Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Компьютеры обрабатывают информацию путем выполнения некоторых алгоритмов.



ИНФОРМАТИКА

 

Полный курс лекций

 

 

Волгодонск

 

Этот материал студенты могут читать по желанию. В аттестацию он не включен

Понятие информатика

Термин " информатика" (франц. informatique) происходит от французских слов information (информация) и automatique (автоматика) и дословно означает " информационная автоматика".

Широко распространён также англоязычный вариант этого термина — " Сomputer science", что означает буквально " компьютерная наука".

Информатика — этооснованная на использовании компьютерной техники дисциплина, изучающая структуру и общие свойства информации, а также закономерности и методы её создания, хранения, поиска, преобразования, передачи и применения в различных сферах человеческой деятельности.

В 1978 году международный научный конгресс официально закрепил за понятием " информатика" области, связанные с разработкой, созданием, использованием и материально-техническим обслуживанием систем обработки информации, включая компьютеры и их программное обеспечение, а также организационные, коммерческие, административные и социально-политические аспекты компьютеризации — массового внедрения компьютерной техники во все области жизни людей.

Таким образом, информатика базируется на компьютерной технике и немыслима без нее.

Информатика — комплексная научная дисциплина с широчайшим диапазоном применения. Её приоритетные направления:

  • pазpаботка вычислительных систем и пpогpаммного обеспечения;
  • теорияинформации, изучающая процессы, связанные с передачей, приёмом, преобразованием и хранением информации;
  • математическое моделирование, методы вычислительной и прикладной математики и их применение к фундаментальным и прикладным исследованиям в различных областях знаний;
  • методы искусственного интеллекта, моделирующие методы логического и аналитического мышления в интеллектуальной деятельности человека (логический вывод, обучение, понимание речи, визуальное восприятие, игры и др.);
  • системный анализ, изучающий методологические средства, используемые для подготовки и обоснования решений по сложным проблемам различного характера;
  • биоинформатика, изучающая информационные процессы в биологических системах;
  • социальная информатика, изучающая процессы информатизации общества;
  • методы машинной графики, анимации, средства мультимедиа;
  • телекоммуникационные системы и сети, в том числе, глобальные компьютерные сети, объединяющие всё человечество в единое информационное сообщество;
  • разнообразные приложения, охватывающие производство, науку, образование, медицину, торговлю, сельское хозяйство и все другие виды хозяйственной и общественной деятельности.

Российский академик А.А. Дородницин выделяет в информатике три неразрывно и существенно связанные части — технические средства, программные и алгоритмические.

Технические средства, или аппаратура компьютеров, в английском языке обозначаются словом Hardware, которое буквально переводится как " твердые изделия".

Для обозначения программных средств, под которыми понимается совокупность всех программ, используемых компьютерами, и область деятельности по их созданию и применению, используется слово Software (буквально — " мягкие изделия" ), которое подчеркивает равнозначность самой машины и программного обеспечения, а также способность программного обеспечения модифицироваться, приспосабливаться и развиваться.

Программированию задачи всегда предшествует разработка способа ее решения в виде последовательности действий, ведущих от исходных данных к искомому результату, иными словами, разработка алгоритма решения задачи. Для обозначения части информатики, связанной с разработкой алгоритмов и изучением методов и приемов их построения, применяют термин Brainware (англ. brain — интеллект).

Что такое информация?

Термин " информация" происходит от латинского слова " informatio", что означает сведения, разъяснения, изложение. Несмотря на широкое распространение этого термина, понятие информации является одним из самых дискуссионных в науке. В настоящее время наука пытается найти общие свойства и закономерности, присущие многогранному понятию информация, но пока это понятие во многом остается интуитивным и получает различные смысловые наполнения в различных отраслях человеческой деятельности:

  • в обиходе информацией называют любые данные или сведения, которые кого-либо интересуют. Например, сообщение о каких-либо событиях, о чьей-либо деятельности и т.п. " Информировать" в этом смысле означает " сообщить нечто, неизвестное раньше" ;
  • в технике под информацией понимают сообщения, передаваемые в форме знаков или сигналов;
  • в кибернетике под информацией понимает ту часть знаний, которая используется для ориентирования, активного действия, управления, т.е. в целях сохранения, совершенствования, развития системы (Н. Винер).

