Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Инструментарий функционально-структурного подхода.




Дерево функций системы представляет собой декомпозицию ее функций и служит основой для формирования системы. Выделяются «функциональные модули». В структуре им соответствуют определенные «конструктивные модули».
При формировании дерева функций системы необходимо располагать полнотой информациtq о ее функциях (основных и дополнительных). Ни на одном уровне иерархии системы нельзя забывать ни об одной функции (в том числе психофизические, эргономические, экологические и др.). Надо выделить основную функцию и функции уровней.
Дерево противоречий системы - отражает противоречия отдельных уровней функционально-структурной ее организации. На каждом уровне существуют противоречия между функциями и структурной организацией, как противоречия между содержанием и формой, между состоянием определенного качества и сложностью структуры. Многоуровневая иерархическая система противоречий и есть дерево противоречий системы.
Функциональные модули сложной системы формируют ее концепцию в соответствии с деревом функций и деревом противоречий системы.
Конструктивные модули - определяют и организуют морфологическую структуру системы на основе ее функциональных модулей («морфология» - в переводе с греческого означает «форма» и «...логия»).
Связь между функциональными и конструктивными модулями проявляется, как между функцией и структурой. Иными словами - система с определенными функциональными модулями может быть реализована неоднозначно с помощью различных конструктивных модулей.

