Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Поглощение (абсорбция) света



Поглощением (абсорбцией) света называется явление уменьшения энергии световой волны при ее распространении в веществе вследствие преобразования энергии волны в другие виды энергии. В результате поглощения интенсивность света при прохождении через вещество уменьшается.

Поглощение света в веществе описывается законом Бугера*:

где — интенсивности плоской монохроматической световой волны на входе

*П. Бугер (1698—1758) — французский ученый.


и выходе слоя поглощающего вещества толщиной коэффициент поглощения, зависящий от длины волны света, химической природы и состояния вещества и не зависящий от интенсивности света. При интенсивность света по сравнению

с уменьшается в раз.

Коэффициент поглощения зависит от длины волны (или частоты ) и для различных веществ различен. Например, одноатомные газы и пары металлов (т. е. вещества, в которых атомы расположены на значительных расстояниях друг от друга и их можно считать изолированными) обладают близким к нулю коэффициентом поглощения и лишь для очень узких спектральных областей (примерно м) наблюдаются резкие максимумы (так называемый линейчатый спектр поглощения). Эти линии соответствуют частотам собственных колебаний электронов в атомах. Спектр поглощения молекул, определяемый колебаниями атомов в молеку­лах, характеризуется полосами поглощения (примерно м).

Коэффициент поглощения для диэлектриков невелик (примерно ),

однако у них наблюдается селективное поглощение света в определенных интервалах длин волн, когда резко возрастает, и наблюдаются сравнительно широкие полосы поглощения, т. е. диэлектрики имеют сплошной спектр поглощения. Это связано с тем, что в диэлектриках нет свободных электронов и поглощение света обусловлено явлени­ем резонанса при вынужденных колебаниях электронов в атомах и атомов в молекулах диэлектрика.

Коэффициент поглощения для металлов имеет большие значения (примерно ) и поэтому металлы являются непрозрачными для света. В металлах из-за наличия свободных электронов, движущихся под действием электрического поля световой волны, возникают быстропеременные токи, сопровождающиеся выделением джоулевой теплоты. Поэтому энергия световой волны быстро уменьшается, превраща­ясь во внутреннюю энергию металла. Чем выше проводимость металла, тем сильнее в нем поглощение света.

На рис. 271 представлены типичная зависимость коэффициента поглощения от длины волны света и зависимость показателя преломления в области полосы

поглощения. Из рисунка следует, что внутри полосы поглощения наблюдается ано­мальная дисперсия (n убывает с уменьшением ). Однако поглощение вещества должно быть значительным, чтобы повлиять на ход показателя преломления.

Зависимостью коэффициента поглощения от длины волны объясняется окрашен­ность поглощающих тел. Например, стекло, слабо поглощающее красные и оранжевые лучи и сильно поглощающее зеленые и синие, при освещении белым светом будет казаться красным. Если на такое стекло направить зеленый и синий свет, то из-за сильного поглощения света этих длин волн стекло будет казаться черным. Это явление используется для изготовления светофильтров, которые в зависимости от химического состава (стекла с присадками различных солей, пленки из пластмасс, содержащие красители, растворы красителей и т. д.) пропускают свет только определенных длин волн, поглощая остальные. Разнообразие пределов селективного (избирательного)


поглощения у различных веществ объясняет разнообразие и богатство цветов и красок, наблюдающееся в окружающем мире.

Явление поглощения широко используется в абсорбционном спектральном анализе смеси газов, основанном на измерениях спектров частот и интенсивностей линий (полос) поглощения. Структура спектров поглощения определяется составом и стро­ением молекул, поэтому изучение спектров поглощения является одним из основных методов количественного и качественного исследования веществ.

Эффект Доплера

Эффект Доплера в акустике (см. § 159) объясняется тем, что частота колебаний, воспринимаемых приемником, определяется скоростями движения источника колеба­ний и приемника относительно среды, в которой происходит распространение звуко­вых волн. Эффект Доплера наблюдается также и при движении относительно друг друга источника и приемника электромагнитных волн. Так как особой среды, служащей носителем электромагнитных волн, не существует, то частота световых волн, вос­принимаемых приемником (наблюдателем), определяется только относительной ско­ростью источника и приемника (наблюдателя). Закономерности эффекта Доплера для электромагнитных волн устанавливаются на основе специальной теории относитель­ности.

Согласно принципу относительности Эйнштейна (см. § 35), уравнение световой волны во всех инерциальных системах отсчета одинаково по форме. Используя преоб­разования Лоренца (см. § 36), можно получить уравнение волны, посылаемой источни­ком, в направлении приемника в другой инерциальной системе отсчета, а следователь­но, и связать частоты световых волн, излучаемых источником и воспринимаемых приемником Теория относительности приводит к следующей формуле, описыва­ющей эффект Доплера для электромагнитных волн в вакууме:

где — скорость источника света относительно приемника, — скорость света в ваку­уме, — угол между вектором скорости и направлением наблюдения, из­меряемый в системе отсчета, связанной с наблюдателем. Из выражения (188.1) следует, что при

Формула (188.2) определяет так называемый продольный эффект Доплера, наблюда­емый при движении приемника вдоль линии, соединяющей его с источником. При малых относительных скоростях , разлагая (188.2) вряд по степеням и пренеб-

регая членом порядка , получим

Следовательно, при удалении источника и приемника друг от друга (при их положительной относительной скорости) наблюдается сдвиг в более длинноволновую область — так называемое красное смещение. При сближении же ис-

точника и приемника (при их отрицательной относительной скорости) наблюдается сдвиг в более коротковолновую область — так называемое фиолетовое

Смещение.

Если то выражение (188.1) примет вид


Формула (188.4) определяет так называемый поперечный эффект Доплера, наблю­даемый при движении приемника перпендикулярно линии, соединяющей его с ис­точником.

Из выражения (188.4) следует, что поперечный эффект Доплера зависит от , т. е. при малых является эффектом второго порядка малости по сравнению с продольным эффектом, зависящим от (см. (188.3)). Поэтому обнаружение поперечного эффекта Доплера связано с большими трудностями. Поперечный эффект, хотя н много меньше продольного, имеет принципиальное значение, так как не наблюдается в акустике (при из (188.4) следует, и является, следовательно, релятивистским эффек-

том. Он связан с замедлением течения времени движущегося наблюдателя. Экс­периментальное обнаружение поперечного эффекта Доплера явилось еще одним под­тверждением справедливости теории относительности; он был обнаружен в 1938 г. в опытах американского физика Г. Айвса.

Продольный эффект Доплера был впервые обнаружен в 1900 г. в лабораторных условиях русским астрофизиком А. А. Белопольским (1854—1934) и повторен в 1907 г. русским физиком Б. Б. Голицыным (1862—1919). Продольный эффект Доплера ис­пользуется при исследовании атомов, молекул, а также космических тел, так как по смещению частоты световых колебаний, которое проявляется в виде смещения или уширения спектральных линий, определяется характер движения излучающих частиц или излучающих тел. Эффект Доплера получил широкое распространение в радиотех­нике и радиолокации, например в радиолокационных измерениях расстояний до движу­щихся объектов.


Поделиться:



Последнее изменение этой страницы: 2017-05-04; Просмотров: 335; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.014 с.)
Главная | Случайная страница | Обратная связь