Клод Шеннон, американский учёный, заложивший основы теории информации — науки, изучающей процессы, связанные с передачей, приёмом, преобразованием и хранением информации, — рассматривает информацию как снятую неопределенность наших знаний о чем-то.

Информация — это обозначение содержания, полученного из внешнего мира в процессе нашего приспособления к нему и приспособления к нему наших чувств.

Люди обмениваются информацией в форме сообщений. Сообщение — это форма представления информации в виде речи, текстов, жестов, взглядов, изображений, цифровых данных, графиков, таблиц и т.п.

Одно и то же информационное сообщение (статья в газете, объявление, письмо, телеграмма, справка, рассказ, чертёж, радиопередача и т.п.) может содержать разное количество информации для разных людей — в зависимости от их предшествующих знаний, от уровня понимания этого сообщения и интереса к нему.

Так, сообщение, составленное на японском языке, не несёт никакой новой информации человеку, не знающему этого языка, но может быть высокоинформативным для человека, владеющего японским. Никакой новой информации не содержит и сообщение, изложенное на знакомом языке, если его содержание непонятно или уже известно.

Информация есть характеристика не сообщения, а соотношения между сообщением и его потребителем. Без наличия потребителя, хотя бы потенциального, говорить об информации бессмысленно.

В случаях, когда говорят об автоматизированной работе с информацией посредством каких-либо технических устройств, обычно в первую очередь интересуются не содержанием сообщения, а тем, сколько символов это сообщение содержит.

Применительно к компьютерной обработке данных под информацией понимают некоторую последовательность символических обозначений (букв, цифр, закодированных графических образов и звуков и т.п.), несущую смысловую нагрузку и представленную в понятном компьютеру виде. Каждый новый символ в такой последовательности символов увеличивает информационный объём сообщения.

Виды информации

Информация может существовать в виде:

  • текстов, рисунков, чертежей, фотографий;
  • световых или звуковых сигналов;
  • радиоволн;
  • электрических и нервных импульсов;
  • магнитных записей;
  • жестов и мимики;
  • запахов и вкусовых ощущений;
  • хромосом, посредством которых передаются по наследству признаки и свойства организмов и т.д.

Предметы, процессы, явления материального или нематериального свойства, рассматриваемые с точки зрения их информационных свойств, называются информационными объектами.

Передача информации

Информация передаётся в форме сообщений от некоторого источника информации к её приёмнику посредством канала связи между ними. Источник посылает передаваемое сообщение, которое кодируется в передаваемый сигнал. Этот сигнал посылается по каналу связи. В результате в приёмнике появляется принимаемый сигнал, который декодируется и становится принимаемым сообщением.

  канал связи  
ИСТОЧНИК -----------> ПРИЁМНИК

Примеры:

  1. Cообщение, содержащее информацию о прогнозе погоды, передаётся приёмнику (телезрителю) от источника — специалиста-метеоролога посредством канала связи — телевизионной передающей аппаратуры и телевизора.
  2. Живое существо своими органами чувств (глаз, ухо, кожа, язык и т.д.) воспринимает информацию из внешнего мира, перерабатывает её в определенную последовательность нервных импульсов, передает импульсы по нервным волокнам, хранит в памяти в виде состояния нейронных структур мозга, воспроизводит в виде звуковых сигналов, движений и т.п., использует в процессе своей жизнедеятельности.


Действия с информацией

 

.Информацию можно:

  • создавать;
  • передавать;
  • воспринимать;
  • иcпользовать;
  • запоминать;
  • принимать;
  • копировать;
  • формализовать;
  • распространять;
  • преобразовывать;
  • комбинировать;
  • обрабатывать;
  • делить на части;
  • упрощать;
  • собирать;
  • хранить;
  • искать;
  • измерять;
  • разрушать;
  • и др.

Все эти процессы, связанные с определенными операциями над информацией, называются информационными процессами.

Свойства информации:

  • достоверность;
  • полнота;
  • ценность;
  • своевременность;
  • понятность;
  • доступность;
  • краткость;
  • и др.