Алгоритм функционально-структурного подхода
Алгоритм сводится к последовательности операций:
1. Анализ систем - прототипов включает: выяснение основных и дополнительных функций; построение обобщенного дерева функций; выявление базовых структур; анализ принципов технической реализации.
2. Исследование дерева противоречий системы включает: анализ «узких мест» систем-прототипов; выявление ограничивающих факторов; выявление основного противоречия системы; построение дерева противоречий системы, анализ дерева противоречий системы.
3. Формирование концепций системы включает: влияние способов преодоления противоречий системы; поиск альтернатив технической реализации системы; разработку технического задания на систему; определение совокупности показателей качества системы.
4. Формирование дерева функций системы включает: определение множества основных и дополнительных функций; определение числа уровней декомпозиции и декомпозицию функций системы; выявление набора типовых операторов; отображение функций предыдущего уровня на множество операторов; трансформацию дерева функций.
5. Формирование функциональной структуры системы включает: анализ методов аппаратной и программной реализации; разработку алгоритмов функционирования системы; анализ связей операторами различных уровней; построение временных диаграмм актив-ности операторов соответствующего уровня; определение загрузки ресурсов подсистемы; эквивалентные преобразования операторов; структур; выделение типовых функциональных подсистем.
6. Формирование морфологической структуры системы на основе конструктивных модулей
включает: выбор технических средств для реализации системы; формирование таблиц соответствия функциональных модулей; формирование таблиц соответствия конструктивных модулей; обоснование разработки оригинальных технических средств; преобразование элементов (подсистем)функциональной структуры; покрытие функциональных подсистем конструктивным модулями; формирование конструктивных модулей высокого уровня; формирование альтернативных вариантов системы; анализ достоинств функционирования системы.
7. Оценка показателей качества и выбор окончательного варианта системы включает: выбор стратегии сравнительного анализа вариантов системы; выбор методики оценки показателей качества системы; анализ показателей качества системы; формирование Документации на систему. К этому необходимо добавить, что если полученные результаты неудовлетворительны, то необходим возврат к повторению этого алгоритма на новом витке развития (активного поиска).
Вдумчивый конструктор, читая данный алгоритм, обратит внимание не только на важ-ность и ответственность постановки проблемы и ее поисковой формулировки, т.е. на работу, предшествующую использованию данного алгоритма, но и на этап формирования концепции системы как на коренной момент алгоритма. Из личного опыта автора хочется подчеркнуть следующее. В концепцию создаваемой системы желательно закладывать такие прогрессивные идеи, которые обеспечивали бы повышение ее эффективности в несколько раз, т.е. создать запас, резерв возможностей. Тогда при решении последующих вопросов низкого уровня можно «пожертвовать» несколькими процентами из этого резерва эффективности, чтобы быстрее и с меньшими затратами осуществить практическую доводку и внедрение системы.
Так вот, при формировании концепции системы на функциональном уровне надо заботиться о том, чтобы не потерять многообразные возможности структурной организации, т.е. здесь четко должны реализовываться черты функционально-структурного подхода (одна и та же функция может быть реализована различными структурами).
Алгоритм функционально-структурного подхода направлен на выявление (вскрытие) и преодоление противоречий разных уровней:
1. Основное противоречие системы связано с постановкой проблемы. Оно вскрывается на основе анализа систем-прототипов и потребности, составляет основу дерева противоречий системы и далее просматривается от этапа формирования системы до оценки конечного результата. Если основное противоречие преодолено, то и проблема решена. Но относиться к этому надо диалектически, помня о том, что преодоление одних противоречий порождает другие, т.е. при решении одних проблем возникают другие, и опытный исследователь должен их видеть, предусмотреть и оценить заранее. Одним из примеров такого рода в строительной механике может служить противоречие между используемой моделью (расчетной схемой) и реальной системой. Это противоречие - неисчерпаемый источник развития механики.
2. Противоречия структурного уровня проектирования (структурного синтеза системы) - это противоречие между функциональной полнотой и требованиями минимизации системы.
3. Требования минимальной структуры - это стремление к системе из минимального числа элементов органической номенклатуры. Здесь возникает новое противоречие, связанное с проблемами унификации и типизации элементов, на которые расчленяется система. Какие и сколько элементов целесообразно унифицировать, чтобы из них синтезировать систему. В этой задаче необходимо учесть многие требования и ограничения технологии изготовления конструктивных элементов, удобству их транспортирования и монтажа, надежности в процессе эксплуатации. Иными словами, мы всегда стремимся к тому, чтобы система была наиболее простой, но при этом наиболее полно удовлетворяла наши потребности.
4. Противоречия этапа логического проектирования связаны, с одной стороны, с непрерывным расширением функциональных возможностей системы (с эволюцией функций) и, с другой стороны, с числом элементов и количеством их типов, составляющих логическую структуру системы (с эволюцией технологии).
5. Основное противоречие этапа технического проектирования связано с функциональными возможностями разрабатываемых элементов и сложностью их структуры. Что выгоднее: синтезировать систему из большого числа простых элементов или небольшого числа сложных. Примером преодоления данного противоречия является разработка сборных сталежелезобетонных конструкций из унифицированных элементов для серии пролетов
6. Основные противоречия этапа конструктивно-технологического проектирования возникают между функциональными возможностями блоков (конструктивных модулей) системы и конструктивно-технологическими ограничениями их реализации.

 

С чего начинается система?


Исследование потребности
Философы учат, что все начинается с потребности.
Исследование потребности состоит в том, что прежде, чем разрабатывать новую систему, необходимо установить - нужна ли она? На этом этапе ставятся и решаются следующие вопросы:
o удовлетворяет ли проект новую потребность;
o удовлетворяет ли его эффективность, стоимость, качество и др.?
Рост потребностей обусловливает производство все новых и новых технических средств. Этот рост определен жизнью, но он обусловлен и потребностью в творчестве, присущей человеку как разумному существу.
Область деятельности, задача которой - исследование условий жизни человека и общества, называется футурологией. Трудно возразить против точки зрения, что основой футуро-логического планирования должны быть тщательно выверенные и социально оправданные по-требности как существующие, так и потенциальные.
Потребности придают смысл нашим действиям. Неудовлетворение потребности вызывает напряженное состояние, направленное на ликвидацию несоответствия.
При создании техносферы установление потребностей выступает как концептуальная задача. Установление потребности ведет к формированию технической задачи.
Формирование должно включать описание совокупности условий, необходимых и достаточных для удовлетворения потребности.

