Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


РАЗДЕЛ 1: ОБЩАЯ ХАРАКТЕРИСТИКА НЕФТЯНОЙ ЗАЛЕЖИ



РАЗДЕЛ 1: ОБЩАЯ ХАРАКТЕРИСТИКА НЕФТЯНОЙ ЗАЛЕЖИ

Тема 5: Режимы разработки нефтяных месторождений

Фильтрация жидкости по пласту к забоям скважин - к точкам наиболее низкого давления осуществляется за счет пластовой энергии. Жидкость под действием пластового давления находится в сжатом состоянии. В процессе эксплуатации месторождения, как правило, пластовое давление падает. Поэтому важно извлечь запасы нефти из пласта, до того как давление снизится и станет невозможно поддерживать необходимые депрессии.

За изменением пластового давления постоянно следят и при быстром его снижении применяют искусственные методы воздействия на залежь и, в частности, методы поддержания пластового давления. Темп снижения пластового давления, характеризующего энергетические ресурсы пласта, зависит от темпа отбора пластовой жидкости: нефти, воды и газа, который обусловлен проектом разработки месторождения, и от того осуществляется или нет поддержание пластового давления. Это искусственные факторы. С другой стороны, запас пластовой энергии, величина начального пластового давления и темп его снижения зависят и от природных - естественных факторов:

§ наличия газовой шапки, энергия расширения которой используется при разработке месторождения;

§ запаса упругой энергии в пластовой системе;

§ содержания растворенного в нефти газа, энергия расширения которого приводит к перемещению пластовых жидкостей и газов к забоям скважин;

§ наличия источника регулярного питания объекта разработки пластовой законтурной водой и интенсивность замещения этой водой извлекаемой из пласта нефти;

§ гравитационного фактора, который эффективно может способствовать вытеснению нефти в пластах с большими углами падения.

Перечисленные факторы, определяющиеся природными условиями, связаны с процессом формирования месторождения и не зависят от технолога. Одни из этих факторов могут иметь определяющую роль в процессах разработки, другие подчиненную роль.

Капиллярно-поверхностные силы особенно существенны в пористых средах с большой удельной поверхностью способствуют, а чаще тормозят фильтрацию пластовой жидкости и поэтому в совокупности с перечисленными факторами определяют интенсивность притока жидкости к забоям скважин.

Совокупность всех естественных и искусственных факторов, определяющих процессы, проявляющиеся в пористом пласте при его дренировании системой эксплуатационных и нагнетательных скважин, принято называть режимом пласта. Выделяют пять режимов:

§ водонапорный (естественный и искусственный),

§ упругий,

§ газонапорный (режим газовой шапки),

§ режим растворенного газа,

§ гравитационный.

От правильной оценки режима дренирования зависят технологические нормы отбора жидкости из скважин, предельно допустимые динамические забойные давления, выбор расчетно-математического аппарата для прогнозирования гидродинамических показателей разработки, определения объемов добычи жидкости и газа, расчета процесса обводнения скважин, а также и тех мероприятий по воздействию на залежь, которые необходимы при разработке для достижения максимально возможного конечного коэффициента нефтеотдачи.

Однако определить режим залежи не всегда просто, так как в ряде случаев многие факторы, определяющие режим, проявляются одновременно.

Рассмотрим идеализированные условия, когда тот или иной режим проявляется в «чистом виде», т. е. когда изменения в залежи в процессе ее разработки обусловлены действием только одного режима, а проявление других режимов либо отсутствует вовсе, либо столь незначительно, что им возможно пренебречь.

 

Тема 6: Водонапорный режим

При этом режиме фильтрация нефти происходит под действием давления краевых или законтурных вод, имеющих регулярное питание (пополнение) с поверхности за счет талых или дождевых вод или за счет непрерывной закачки воды через систему нагнетательных скважин.

Условие существования водонапорного режима

,

где Pпл - среднее пластовое давление, Pнас - давление насыщения.