Информация достоверна, если она отражает истинное положение дел. Недостоверная информация может привести к неправильному пониманию или принятию неправильных решений.

Достоверная информация со временем может стать недостоверной, так как она обладает свойством устаревать, то есть перестаёт отражать истинное положение дел.

Информация полна, если её достаточно для понимания и принятия решений. Как неполная, так и избыточная информация сдерживает принятие решений или может повлечь ошибки.

Точность информации определяется степенью ее близости к реальному состоянию объекта, процесса, явления и т.п.

Ценность информации зависит от того, насколько она важна для решения задачи, а также от того, насколько в дальнейшем она найдёт применение в каких-либо видах деятельности человека.

Только своевременно полученная информация может принести ожидаемую пользу. Одинаково нежелательны как преждевременная подача информации (когда она ещё не может быть усвоена), так и её задержка.

Если ценная и своевременная информация выражена непонятным образом, она может стать бесполезной.

Информация становится понятной, если она выражена языком, на котором говорят те, кому предназначена эта информация.

Информация должна преподноситься в доступной (по уровню восприятия) форме. Поэтому одни и те же вопросы по разному излагаются в школьных учебниках и научных изданиях.

Информацию по одному и тому же вопросу можно изложить кратко (сжато, без несущественных деталей) или пространно (подробно, многословно). Краткость информации необходима в справочниках, энциклопедиях, учебниках, всевозможных инструкциях.

Обработка информации — получение одних информационных объектов из других информационных объектов путем выполнения некоторых алгоритмов

Обработка является одной из основных операций, выполняемых над информацией, и главным средством увеличения объёма и разнообразия информации.

Средства обработки информации — это всевозможные устройства и системы, созданные человечеством, и в первую очередь, компьютер — универсальная машина для обработки информации.

Системы счисления

Система счисления — это совокупность приемов и правил, по которым числа записываются и читаются.

Существуют позиционные и непозиционные системы счисления.

В непозиционных системах счисления вес цифры (т. е. тот вклад, который она вносит в значение числа) не зависит от ее позиции в записи числа. Так, в римской системе счисления в числе ХХХII (тридцать два) вес цифры Х в любой позиции равен просто десяти.

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. Например, в числе 757, 7 первая семерка означает 7 сотен, вторая — 7 единиц, а третья — 7 десятых долей единицы.

Сама же запись числа 757, 7 означает сокращенную запись выражения

700 + 50 + 7 + 0, 7 = 7 . 102 + 5 . 101 + 7 . 100 + 7 . 10-1 = 757, 7.

Любая позиционная система счисления характеризуется своим основанием.

Основание позиционной системы счисления — количество различных цифр, используемых для изображения чисел в данной системе счисления.

За основание системы можно принять любое натуральное число — два, три, четыре и т.д. Следовательно, возможно бесчисленное множество позиционных систем: двоичная, троичная, четверичная и т.д. Запись чисел в каждой из систем счисления с основанием q означает сокращенную запись выражения

an-1 qn-1 + an-2 qn-2 +... + a1 q1 + a0 q0 + a-1 q-1 +... + a-m q-m,


где ai — цифры системы счисления; n и m — число целых и дробных разрядов, соответственно.
Например:

Двоичная система, удобная для компьютеров, для человека неудобна из-за ее громоздкости и непривычной записи.

Перевод чисел из десятичной системы в двоичную и наоборот выполняет машина. Однако, чтобы профессионально использовать компьютер, следует научиться понимать слово машины. Для этого и разработаны восьмеричная и шестнадцатеричная системы.

Числа в этих системах читаются почти так же легко, как десятичные, требуют соответственно в три (восьмеричная) и в четыре (шестнадцатеричная) раза меньше разрядов, чем в двоичной системе (ведь числа 8 и 16 — соответственно, третья и четвертая степени числа 2).

Перевод восьмеричных и шестнадцатеричных чисел в двоичную систему очень прост: достаточно каждую цифру заменить эквивалентной ей двоичной триадой (тройкой цифр) или тетрадой (четверкой цифр).

