнении заданных вычислений, инициированных контроллером, они работают параллельно. Предназначены для решения векторных и матричных задач, относящихся к числовой обработке;

ассоциативные процессоры, обеспечивающие работу в режиме поиска по всему массиву за счет соединения каждого процессора непосредственно с его памятью. Используются для решения нечисловых задач;

процессорные ансамбли, представляющие совокупность процессоров, объединенных определенным образом для решения заданного класса задач, ориентированных на числовую и нечисловую обработку;

конвейерные процессоры (последовательные и векторные) осуществляющие выполнение команд и обработку потоков данных по принципу, аналогичному транспортному конвейеру. В этом случае каждый запрос использует одни и те же ресурсы. Как только некоторый ресурс освобождается, он может быть использован следующим запросом, не ожидая окончания выполнения предыдущего. Если процессоры выполняют аналогичные, но не тождественные задания, то это последовательный конвейер, если все задания одинаковы — векторный конвейер.

К классу MISD может быть отнесена единственная архитектура—конвейер, но при условии, что каждый этап выполнения запроса является отдельной командой.

К классу MIMD, хотя и не всегда однозначно, относят следующие конфигурации:

• мультипроцессорные системы;

• системы с мультиобработкой;

• вычислительные системы из многих машин;

• вычислительные сети.

Общим для данного класса является наличие ряда процессоров и мультиобработки. В отличие от параллельных матричных систем число процессоров невелико, а термин мультиобработка понимают в широком смысле для обозначения функционально распределенной обработки (сортировки, слияния, ввода-вывода и др.)

Другим направлением развития вычислительной техники является нейрокомпьютеринг, основанный на нейронных сетях. Разработки проводятся в двух направлениях: аппаратном и программном. Нейрокомпьютеры обладают сверхвысокой производительностью, но благодаря сложным технологиям имеют очень высокую стоимость. Поэтому они используются узким кругом пользователей для решения суперзадач.

В последние годы ведутся работы по созданию биокомпьютера на основе молекулярных технологий. Идея молекулярного вычислителя состоит в представлении «машинного» слова в виде состояний молекул.

Несмотря на развитие средств вычислительной техники наиболее популярными в настоящее время остаются компьютеры с традиционной фоннеймановской архитектурой. ЭВМ такой архитектуры в процессе эволюции последовательно прошли этапы аппаратной реализации от электронно-ламповой, далее транзисторной, интегрально-схемной до СБИС. В настоящее время наиболее распространенным типом ЭВМ являются персональные компьютеры (ПК), относящиеся к фоннеймановской архитектуре. Поэтому кратко остановимся на устройстве персонального компьютера в плане его комплектации.


Поделиться:



Последнее изменение этой страницы: 2017-03-15; Просмотров: 595; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.086 с.)
Главная | Случайная страница | Обратная связь