При этом условии свободного газа в пласте нет и фильтруется только нефть или нефть с водой. Проницаемый пласт 2 (рис. 2.3) обеспечивает гидродинамическую связь области отбора нефти 1 с областью питания 3, которой может служить естественный водоем - русло реки. В результате процессов складкообразования пористый и проницаемый пласты могут получить выход на дневную поверхность в районе, например, речного русла 3, из которого происходит непрерывная подпитка пласта водой при отборе нефти через скважины 4. Пласт-коллектор должен иметь достаточную проницаемость на всем протяжении от залежи до мест поглощения поверхностных вод. Это и обусловливает активность законтурной воды.

Как правило, пластовое давление в подобных залежах равно гидростатическому давлению столба воды высотой, равной глубине залегания пласта. Причем давление после некоторого снижения в начальной стадии разработки остается в дальнейшем практически постоянным при установленных темпах отбора жидкости (2 - 8 % от извлекаемых запасов в год).

При водонапорном режиме извлечение нефти сопровождаются ее замещением законтурной или нагнетаемой водой, что объясняет достаточно стабильные во времени дебиты скважин,

Рис. 2.3. Схема геологических условий существования

естественного водонапорного режима

 

пластовое давление и газовый фактор. Стабильность газового фактора обусловлено еще и тем, что при Pпл > Pнас выделения газа в пласте не происходит, поэтому с каждой тонной нефти добывают только то количество газа, которое было в ней растворено при пластовых условиях (рис. 2.4). Обводнение скважины происходит относительно быстро. Однако при сильной слоистой неоднородности пласта обводнение скважин может растягиваться во времени, так как по хорошо проницаемым прослоям пластовая вода быстро достигает забоев скважин, а по плохо проницаемым - медленно. При водонапорном режиме происходит достаточно эффективное вытеснение нефти и достигаются наиболее высокие коэффициенты нефтеотдачи.

Рис. 2.4. Изменение во времени основных

характеристик водонапорного режима

 

В отличие от естественного водонапорного режима при искусственном непрерывный напор воды, вытесняющей нефть, создают ее нагнетанием с поверхности через систему нагнетательных скважин. В таком случае пласт-коллектор не обязательно должен иметь выход на дневную поверхность для получения непрерывного питания.

При водонапорном режиме количество отобранной жидкости из залежи (нефть, вода) всегда равно количеству вторгшейся в залежь законтурной воды в пластовых термодинамических условиях.

Перераспределение давления в пласте, которое происходит при изменении отборов жидкости из скважин, должно при этом режиме происходить быстро (теоретически мгновенно), поэтому этот режим еще называют жестким. Депрессионная воронка вокруг скважины устанавливается также мгновенно. Этот режим теоретически изучен наиболее полно. В настоящее время более 80 % всей добываемой нефти получается из месторождений, разрабатываемых в условиях водонапорного режима (главным образом искусственного).

 

Тема 7: Упругий режим

При этом режиме вытеснение нефти происходит под действием упругого расширения самой нефти, окружающей нефтяную залежь воды и скелета пласта. Обязательным условием существования этого режима (как и водонапорного) является превышение пластового давления над давлением насыщения (Pпл > Pнас). Пласт должен быть замкнутым, но достаточно большим, чтобы его упругой энергии хватило для извлечения основных запасов нефти.

Объемный коэффициент упругости среды определяется как доля первоначального объема этой среды, на которую изменяется этот объем при изменении давления на единицу, т. е.

, (2.43)

где Δ V - приращение объема (за счет упругого расширения);

Δ P - приращение давления (понижение давления); V - первоначальный объем среды.

Поскольку отрицательному приращению давления соответствует положительное приращение объема, то впереди ставится знак минус.

Твердый скелет пористого пласта при изменении внутреннего давления деформируется вследствие изменения объема самих частиц оседания кровли пласта при уменьшении внутрипорового давления, что приводит к уменьшению пористости и к дополнительному вытеснению жидкости. Из экспериментальных данных известно:

для воды ;

для нефти ;

для породы .

Обычно для оценки сжимаемости пласта пользуются приведенным коэффициентом сжимаемости, который называют коэффициентом упругости пласта. Это усредненный коэффициент объемной сжимаемости некоторой фиктивной среды, имеющей объем, равный объему реального пласта с насыщающими его жидкостями, совокупное упругое приращение которых равно упругому приращению объема фиктивной среды.