Например:


Чтобы перевести число из двоичной системы в восьмеричную или шестнадцатеричную, его нужно разбить влево и вправо от запятой на триады (для восьмеричной) или тетрады (для шестнадцатеричной) и каждую такую группу заменить соответствующей восьмеричной (шестнадцатеричной) цифрой.

Например,

Перевод чисел из десятичной системы счисления в другие системы счисления Для перевода целого десятичного числа N в систему счисления с основанием q необходимо N разделить с остатком (" нацело" ) на q, записанное в той же десятичной системе. Затем неполное частное, полученное от такого деления, нужно снова разделить с остатком на q, и т.д., пока последнее полученное неполное частное не станет равным нулю. Представлением числа N в новой системе счисления будет последовательность остатков деления, изображенных одной q-ичной цифрой и записанных в порядке, обратном порядку их получения.

Пример: Переведем число 75 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:

Ответ: 7510 = 1 001 0112 = 1138 = 4B16.

С л о ж е н и е

Таблицы сложения легко составить, используя Правило Счета.

Сложение в двоичной системе Сложение в восьмеричной системе

В ы ч и т а н и е

 

Пример 4. Вычтем единицу из чисел 102, 108 и 1016



Пример 5. Вычтем единицу из чисел 1002, 1008 и 10016.



Пример 6. Вычтем число 59, 75 из числа 201, 25.



Ответ: 201, 2510 - 59, 7510 = 141, 510 = 10001101, 12 = 215, 48 = 8D, 816.
Проверка. Преобразуем полученные разности к десятичному виду:
10001101, 12 = 27 + 23 + 22 + 20 + 2-1 = 141, 5;
215, 48 = 2 . 82 + 1 . 81 + 5 . 80 + 4 . 8-1 = 141, 5;
8D, 816 = 8 . 161 + D . 160 + 8 . 16-1 = 141, 5.

У м н о ж е н и е

Выполняя умножение многозначных чисел в различных позиционных системах счисления, можно использовать обычный алгоритм перемножения чисел в столбик, но при этом результаты перемножения и сложения однозначных чисел необходимо заимствовать из соответствующих рассматриваемой системе таблиц умножения и сложения.

Умножение в двоичной системе Умножение в восьмеричной системе

Ввиду чрезвычайной простоты таблицы умножения в двоичной системе, умножение сводится лишь к сдвигам множимого и сложениям.

Пример 7. Перемножим числа 5 и 6.


Ответ: 5 . 6 = 3010 = 111102 = 368.
Проверка. Преобразуем полученные произведения к десятичному виду:
111102 = 24 + 23 + 22 + 21 = 30;
368 = 381 + 680 = 30.

Пример 8. Перемножим числа 115 и 51.


Ответ: 115 . 51 = 586510 = 10110111010012 = 133518.
Проверка. Преобразуем полученные произведения к десятичному виду:
10110111010012 = 212 + 210 + 29 + 27 + 26 + 25 + 23 + 20 = 5865;
133518 = 1 . 84 + 3 . 83 + 3 . 82 + 5 . 81 + 1 . 80 = 5865.

Д е л е н и е

 

Деление в любой позиционной системе счисления производится по тем же правилам, как и деление углом в десятичной системе. В двоичной системе деление выполняется особенно просто, ведь очередная цифра частного может быть только нулем или единицей.

Пример 9. Разделим число 30 на число 6.


Ответ: 30: 6 = 510 = 1012 = 58.

Пример 10. Разделим число 5865 на число 115.

Восьмеричная: 133518: 1638


Ответ: 5865: 115 = 5110 = 1100112 = 638.
Проверка. Преобразуем полученные частные к десятичному виду:
1100112 = 25 + 24 + 21 + 20 = 51; 638 = 6 . 81 + 3 . 80 = 51.

Пример 11. Разделим число 35 на число 14.

Восьмеричная: 438: 168


Ответ: 35: 14 = 2, 510 = 10, 12 = 2, 48.
Проверка. Преобразуем полученные частные к десятичному виду:
10, 12 = 21 + 2 -1 = 2, 5;
2, 48 = 2 . 80 + 4 . 8-1 = 2, 5.