Уяснение задачи (проблемы)
Увидеть, что ситуация требует исследования, есть первый шаг исследователя. Задачу, не решавшуюся ранее, как правило, нельзя сформулировать точно, пока не найден ответ. Тем не менее, следует всегда искать хотя бы пробную формулировку решения. Есть глубокий смысл в тезисе, что «хорошо поставленная задача наполовину решена», и наоборот.
Уяснить, в чем заключается задача, - значит существенно продвинуться в исследованиях. И наоборот - неправильно понять задачу - значит, направить исследование по ложному пути.
Этот этап творчества непосредственно связан с фундаментальным философским понятием цели, т.е. мысленным предвосхищением результата.
Цель регулирует и направляет человеческую деятельность, которая состоит из следующих основных элементов: определения цели, прогнозирования, решения, осуществления действия, контроля результатов. Из всех этих элементов (задач) определение цели стоит на первом месте. Сформулировать цель значительно труднее, чем следовать принятой цели. Цель конкретизируется и трансформируется применительно к исполнителям и условиям. Трансформация цели заключает ее доопределение из-за неполноты и запаздывания информации и знания о ситуации. Цель более высокого порядка всегда содержит исходную неопределенность, которую необходимо учитывать. Несмотря на это, цель должна быть определенной и однозначной. Ее постановка должна допускать инициативу исполнителей. «Гораздо важнее выбрать «правильную» цель, чем «правильную» систему», - указал Холл, автор книги по системотехнике; выбрать не ту цель - значит решить не ту задачу; а выбрать не ту систему - значит просто выбрать неоптимальную систему.
Достижение цели в сложных и конфликтных ситуациях затруднено. Вернейший и кратчайший путь - изыскание новой прогрессивной идеи. То, что новые идеи могут опровергнуть прежний опыт, ничего не меняет (почти по Р. Акоффу: «Когда заказан путь вперед, то лучший выход - задний ход»).

 

Состояние системы.


В общем случае значения выходов системы зависят от следующих факторов:
o значений (состояния) входных переменных;
o начального состояния системы;
o функции системы.
Отсюда вытекает одна из наиболее важных задач системного анализа — установление причинно-следственных связей выходов системы с ее входами и состоянием.

1. Состояние системы и его оценка
Понятие состояние характеризует мгновенную «фотографию» временной «срез» системы. Состояние системы в определенный момент времени — это множество ее существенных свойств в этот момент времени. При этом можно говорить о состоянии входов, внутреннем состоянии и состоянии выходов системы.
Состояние входов системы представляется вектором значений входных параметров:
X = (x1,..., xn) и фактически является отражением состояния окружающей среды.
Внутреннее состояние системы представляется вектором значений ее внутренних параметров (параметров состояния): Z = (z1,..., zv) и зависит от состояния входов Х и начального состояния Z0:
Z = F1(X, Z0).

Пример. Параметры состояния: температура двигателя автомобиля, психологическое состояние человека, изношенность оборудования, уровень квалификации исполнителей работы.

Внутреннее состояние практически ненаблюдаемо, но его можно оценить по состоянию выходов (значениям выходных переменных) системы Y = (y1...ym) благодаря зависимости
Y= F2(Z).
При этом следует говорить о выходных переменных в широком смысле: в качестве коорди-нат, отражающих состояние системы, могут выступать не только сами выходные переменные, но и характеристики их изменения - скорость, ускорение и т. д. Таким образом, внутреннее со-стояние системы S в момент времени t может характеризоваться множеством значений ее выходных координат и их производных в этот момент времени:
Пример. Состояние финансовой системы России можно характеризовать не только курсом рубля к доллару, но и скоростью изменения этого курса, а также ускорением (замедлением) этой скорости.

Однако необходимо заметить, что выходные переменные не полностью, неоднозначно и несвоевременно отражают состояние системы.

Примеры.
1. У больного повышенная температура {у > 37 °С). но это характерно для различных внутренних состояний.
2. Если у предприятия низкая прибыль, то это может быть при разных состояниях органи-зации.