Согласно определению можно найти упругие приращения объемов воды, нефти и породы для единичного элемента объема пласта

. (2.44)

где V - объем фиктивной среды, равный сумме объемов воды, нефти и твердого скелета пласта; Vп, Vв, Vн - общие объемы твердого скелета пласта и насыщающих его воды и нефти соответственно; β * - приведенный коэффициент упругости пласта.

Обозначая m, α в, α н соответственно пористость, водо- и нефтенасыщенность пласта, можем вместо (2.44) записать

, (2.45)

или

. (2.46)

Это и будет наиболее общее выражение для приведенного объемного коэффициента упругости пластовой системы.

Упругий режим, относящийся к режиму истощения, существенно неустановившийся. Давление в пласте по мере отбора жидкости падает. Для него характерны непрерывно разрастающаяся вокруг скважины воронка депрессии, систематическое падение дебита во времени при сохранении постоянства депрессии или систематическое увеличение депрессии во времени при сохранении дебита. Однако во всех случаях при упругом режиме газовый фактор должен оставаться постоянным по тем же причинам, что и при водонапорном режиме. Темп падения среднего пластового давления может быть различным в зависимости от общего запаса упругой энергии в пласте (от размеров окружающего залежь водного бассейна).

Рис. 2.5. Изменение во времени безразмерного средне-

интегрального пластового давления при упругом режиме

 

Несложно вывести приближенную формулу, описывающую падение безразмерного среднеинтегрального пластового давления Р при упругом режиме во времени t, при постоянном темпе отбора жидкости (q = const). Можно получить аналогичную формулу при переменном темпе отбора, когда функция изменения темпа отбора задана, например линейно возрастает или изменяется по любому другому закону. При q = const изменение давления Р(t) соответствует прямолинейному закону, т.е. прямой линии, но не проходящей через начало координат. При переменном темпе отбора закон изменения среднеинтегрального давления в пласте будет криволинейный.

Геологическими условиями, благоприятствующими существованию упругого режима, являются:

§ залежь закрытая, не имеющая регулярного питания;

§ обширная водонасыщенная зона, находящаяся за пределами контура нефтеносности; отсутствие газовой шапки;

§ наличие эффективной гидродинамической связи нефтенасыщенной части пласта с законтурной областью;

§ превышение пластового давления над давлением насыщения.

Чтобы при приемлемом темпе снижения среднего давления в пласте Рпл за разумные сроки отобрать запасы нефти, нужно иметь очень большое отношение объема упругой системы к геологическим запасам нефти.

При разработке залежи в условиях упругого режима быстрое понижение давления происходит в пределах самой залежи, а во всей системе, питающей залежь упругой энергией давления (в законтурной области), снижается медленно.

Из сказанного не следует, что упругий режим и связанные с ними процессы играют незначительную роль при добыче нефти. При определенных благоприятных условиях весь запас нефти может быть извлечен за счет упругого режима (при большой упруго-водонапорной системе). Последний играет существенную роль при переходных процессах, возникающих в результате изменения режимов работы скважин. При этом в пласте происходят затяжные процессы перераспределения давления, протекающие по законам упругого режима.

 

Тема 8: Режим газовой шапки

Этот режим проявляется в таких геологических условиях, при которых источником пластовой энергии является упругость газа, сосредоточенного в газовой шапке. Для этого необходимо, чтобы залежь была изолирована по периферии непроницаемыми породами или тектоническими нарушениями. Законтурная вода, если она имеется, не должна быть активной. Нефтяная залежь должна находиться в контакте с газовой шапкой. При таких условиях начальное пластовое давление будет равно давлению насыщения, так как дренирование залежи происходит при непрерывном расширении газовой шапки и нефть постоянно находится в контакте с газом.

Темп изменения среднего пластового давления при разработке такой залежи может быть различным в зависимости от темпов разработки и от соотношения объемов газовой шапки и нефтенасыщенной части залежи.