Подходы к определению количества информации. Формулы Хартли и Шеннона. Американский инженер Р. Хартли в 1928 г. процесс получения информации рассматривал как выбор одного сообщения из конечного наперёд заданного множества из N равновероятных сообщений, а количество информации I, содержащееся в выбранном сообщении, определял как двоичный логарифм N.
Формула Хартли: I = log2N

Допустим, нужно угадать одно число из набора чисел от единицы до ста. По формуле Хартли можно вычислить, какое количество информации для этого требуется: I = log2100 > 6, 644. Таким образом, сообщение о верно угаданном числе содержит количество информации, приблизительно равное 6, 644 единицы информации.

Приведем другие примеры равновероятных сообщений:

  1. при бросании монеты: " выпала решка" , " выпал орел" ;
  2. на странице книги: " количество букв чётное" , " количество букв нечётное" .

Определим теперь, являются ли равновероятными сообщения " первой выйдет из дверей здания женщина" и " первым выйдет из дверей здания мужчина" . Однозначно ответить на этот вопрос нельзя. Все зависит от того, о каком именно здании идет речь. Если это, например, станция метро, то вероятность выйти из дверей первым одинакова для мужчины и женщины, а если это военная казарма, то для мужчины эта вероятность значительно выше, чем для женщины.

Для задач такого рода американский учёный Клод Шеннон предложил в 1948 г. другую формулу определения количества информации, учитывающую возможную неодинаковую вероятность сообщений в наборе.

Формула Шеннона: I = — ( p1log2 p1 + p2 log2 p2 +... + pN log2 pN), где pi — вероятность того, что именно i-е сообщение выделено в наборе из N сообщений.

Легко заметить, что если вероятности p1, ..., pN равны, то каждая из них равна 1 / N, и формула Шеннона превращается в формулу Хартли.

Помимо двух рассмотренных подходов к определению количества информации, существуют и другие. Важно помнить, что любые теоретические результаты применимы лишь к определённому кругу случаев, очерченному первоначальными допущениями.

 

 

Задания для самоконтроля

1. Используя Правило Счета, запишите первые 20 целых чисел в десятичной, двоичной, троичной, пятеричной и восьмеричной системах счисления.

 

2. Какие целые числа следуют за числами:

а) 12; е) 18; п) F16;
б) 1012; ж) 78; м) 1F16;
в) 1112; з) 378; н) FF16;
г) 11112; и) 1778; о) 9AF916;
д) 1010112; к) 77778; п) CDEF16?

3 Какие целые числа предшествуют числам:

а) 102; е) 108; л) 1016;
б) 10102; ж) 208; м)2016;
в) 10002; з) 1008; н) 10016;
г) 100002; и) 1108; о) A1016;
д) 101002; к) 10008; п) 100016?

4. Какой цифрой заканчивается четное двоичное число? Какой цифрой заканчивается нечетное двоичное число? Какими цифрами может заканчиваться четное троичное число?

 

5 Какое наибольшее десятичное число можно записать тремя цифрами:

  • а) в двоичной системе;
  • б) в восьмеричной системе;
  • в) в шестнадцатеричной системе?

6. В какой системе счисления 21 + 24 = 100?
Решение. Пусть x — искомое основание системы счисления. Тогда 100x = 1 · x2 + 0 · x1 + 0 · x0, 21x = 2 · x1 + 1 · x0, 24x = 2 · x1 + 4 · x0. Таким образом, x2 = 2x + 2x + 5 или x2 - 4x - 5 = 0. Положительным корнем этого квадратного уравнения является x = 5.
Ответ. Числа записаны в пятеричной системе счисления.

7. В какой системе счисления справедливо следующее:

  • а) 20 + 25 = 100;
  • б) 22 + 44 = 110?

8. Десятичное число 59 эквивалентно числу 214 в некоторой другой системе счисления. Найдите основание этой системы.

9 Переведите числа в десятичную систему, а затем проверьте результаты, выполнив обратные переводы:

а) 10110112; е) 5178; л) 1F16;
б) 101101112; ж) 10108; м) ABC16;
в) 0111000012; з) 12348; н) 101016;
г) 0, 10001102; и) 0, 348; о) 0, А416;
д) 110100, 112; к) 123, 418; п) 1DE, C816.

