Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Функции ОС по управлению памятью



Под памятью в данном случае подразумевается оперативная память компьютера. В однопрограммных операционных системах основная память разделяется на две части. Одна часть для операционной системы (резидентный монитор, ядро), а вторая – для выполняющейся в текущий момент времени программы. В многопрограммных ОС " пользовательская" часть памяти – важнейший ресурс вычислительной системы – должна быть распределена для размещения нескольких процессов, в том числе процессов ОС. Эта задача распределения выполняется операционной системой динамически специальной подсистемой управления памятью. Эффективное управление памятью жизненно важно для многозадачных систем. Если в памяти будет находиться небольшое число процессов, то значительную часть времени процессы будут находиться в состоянии ожидания ввода-вывода и загрузка процессора будет низкой.

В ранних ОС управление памятью сводилось просто к загрузке программы и ее данных из некоторого внешнего накопителя в ОЗУ. При этом память разделялась между программой и ОС. На рис. 1 показаны три варианта такой схемы. Первая модель раньше применялась на мэйнфреймах и мини-компьютерах. Вторая схема сейчас используется на некоторых карманных компьютерах и встроенных системах, третья модель была характерна для ранних персональных компьютеров с MS-DOS.

Рис 1.

(http: //www.intuit.ru/studies/courses/631/487/lecture/11057? page=2)

Память является важнейшим ресурсом, требующим тщательного управления со стороны мультипрограммной операционной системы. Распределению подлежит вся оперативная память, не занятая операционной системой. Обычно ОС располагается в самых младших адресах, однако может занимать и самые старшие адреса. Функциями ОС по управлению памятью являются:

· отслеживание свободной и занятой памяти,

· первоначальное и динамическое выделение памяти процессам и освобождение памяти при завершении процессов,

· вытеснение процессов из оперативной памяти на диск, когда размеры основной памяти не достаточны для размещения в ней всех процессов, и возвращение их в оперативную память, когда в ней освобождается место,

· настройка адресов программы на конкретную область физической памяти. (см вопрос 20.)

· Защита памяти, выделенной процессу, от возможных вмешательств со стороны других процессов;

· Дефрагментация памяти

 

 

Типы адресов в памяти

Для идентификации переменных и команд используются символьные имена (метки), виртуальные адреса и физические адреса (рисунок 2).

Символьные имена присваивает пользователь при написании программы на алгоритмическом языке или ассемблере.

Виртуальные адреса вырабатывает транслятор, переводящий программу на машинный язык. Так как во время трансляции в общем случае не известно, в какое место оперативной памяти будет загружена программа, то транслятор присваивает переменным и командам виртуальные (условные) адреса, обычно считая по умолчанию, что программа будет размещена, начиная с нулевого адреса. Совокупность виртуальных адресов процесса называется виртуальным адресным пространством. Каждый процесс имеет собственное виртуальное адресное пространство. Максимальный размер виртуального адресного пространства ограничивается разрядностью адреса, присущей данной архитектуре компьютера, и, как правило, не совпадает с объемом физической памяти, имеющимся в компьютере.

Рис. 2 Типы адресов

Физические адреса соответствуют номерам ячеек оперативной памяти, где в действительности расположены или будут расположены переменные и команды. Переход от виртуальных адресов к физическим может осуществляться двумя способами. В первом случае замену виртуальных адресов на физические делает специальная системная программа - перемещающий загрузчик. Перемещающий загрузчик на основании имеющихся у него исходных данных о начальном адресе физической памяти, в которую предстоит загружать программу, и информации, предоставленной транслятором об адресно-зависимых константах программы, выполняет загрузку программы, совмещая ее с заменой виртуальных адресов физическими.

Второй способ заключается в том, что программа загружается в память в неизмененном виде в виртуальных адресах, при этом операционная система фиксирует смещение действительного расположения программного кода относительно виртуального адресного пространства. Во время выполнения программы при каждом обращении к оперативной памяти выполняется преобразование виртуального адреса в физический. Второй способ является более гибким, он допускает перемещение программы во время ее выполнения, в то время как перемещающий загрузчик жестко привязывает программу к первоначально выделенному ей участку памяти. Вместе с тем использование перемещающего загрузчика уменьшает накладные расходы, так как преобразование каждого виртуального адреса происходит только один раз во время загрузки, а во втором случае - каждый раз при обращении по данному адресу.

В некоторых случаях (обычно в специализированных системах), когда заранее точно известно, в какой области оперативной памяти будет выполняться программа, транслятор выдает исполняемый код сразу в физических адресах.

 


Поделиться:



Последнее изменение этой страницы: 2017-04-13; Просмотров: 707; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.013 с.)
Главная | Случайная страница | Обратная связь