Такую залежь можно рассматривать как сосуд с жидкостью и газом, причем отбор жидкости сопровождается расширением газа. На рис. 2.6 представлены результаты расчетов поведения пластового давления во времени в процессе разработки залежи в режиме газовой шапки.

Рис. 2.6. Изменение во времени безразмерного среднеинтегрального пластового

давления при разных отношениях объема нефтяной оторочки и газовой шапки:

1- n = 0, 25; 2 - n = 0, 5; 3 - n = 1; 4 - n = 2; 5 - n = 4; 6 - n = 8

 

Из рисунка видно, что изменение пластового давления происходит по криволинейному закону и темп падения давления тем больше, чем меньше объем газовой шапки по отношению к объему нефтяной части залежи (чем больше n). При объеме нефти в залежи, в четыре раза превышающем объем начальной газовой шапки, через десять лет давление снизится на 50 % (P = 0, 5). Тогда как при объеме нефти, составляющем 0, 25 от объема газовой шапки, к тому же времени давление снизится только на 5, 8 %.

Таким образом, разработка месторождения при режиме газовой шапки неизбежно сопровождается падением пластового давления со всеми вытекающими из этого последствиями (уменьшение дебитов, сокращение периода фонтанирования, переход нефтяных скважин на газ и др.). В реальных условиях разработка такого месторождения может быть осуществлена в условиях смешанного режима с помощью искусственного поддержания пластового давления закачкой воды в законтурную область или закачкой газа в газовую шапку. Конечная нефтеотдача в условиях режима газовой шапки не достигает тех величин, что при режимах вытеснения нефти водой, и не превышает по приблизительным оценкам 0, 4 - 0, 5.

Для этого режима характерен закономерный рост газового фактора и переход скважин на добычу чистого газа по мере выработки запасов нефти и расширения газовой шапки. Режим газовой шапки в общем имеет подчиненное значение и сравнительно небольшое распространение. Продукция скважин, как правило, безводная.

 

Размещение скважин

Законтурное заводнение. Воздействие на пласт в этом случае осуществляется через систему нагнетательных скважин, расположенных за внешним контуром нефтеносности. Линия нагнетательных скважин располагается примерно в 300 - 800 м от контура нефтеносности для создания более равномерного воздействия на него, предупреждения образования языков обводнения и локальных прорывов воды в эксплуатационные скважины.

Законтурное заводнение целесообразно:

§ при хорошей гидродинамической связи нефтеносного пласта с областью размещения нагнетательных скважин;

§ при сравнительно малых размерах залежи нефти, когда отношение площади залежи к периметру контура нефтеносности составляет 1, 5 - 1, 75 км (хотя известны случаи разработки месторождений при иных соотношениях этих величин);

§ при однородном пласте с хорошими коллекторскимп свойствами как по толщине пласта, так и по площади.

В этих условиях система законтурного заводнения позволяет наиболее полно выработать запасы и вытеснить нефть к центральной возвышенной части пласта, к так называемому стягивающему ряду добывающих скважин или к одной скважине.

Законтурное заводнение имеет и недостатки. К их числу можно отнести следующие:

§ повышенный расход энергии (дополнительные затраты мощностей насосных установок) на извлечение нефти, так как нагнетаемой воде приходится преодолевать фильтрационное сопротивление зоны пласта между контуром нефтеносности п линией нагнетательных скважин;

§ замедленное воздействие на залежь из-за удаленности линии нагнетания;

§ повышенный расход воды вследствие ее оттока во внешнюю область пласта за пределы линии нагнетания.

Приконтурное заводнение. Ускорения воздействия на залежь можно достигнуть размещением нагнетательных скважин в непосредственной близости от контура нефтеносности или даже между внешним и внутренним контурами нефтеносности. Приконтурное заводнение применяется:

§ при ухудшенной гидродинамической связи пласта с внешней областью;

§ при сравнительно малых размерах залежи (см. законтурное заводнение);

§ для интенсификации процесса эксплуатации, так как фильтрационные сопротивления между линиями нагнетания и отбора уменьшаются за счет их сближения.