10. Переведите числа из десятичной системы в двоичную, восьмеричную и шестнадцатеричную, а затем проверьте результаты, выполнив обратные переводы:

а) 12510; б) 22910; в) 8810; г) 37, 2510; д) 206, 12510.

11. Переведите числа из двоичной системы в восьмеричную и шестнадцатеричную, а затем проверьте результаты, выполнив обратные переводы:

а) 1001111110111, 01112; г) 1011110011100, 112;
б) 1110101011, 10111012; д) 10111, 11111011112;
в) 10111001, 1011001112; е) 1100010101, 110012.

12. Переведите в двоичную и восьмеричную системы шестнадцатеричные числа:

а) 2СE16; б) 9F4016; в) ABCDE16; г) 1010, 10116; д) 1ABC, 9D16.
13. Выпишите целые числа:

  • а) от 1011012 до 1100002 в двоичной системе;
  • б) от 2023 до 10003 в троичной системе;
  • в) от 148 до 208 в восьмеричной системе;
  • г) от 2816 до 3016 в шестнадцатеричной системе.

14. Для десятичных чисел 47 и 79 выполните цепочку переводов из одной системы счисления в другую:

15. Составьте таблицы сложения однозначных чисел в троичной и пятеричной системах счисления.

16. Составьте таблицы умножения однозначных чисел в троичной и пятеричной системах счисления.

17. Сложите числа, а затем проверьте результаты, выполнив соответствующие десятичные сложения:

а) 10111012 и 11101112; д) 378 и 758; и) A16 и F16;
б) 1011, 1012 и 101, 0112; е) 1658 и 378; к) 1916 и C16;
в) 10112, 112 и 111, 12; ж) 7, 58 и 14, 68; л) A, B16 и E, F16;
г) 10112, 11, 12 и 1112; з) 68, 178 и 78; м) E16, 916 и F16.

18. В каких системах счисления выполнены следующие сложения? Найдите основания каждой системы:

19. Найдите те подстановки десятичных цифр вместо букв, которые делают правильными выписанные результаты (разные цифры замещаются разными буквами):

20. Вычтите:

а) 1112 из 101002; д) 158 из 208; и) 1А16 из 3116;
б) 10, 112 из 100, 12; е) 478 из 1028; к) F9E16 из 2А3016;
в) 111, 12 из 100102; ж) 56, 78 из 1018; л) D, 116 из B, 9216;
г) 100012 из 1110, 112; з) 16, 548 из 30, 018; м) ABC16 из 567816.

21. Перемножьте числа, а затем проверьте результаты, выполнив соответствующие десятичные умножения:

а) 1011012 и 1012; д) 378 и 48;
б) 1111012 и 11, 012; е) 168 и 78;
в) 1011, 112 и 101, 12; ж) 7, 58 и 1, 68;
г) 1012 и 1111, 0012; з) 6, 258 и 7, 128.

22. Расположите следующие числа в порядке возрастания:

  • а) 748, 1100102, 7010, 3816;
  • б) 6E16, 1428, 11010012, 10010;
  • в) 7778, 1011111112, 2FF16, 50010;
  • г) 10010, 11000002, 6016, 1418.

Вопросы для самоконтроля

1. Что означает термин " информатика" и каково его происхождение?

2. Какие области знаний и административно-хозяйственной деятельности официально закреплены за понятием " информатика" с 1978 года?

3. Какие сферы человеческой деятельности и в какой степени затрагивает информатика?

4. Назовите основные составные части информатики и основные направления её применения.

5. Что подразумевается под понятием " информация" в бытовом, естественно-научном и техническом смыслах?

6. Приведите примеры знания фактов и знания правил. Назовите новые факты и новые правила, которые Вы узнали за сегодняшний день.

7. От кого (или чего) человек принимает информацию? Кому передает информацию?

8. Где и как человек хранит информацию?

9. Что необходимо добавить в систему " источник информации — приёмник информации", чтобы осуществлять передачу сообщений?

10. Какие типы действий выполняет человек с информацией?

11. Приведите примеры ситуаций, в которых информация

а) создаётся; д) копируется; и) передаётся;
б) обрабатывается; е) воспринимается; к) разрушается;
в) запоминается; ж) измеряется; л) ищется;
г) делится на части; з) принимается; м) упрощается.