2. Процесс
Если система способна переходить из одного состояния в другое (например, S1→ S2→ S3...), то говорят, что она обладает поведением - в ней происходит процесс.

В случае непрерывной смены состояний, процесс Р можно описать функцией времени:
P=S(t), а в дискретном случае — множеством: P = {St1 St2….},
По отношению к системе можно рассматривать два вида процессов:
внешний процесс - последовательная смена, воздействий на систему, т. е. последовательная смена состояний окружающей среды;
внутренний процесс - последовательная смена состояний системы, которая наблюдается как процесс на выходе системы.
Дискретный процесс сам может рассматриваться как система, состоящая из совокупности состояний, связанных последовательностью их смены.

3. Статические и динамические системы
В зависимости от того, изменяется ли состояние системы со временем, ее можно отнести к классу статических пли динамических систем.

Статическая система - это система, состояние которое практически не изменяется в течение определенного период
Динамическая система - это система, изменяющая свое состояние во времени.
Итак, динамическими будем называть такие системы, в которых происходят какие бы то ни было изменения со временем. Имеется еще одно уточняющее определение: система, переход которой из одного состояния в другое совершается не мгновенно, а в результате некоторого процесса, называется динамической.

Примеры.
1. Панельный дом — система из множества взаимосвязанных панелей — статическая система.
2. Экономика любого предприятия — это динамическая система.
3. В дальнейшем нас будут интересовать только динамические системы.

4. Функция системы
Свойства системы проявляются не только значениями выходных переменных, но и ее функцией, поэтому определение функций системы является одной из первых задач ее анализа или проектирования
Понятие «функция» имеет разные определения: от общефилософских до математических.

Функция как общефилософское понятие. Общее понятие функции включает в себя понятия «предназначение» (целевое назначение) и «способность» (служить каким-то целям).
Функция — внешнее проявление свойств объекта.

Примеры.
1. Ручка двери имеет функцию помочь ее открыть.
2. Налоговая служба имеет функцию сбора налогов.
3 Функция информационной системы — обеспечение информацией лица, принимающего решения.
4. Функция картины в известном мультфильме — закрывать дырку в стене.
5. Функция ветра — разгонять смог в городе.
Система может быть одно- или многофункциональной. В зависимости от степени воздействия на внешнюю среду и характера взаимодействия с другими системами, функции можно распределить по возрастающим рангам:

o пассивное существование, материал для других систем (подставка для ног);
o обслуживание системы более высокого порядка (выключатель в компьютере);
o противостояние другим системам, среде (выживание, охранная система, система защиты);
o поглощение (экспансия) других систем и среды (уничтожение вредителей растений, осу-шение болот);
o преобразование других систем и среды (компьютерный вирус, пенитенциарная система).

Функция в математике. Функция — это одно из основных понятий математики, выражающее зависимость одних переменных величин от других. Формально функцию можно определить так: Элемент множества Еy произвольной природы называется функцией элемента х, определенной на множестве Еx произвольной природы, если каждому элементу х из множества Еx соответствует единственный элемент у? Еy. Элемент х называется независимой переменной, или аргументом. Функция может задаваться: аналитическим выражением, словесным определением, таблицей, графиком и т. д.

Функция как кибернетическое понятие. Философское определение отвечает на вопрос: «Что может делать система? ». Этот вопрос правомерен как для статических, так и для динамических систем. Однако для динамических систем важен ответ на вопрос: «Как она это делает? ». В этом случае, говоря о функции системы, будем иметь в виду следующее:

Функция системы — это способ (правило, алгоритм) преобразование входной информации в выходную.

Функцию динамической системы можно представить логико-математической моделью, связывающей входные (X) и выходные (Y) координаты системы, — моделью «вход-выход»:
Y = F(Х),
где F - оператор (в частном случае некоторая формула), называемый алгоритмом функционирования, — вся совокупность математических и логических действий, которые нужно произвести, чтобы по данным входам Х найти соответствующие выходы Y.

