Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Период колебаний крутильного маятника



,

где Iz – момент инерции тела относительно оси колебаний.

Затухающие (свободные) колебания – движения реальной колебательной системы, сопровождающиеся силами трения и сопротивления, которые приводят к уменьшению амплитуды колебаний (рис. П1.26). При этом энергия, потерянная системой, не восполняется за счет внешних сил.

Дифференциальное уравнение затухающих колебаний:

,

где r – коэффициент сопротивления.

Решение уравнения затухающих колебаний:

,

где А = x0 e– β t – амплитуда колебаний, убывающая по экспоненциальному закону;

β = r/(2m) – коэффициент затухания, характеризующий быстроту убывания амплитуды с течением времени;

– собственная частота колебаний системы, т.е. та частота, с которой совершались бы свободные колебания системы в отсутствии сопротивления среды (r = 0).

Круговая частота, частота и период затухающих колебаний:

; ; .

Характеристики затухающих колебаний:

1) декремент затухания – отношение двух смещений, отличающихся друг от друга по времени на период. Декремент затухания характеризует быстроту затухания в зависимости от числа колебаний:

;

2) логарифмический декремент затухания величина, равная натуральному логарифму от декремента затухания. Логарифмический декремент затухания характеризует затухание колебаний за период:

l = lnD = ln(eβ Τ ) = β T.

Добротность колебательной системы

,

где Ne – число колебаний за то время, за которое амплитуда колебаний уменьшается в «е» раз.

Вынужденные колебания – колебания, совершаемые системами под действием внешней (вынуждающей) силы, изменяющейся по какому-либо закону, например гармоническому (рис. П1.27):

f = F 0× cos w t,

гдеF0 – амплитудное значение вынуждающей силы;

w – частота вынуждающей силы.

Дифференциальное уравнение вынужденных колебаний

,

где f = F0 sin wt – вынуждающая сила;

w – частота вынуждающей силы.

Решение уравнения вынужденных колебаний:

X = X1 + X2 = x0ebt× sin (ω 't + φ 0') + x0× sin (ω t + φ ),

где .

Амплитуда и начальная фаза вынужденных колебаний:

;

.

Резонанс – явление резкого возрастания амплитуды колебаний при некоторой определенной для данной колебательной системы частоте (резонансной частоте). На рисунке П1.28 показаны возможные кривые при резонансе.

Резонансная частота

.

Волновые процессы. Акустика

Волны – изменения состояния среды (возмущения), распространяющиеся в этой среде и несущие с собой энергию – процесс распространения колебаний в пространстве.

Фронт волны (волновой фронт) – геометрическое место точек, до которых доходят волны за некоторый промежуток времени t.

Волновая поверхность – геометрическое место точек, колеблющихся в одинаковой фазе.

Основное свойство волн, независимо от их природы, – перенос энергии без переноса вещества в пространстве.

Длина волны l – расстояние между ближайшими частицами, колеблющимися в одинаковой фазе (расстояние, на которое распространяется волна за один период):

; ,

где l – длина волны;

T – период;

n – частота;

v – скорость распространения волны.

Волновой вектор k определяет направление волны. Направление волнового вектора совпадает с направлением вектора скорости:

,

где w – круговая частота.

Волновое число – численное значение волнового вектора:

.

Групповая скорость – скорость перемещения в пространстве амплитуды волны:

.

Упругие – механические возмущения, возникающие и распространяющиеся в упругой среде. Различают продольные и поперечные волны.

Продольные волны – волны, направление распространения которых совпадает с направлением смещения (колебания) частиц среды.

Поперечные – волны, направление распространения которых и направление смещения (колебания) частиц среды взаимно перпендикулярны.

В жидкостях и газах возникают и распространяются только продольные волны («волны сжатия»).

В твердых телах возникают и распространяются не только продольные, но и поперечные волны («волны сдвига»).

Фазовая скорость упругих волн:

продольных, поперечных,

где E – модуль Юнга;

G – модуль сдвига.

Одиночная волна (импульс) – сравнительно короткое возмущение, не имеющее регулярного характера.

Волновой пакет – совокупность волн, частоты которых мало отличаются друг от друга.

Гармоническая волна – бесконечная синусоидальная волна, в которой все изменения среды происходят по закону синуса или косинуса.

Плоские волны – такие, волновые поверхности которых представляют собой систему параллельных друг другу плоскостей, перпендикулярных направлению распространения волны.

Сферические волны – такие, волновые поверхности которых представляют собой систему концентрических сферических поверхностей.

Принцип суперпозиции волн – результат геометрического сложения когерентных волн.

Когерентные волны – обладающие в каждой из точек среды постоянной разностью фаз и имеющие одинаковую частоту.

Когерентные источники – точечные источники, размерами которых можно пренебречь, излучающие в пространство когерентные волны.

Интерференция волн – явление наложения когерентных волн, в результате которого происходит перераспределение энергии волны в пространстве.

Стоячая волна – волна, возникающая при интерференции двух встречных (падающей и отраженной) плоских волн с одинаковой амплитудой.

Уравнение стоячей волны:

,

где – амплитуда стоячей волны.

Условие максимального значения амплитуды стоячей волны:

,

где n = 0, 1, 2, 3¼

Условие минимального значения амплитуды стоячей волны:

,

где n = 0, 1, 2, 3¼

Пучности стоячей волны – точки, в которых амплитуда удваивается.

Узлы стоячей волны – точки, в которых амплитуда обращается в нуль.

Длина стоячей волны – расстояние между соседними узлам:

.


Поделиться:



Последнее изменение этой страницы: 2017-03-17; Просмотров: 1518; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.019 с.)
Главная | Случайная страница | Обратная связь