Однако вероятность образования языков обводнения и прорыва воды к отдельным скважинам эксплуатационных рядов увеличивается. С этим связаны некоторые возможные потери нефти вследствие образования целиков между нагнетательными скважинами. Нефть из этих целиков может быть вытеснена только при очень тщательном регулировании процесса выработки, включая бурение дополнительных скважин.

С энергетической точки зрения приконтурное заводнение более экономично, хотя при хорошей гидропроводности внешней области потери нагнетаемой воды неизбежны.

Внутриконтурное заводнение. Воздействие на пласт в этом случае осуществляется через систему нагнетательных скважин, расположенных по той или иной схеме внутри контура нефтеносности. Это более интенсивная система воздействия на залежь нефти, позволяющая сократить сроки выработки запасов и быстро наращивать добычу нефти.

Различают несколько разновидностей внутриконтурного заводнения: разрезание залежи линиями нагнетательных скважин на полосы, кольца, создание центрального разрезающего рядас несколькими поперечными рядами и в сочетании с приконтурным заводненном..

Выбор схемы расположения нагнетательных скважин определяется конкретными геологическими условиями, экономически целесообразными сроками выработки запасов и величиной необходимых капвложений. Как правило, линии нагнетательных скважин располагают в зонах пласта с улучшенными коллекторскими свойствами и перпендикулярно к доминирующему простиранию линз и проницаемых песчаников, что позволяет устранить или уменьшить блокировку нагнетаемой воды и повысить охват пласта воздействием.

Законтурное заводнение при наличии внутриконтурного должно предотвратить вытеснение нефти во внешнюю - законтурную область, а также интенсифицировать процесс. С энергетической точки зрения использование внутриконтурного заводнения более эффективно, чем законтурного и приконтурното, так как почти вся нагнетаемая вода используется в этом случае для вытеснения нефти по обе стороны разрезающего ряда. При внутриконтурном заводнении скважины разрезающих рядов эксплуатируются на нефти «через одну» для формирования фронта вытеснения, т. е. полосы водонасыщенной части пласта.

Перечисленные системы заводнения, как правило, применяются на больших оконтуренных месторождениях с установленными границами и достаточно достоверными данными о характеристиках пласта.

Блочное заводнение целесообразно на больших неоконтуренных месторождениях, когда по данным разведочных скважин очевидна промышленная нефтеносность в районе их расположения. В этом случае до окончательной разведки месторождения и определения контуров нефтеносности возможен ускоренный ввод объекта в эксплуатацию путем разрезания рядами нагнетательных скважин месторождения на отдельные блоки с самостоятельными сетками эксплуатационных скважин. Тогда внутри каждого блока бурят добывающие скважины в виде рядов, число и плотность которых на площади блока определяют гидродинамическими и технико-экономическими расчетами. При окончательной разведке и оконтуривании месторождения блоки, введенные в эксплуатацию раньше, технологически вписываются в общую схему разработки и составляют с ней органически целое.

Очаговое заводнение используют в сочетании с любой другой системой заводнения для улучшения охвата пласта вытеснением, а также для выработки запасов из отдельных линз или участков пласта (застойных зон), на которые не распространяются влияние закачки от ближайших нагнетательных рядов. Как правило, при очаговом заводнении используют под нагнетание одну из добывающих скважин, расположенную рационально по отношению к окружающим добывающим скважинам и в зоне пласта с повышенной проницаемостью. Однако для очагового заводнения возможно бурение специальной скважины или даже группы скважин для увеличения охвата воздействием большего объема нефтенасыщенной части пласта или его слабопроницаемых зон.

При достаточно детальной геологической изученности объекта разработки очаговое заводненне может применяться и как самостоятельное на всех этапах разработки и доразработки месторождения и в известном смысле является средством регулирования процесса вытеснения.

Избирательную систему заводнення применяют, как и очаговую, при выработке запасов нефти из сильно неоднородных прерывистых как по простиранию, так и по толщине коллекторов. При этой системе точки бурения нагнетательных скважин определяют с учетом детального изучения геологических условий распространения продуктивного пласта, его связей с забоями ближайших добывающих скважин и таким образом, чтобы обеспечить максимально возможную интенсивность вытеснения нефти водой и свести до минимума влияние неоднородности и линзовидности пласта на полноту выработки и конечный коэффициент нефтеотдачи. Вследствие этого нагнетательные скважины оказываются расположенными на площади хаотично, отражая естественную неоднородность коллектора.