12. Приведите примеры обработки информации человеком. Что является результатами этой обработки?

13. Приведите примеры информации:

  • а) достоверной и недостоверной;
  • б) полной и неполной;
  • в) ценной и малоценной;
  • г) своевременной и несвоевременной;
  • д) понятной и непонятной;
  • е) доступной и недоступной для усвоения;
  • ж) краткой и пространной.

14. Назовите системы сбора и обработки информации в теле человека.

15. Приведите примеры технических устройств и систем, предназначенных для сбора и обработки информации.

16. От чего зависит информативность сообщения, принимаемого человеком?

17. Почему количество информации в сообщении удобнее оценивать не по степени увеличения знания об объекте, а по степени уменьшения неопределённости наших знаний о нём?

18. Как определяется единица измерения количества информации?

19. В каких случаях и по какой формуле можно вычислить количество информации, содержащейся в сообщении?

20. Почему в формуле Хартли за основание логарифма взято число 2?

21. При каком условии формула Шеннона переходит в формулу Хартли?

22. Что определяет термин " бит" в теории информации и в вычислительной технике?

23. Приведите примеры сообщений, информативность которых можно однозначно определить.

24. Приведите примеры сообщений, содержащих один (два, три) бит информации.

Упражнения

1. Запишите множество вариантов загорания двух светофоров, расположенных на соседних перекрёстках.

2. Три человека, Иванов, Петров и Сидоров, образуют очередь. Запишите все возможные варианты образования этой очереди.

3. Назовите все возможные комбинации из двух различных нот (всего нот семь: до, ре, ми, фа, соль, ля, си).

4. Пусть голосуют 3 человека (голосование " да" /" нет" ). Запишите все возможные исходы голосования.

5. Предположим, что имеются 3 автомобильные дороги, идущие от Парижа до Тулузы, и 4 — от Тулузы до Мадрида. Сколькими способами можно выбрать дорогу от Парижа в Мадрид через Тулузу? Попытайтесь найти систематический метод для последовательного нахождения решения так, чтобы можно было составить список способов, не пропустив ни одного из них.

6. Поезд находится на одном из восьми путей. Сколько бит информации содержит сообщение о том, где находится поезд?

7. Сколько существует различных двоичных последовательностей из одного, двух, трех, четырёх, восьми символов?

8. Каков информационный объём сообщения " Я помню чудное мгновенье" при условии, что один символ кодируется одним байтом и соседние слова разделены одним пробелом?

9. Определите приблизительно информационный объём:

  • а) этой страницы книги;
  • б) всей книги;
  • в) поздравительной открытки.

10. Сколько бит необходимо, чтобы закодировать оценки: " неудовлетворительно", " удовлетворительно", " хорошо" и " отлично"?

11. Сколько различных символов, закодированных байтами, содержится в сообщении: 1101001100011100110100110001110001010111?

12. Сколько байт памяти необходимо, чтобы закодировать изображение на экране компьютерного монитора, который может отображать 1280 точек по горизонтали и 1024 точек по вертикали при 256 цветах?

13. Решите уравнение: 8x (бит) = 32 (Кбайт).

 

Поколения компьютеров

К первому поколению обычно относят машины, созданные на рубеже 50-х годов. В их схемах использовались электронные лампы. Эти компьютеры были огромными, неудобными и слишком дорогими машинами, которые могли приобрести только крупные корпорации и правительства. Лампы потребляли огромное количество электроэнергии и выделяли много тепла.

 

Набор команд был небольшой, схема арифметико-логического устройства и устройства управления достаточно проста, программное обеспечение практически отсутствовало. Показатели объема оперативной памяти и быстродействия были низкими. Для ввода-вывода использовались перфоленты, перфокарты, магнитные ленты и печатающие устройства.

Быстродействие порядка 10-20 тысяч операций в секунду.

Типы компьютеров

По условиям эксплуатации компьютеры делятся на два типа:


Поделиться:



Последнее изменение этой страницы: 2017-04-12; Просмотров: 420; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.121 с.)
Главная | Случайная страница | Обратная связь