Удобно было бы представить оператор F в виде некоторых математических соотношений, однако это не всегда возможно.
В кибернетике широко используется понятие «черный ящик». «Черный ящик» является кибернетической моделью или моделью «вход-выход», в которой не рассматривается внутренняя структура объекта (либо о ней абсолютно ничего не известно, либо делается такое допущение). В этом случае о свойствах объекта судят только на основании анализа его входов и выходов. (Иногда употребляют термин «серый ящик», когда о внутренней структуре объекта все же что-либо известно.) Задачей системного анализа как раз и является «осветление» «ящика» — превращение черного в серый, а серого — в белый.
Условно можно считать, что функция F состоит из структуры St и параметров :
F={St, A},
что в какой-то мере отражает соответственно структуру системы (состав и взаимосвязь элементов) и ее внутренние параметры (свойства элементов и связей).

5. Функционирование системы
Функционирование рассматривается как процесс реализации системой своих функций. С кибернетической точки зрения:
Функционирование системы — это процесс переработки входной информации в выходную.
Математически функционирование можно записать так:
Y{t) = F(X(t)).
Функционирование описывает, как меняется состояние системы при изменении состояния ее входов.

6. Состояние функции системы
Функция системы является ее свойством, поэтому можно говорить о состоянии системы в заданный момент времени, указывая ее функцию, которая справедлива в этот момент времени. Таким образом, состояние системы можно рассматривать в двух разрезах: состояние ее пара-метров и состояние ее функции, которая, в свою очередь, зависит от состояния структуры и па-раметров:

Знание состояния функции системы позволяет прогнозировать значения ее выходных переменных. Это успешно удается для стационарных систем.
Систему считают стационарной, если ее функция практически не изменяется в течение определенного периода ее существования.

Для такой системы реакция на одно и то же воздействие не зависит от момента приложения этого воздействия.
Ситуация значительно осложняется, если функция системы меняется во времени, что характерно для нестационарных систем.
Систему считают нестационарной, если ее функция изменяется со временем.

Нестационарность системы проявляется различными ее реакциями на одни и те же возму-щения, приложенные в разные периоды времени. Причины нестационарности системы лежат внутри нее и заключаются в изменении функции системы: структуры (St) и/или параметров (А).

Иногда стационарность системы рассматривают в узком смысле, когда обращают внима-ние на изменение только внутренних параметров (коэффициентов функции системы).

Стационарной называют систему, все внутренние параметры которой не изменяются во времени.
Нестационарная система — это система с переменными внутренними параметрами.
Пример. Рассмотрим зависимость прибыли от продажи некоторого товара (П) от цены на него (Ц).
Пусть сегодня эта зависимость выражается математической моделью:
П=-50+30Ц-3Ц2
Если через некоторое время изменится ситуация на рынке, то изменится и наша зависи-мость - она станет например такой:
П=-62 + 24Ц -4Ц2

7. Режимы динамической системы
Следует различать три характерных режима, в которых может находиться динамическая система: равновесный, переходной и периодический.

Равновесный режим (равновесное состояние, состояние равновесия) — это такое состояние системы, в котором она может находиться сколь угодно долго в отсутствие внешних возмущающих воздействий или при постоянных воздействиях. Однако надо понимать, что для экономических и организационных систем понятие «равновесие» применимо достаточно условно.
Пример. Простейший пример равновесия — шарик, лежащий на плоскости.
Под переходным режимом (процессом) будем понимать процесс движения динамической системы из некоторого начального состояния к какому-либо ее установившемуся режиму - равновесному или периодическому.
Периодическим режимом называется такой режим, когда система через равные промежутки времени приходит в одни и те же состояния.

 


Поделиться:



Последнее изменение этой страницы: 2017-03-17; Просмотров: 1006; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.036 с.)
Главная | Случайная страница | Обратная связь