Это осложняет систему водоснабжения натнетательных скважин. На первых этапах разработки, когда геологическая информация ограничена или просто недостаточна, эта система не может быть применена. Она эффективна лишь на последующих этапах, когда выявляются детали строения пласта н результаты влияния на скважины закачки основной системы заводнения.

Площадное заводнение - наиболее интенсивная система воздействия на пласт, обеспечивающая самые высокие темпы разработки месторождений. Добывающие и нагнетательные скважины при этой системе располагаются правильными геометрическими блоками в виде пяти-, семи- или девятиточечных сеток, в которых нагнетательные и добывающие скважины чередуются (рис. 3.1). При разбуриваннп площади по таким равномерным сеткам скважин оказывается, что при пятиточечной схеме на каждую нагнетательную скважину приходится одна добывающая, при семиточечной схеме две добывающие, а при девятиточечной три добывающие скважины. Учитывая, что нагнетательные скважины не дают продукцию, становится очевидным, что девятиточечная схема экономически вытоднее, однако интенсивность воздействия на залежь при этом меньше и вероятность существования целиков нефти при прорыве воды в добывающие скважины больше. Исторически сложилось так, что площадное заводненне использовали на последних стадиях разработки как вторичные методы добычи нефти. Однако система площадного заводнения имеет самостоятельное значение, может эффективно использоваться на ранних этапах разработки при хорошей изученности пласта.

Рис. 3.1. Схема размещения скважин при площадном заводнении:

а - 5 - точечная система; б - 7 - точечная система; в - 9 - точечная система.

Пунктиром выделены симметричные элементы

 

В заключение необходимо заметить, что перечисленные схемы размещения скважин могут применяться не только при закачке воды, но и при закачке газа или при проталкивании газом или водой различных растворителей в виде оторочек. Однако масштабы применения других методов воздействия, по сравнению с закачкой воды, настолько малы, что приходится говорить главным образом о размещении скважин при заводнении.

 

Водозаборы

Водозаборы открытых водоемов обычного типа, применяемые в коммунальном хозяйстве, - самые простые водозаборы. Существенный технологический недостаток открытых водозаборов, сооружаемых в реках, - это непостоянство качества воды. В паводковый и ливневые периоды вода сильно загрязняется илом и взвесью, что затрудняет ее подготовку. Очистные сооружения, рассчитываемые на установившийся режим работы, обычно не справляются с пиковой нагрузкой, .а это приводит к снижению производительности станции водоподготовки и качества воды.

Всасывающая труба открытого водозабора оборудуется приемной сеткой для предупреждения попадания водорослей, щепы и других крупных предметов, выносится на некоторое расстояние от берега и устанавливается глубже, чем возможный минимальный уровень в реке (водоеме) для непрерывного отбора более чистой воды и защиты водозабора от ледохода при паводке. Размер всасывающих труб, высота всасывания и другие элементы конструкции рассчитываются обычными методами трубной гидравлики. Закрытый водозабор или так называемый подрусловый представляет собой одну или несколько групп мелких водозаборных скважин вблизи реки, пробуренных на подстилающие дно реки аллювиальные хорошо проницаемые породы и имеющие «глубины 10 - 50 м.

Скважины закрепляются колонной с фильтром в нижней части. Из скважин вода откачивается либо специальными погружными центробежными насосами, либо (если динамический уровень достаточно высок) с помощью сифонных, т. е. вакуумных, устройств.

Как показала практика, сифонный водозабор на 15 - 25 % дешевле механизированного и поэтому более предпочтителен.

Подрусловый водозабор подает воду, прошедшую естественную фильтрацию в пласте, поэтому качество получаемой воды высокое и практически не зависит от паводков. Оголовок скважины обычно размещается в подземной бетонной шахте глубиной 2 - 4 м. Шахта на поверхности закрывается люком и имеет стремянку для доступа оператора к оборудованию устья скважины. Вдоль линии расположения водозаборных скважин в грунте укладывается приемный коллектор, к которому присоединяется каждая скважина через запорную задвижку низкого давления и обратный клапан.

Рис. 3.5. Схема сифонного водозабора.

1 - фильтр; 2 - колонна; 3 - водоподъемная труба; 4 - вакуум-котел; 5 - вакуумный насос;

6 - вакуумметр; 7 - насос I подъема; 8 - резервуар для чистой воды; 9 - насосная станция

При сифонном водозаборе коллектор от группы скважин подсоединяется к вакуумным котлам, в которых создается вакуум до 0, 08 МПа с помощью небольших специальных вакуумных насосов. Вода подрусловых скважин не содержит газа, поэтому вакуумные насосы требуются только для поддержания постоянного разрежения в коллекторе. Вакуумных котлов обычно два. Один - резервный. Котлы имеют большую высоту (около 7 м) и устанавливаются вместе с насосами станции первого подъема в бетонной шахте. В верхней части шахты размещаются электрические станции управления электродвигателями с необходимой местной и, если нужно, дистанционной автоматикой. В шахте обычно устанавливаются центробежные насосы 8НДВ с подачей Q = 540 м3/ч и напором H = 74 м с приводом от электродвигателя мощностью 180 кВт.

Один из насосов - резервный для обеспечения непрерывности работы при ремонтах. Всасывающие линии центробежных насосов всегда находятся под заливом, так как уровень воды в котлах высокий. На выкидных линиях устанавливают задвижки, обратный клапан и расходомер. Обычно выкидных линий две. Это повышает надежность систем при возможных порывах и ремонтах. Часто все задвижки, клапаны, фланцевые соединения, расходомеры и другие устройства группируются и устанавливаются в отдельной небольшой шахте для предотвращения затопления основной шахты с электрооборудованием в случае неисправностей и порывов. В случае механизированного водозабора в скважины опускаются на глубину ниже динамического уровня специальные погружные артезианские центробежные электронасосы (тип АП - артезианский погружной) с подачей от 7 до 100 м3/ч, напором от 65 до 200 м и мощностью погружного электродвигателя от 2, 5 до 150 кВт. Эти центробежные насосы имеют общий вал с погружным электродвигателем.

Кроме того, применяются насосы АТН-10 или АТН-8 с числом ступеней от 14 до 26. Насосы АТН отличаются от насосов АП тем, что у них электродвигатель располагается над устьем скважины вертикально и соединяется валом с центробежным насосом, находящимся под динамическим уровнем. Вал проходит внутри труб, на которых спускается насос, и выводится из труб через сальник.

Насосы АНТ-8 и АТН-10 развивают напор от 57 до 106 м, а их подача равна 30 - 90 м3/ч (720 - 2160 м3/сут). Мощность электродвигателей 10 - 20 кВт. При механизированном водозаборе напор, развиваемый погружными насосами, может быть достаточным для подачи воды в буферную емкость станции второго подъема или станции водоподготовки. В этом случае надобность в станции первого подъема отпадает.

Водозаборные скважины, особенно с механизированным водоподъемом, требуют периодического обслуживания, ремонта, контроля за их работой и за положением динамического уровня. Фильтровая часть водозаборных скважин со временем заиливается, и для восстановления их дебита требуются периодические чистки и промывки. Эти работы, связанные с поднятием тяжестей, выполняются через горловину бетонной шахты со оголовка скважины с помощью простых треног и подъемных механизмов. Дебит скважины определяется с помощью шайбных измерителей расхода или по перепаду давления на коротком эталонном участке выкидной трубы. Динамический уровень достаточно просто и точно можно определить с помощью тонкой трубки, опускаемой под уровень жидкости. К верхнему концу трубки присоединяется водяной, ртутный или образцовый манометр низкого давления. Через тройник на трубке нагнетается воздух шинным насосом. Когда воздух начнет выходить из погруженного конца трубки, давление, показываемое манометром, стабилизируется и будет соответствовать глубине погружения трубки под динамический уровень воды в скважине.

Буферные емкости

Они необходимы для обеспечения резерва воды обычно для шестичасовой непрерывной работы при прекращении подачи воды со станции первого подъема. Предполагается, что за 6 ч можно устранить причины (порыв водовода, прекращение подачи электроэнергии и др.) остановки подачи воды со стороны станции первого подъема.

В северных и восточных районах получили широкое распространение подземные железобетонные резервуары, открывающиеся на поверхность земли только своими люками-лазами.

Подземные резервуары предотвращают замерзание воды в зимний период, не требуют оборгева, не загромождают территорию и не коррелируют. В иных условиях (жаркий климат) временно могут применяться обычные стальные резервуары на поверхности земли. На заболоченных территориях заглубление в грунт невозможно, поэтому используются металлические буферные емкости, устанавливаемые на поверхности с подогревательными змеевиками в придонной части и внешней теплоизоляцией для обеспечения работы в зимний период.

Станции второго подъема

Насосные станции второго подъема осуществляют распределение воды по магистральным водоводам и снабжение ею непосредственно КНС. Располагаются они, как правило, в местах сосредоточения основных сооружений систем ППД (станции водоподготовки, ремонтные цехи и др.) и часто совмещаются с одной из КНС. На станциях второго подъема используют центробежные двух-, шестиступенчатые насосы с электроприводом. Число насосов, их подача и напор подбираются в соответствии с общими требованиями системы и гидравлическим расчетом. При этом предусматривается установка резервных насосов из расчета на два работающих один резервный, чтобы избежать в работе системы ППД остановок для замены изношенных насосов и для выполнения ремонтных работ. Такие остановки вредно отражаются на работе всей системы и, в частности, на поглотительной способности нагнетательных скважин.

Современные станции второго подъема имеют блоки местной автоматики, которые обеспечивают работу станции на автоматическом режиме с самозапуском при подаче энергии после обесточивания фидеров, включением резервного насоса при наличии определенных аварийных признаков (перегрев подшипников, обмоток электродвигателя, прекращение подачи смазки, падение давления на приеме и пр.) у основных рабочих насосов и подачей различных сигналов на центральный диспетчерский пункт.

Обычно станции второго подъема развивают такое давление, которое необходимо для преодоления гидравлических потерь до самых удаленных КНС с учетом разницы в гипсометрических отметках, путевого отбора воды на промежуточных КНС и обеспечения некоторого подпора (в некоторых случаях до 3 МПа) на приемах главных насосов КНС. Подпор на приемах насосов КНС позволяет на такую же величину увеличить давление на выкиде насосов, т. е. давление нагнетания, что в некоторых случаях существенно увеличивает поглотительную способность скважин.

Каждая КНС обеспечивает водой ближайшие три - шесть нагнетательных скважин, которые группируются по давлению. Обслуживание одной КНС большего числа нагнетательных скважин нецелесообразно, так как это приводит к необходимости прокладки более длинных водоводов высокого давления к удаленным нагнетательным скважинам.

Как правило, каждая нагнетательная скважина соединяется с КНС самостоятельным водоводом, так как в этом случае обеспечивается централизованный (в КНС) индивидуальный замер поглотительной способности каждой скважины, возможность группировки скважин по давлениям нагнетания и раздельного нагнетания, а также более независимая работа нагнетательных скважин и системы в целом в случаях порывов водоводов.

Водоводы, идущие от КНС к нагнетательным скважинам, работают под очень высоким давлением, достигающим 25 МПа, изготавливаются из труб диаметром 89 или 102 мм и укладываются в траншеи на глубину ниже глубины промерзания. Расход жидкости замеряется централизованно на распределительной гребенке внутри КНС с помощью диафрагменных счетчиков высокого давления.

Поскольку расход воды на каждую скважину и давление нагнетания достаточно стабильны, то отпадает необходимость в постоянном измерении этих величин. Поэтому регистрирующий прибор - расходомер может быть установлен один. Он поочередно может быть подключен к измерительной диафрагме (измеряется перепад давлен


Поделиться:



Последнее изменение этой страницы: 2017-04-12; Просмотров: 575; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.094 с.)
Главная | Случайная страница | Обратная связь