Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Выпрямление на контакте металл — полупроводник



Рассмотрим некоторые особенности механизма процессов, происходящих при приведе­нии в контакт металла с полупроводником. Для этого возьмем полупроводник n-типа с работой выхода А, меньшей работы выхода Амиз металла. Соответствующие энергетические диаграммы до и после приведения в контакт показаны на рис. 333, а, б. Если АМ> А, то при контакте электроны из полупроводника будут переходить в металл, в результате чего контактный слой полупроводника обеднится электронами и зарядится положительно, а металл — отрицательно. Этот процесс будет проис­ходить до достижения равновесного состояния, характеризуемого, как и при контакте двух металлов, выравниванием уровней Ферми для металла и полупроводника. На контакте образуется двойной электрический слой d, поле которого (контактная раз-


ность потенциалов) препятствует дальнейшему переходу электронов. Вследствие малой концентрации электронов проводимости в полупроводнике (порядка 1015 см-3 вместо 1022 см -3 в металлах) толщина контактного слоя в полупроводнике достигает пример­но 10-6 см, т. с. примерно в 10 000 раз больше, чем в металле. Контактный слой полупроводника обеднен основными носителями тока — электронами в зоне проводи­мости, и его сопротивление значительно больше, чем в остальном объеме полупровод-вика. Такой контактный слой называется запирающим.

При d=10-6 см и В напряженность электрического поля контактного слоя

В/м. Такое контактное поле не может сильно повлиять на структуру спектра (например, на ширину запрещенной зоны, на энергию активации примесей и т. д.) и его действие сводится лишь к параллельному искривлению всех энергетичес­ких уровней полупроводника в области контакта (рис. 333, б). Так как в случае контакта уровни Ферми выравниваются, а работы выхода — величины постоянные, то при Ам> А энергия электронов в контактном слое полупроводника больше, чем в оста­льном объеме. Поэтому в контактном слое дно зоны проводимости поднимается вверх, удаляясь от уровня Ферми. Соответственно происходит и искривление верхнего края валентной зоны, а также донорного уровня.

Помимо рассмотренного выше примера возможны еще следующие три случая контакта металла с примесными полупроводниками: а) АМ< А, полупроводник n-типа;

б) Ам> А, полупроводник р-типа; в) Ам< А, полупроводник р-типа. Соответствующие

зонные схемы показаны на рис. 334.

Если Ам< А, то при контакте металла с полупроводником n-типа электроны из металла переходят в полупроводник и образуют в контактном слое полупроводника отрицательный объемный заряд (рис. 334, а). Следовательно, контактный слой полу­проводника обладает повышенной проводимостью, т. е. не является запирающим. Рассуждая аналогично, можно показать, что искривление энергетических уровней по сравнению с контактом металл — полупроводник n-типа М> А) происходит в обрат­ную сторону.

При контакте металла с полупроводником р-типа запирающий слой образуется при АМ< А (рис. 334, в), так как в контактном слое полупроводника наблюдается избыток отрицательных ионов акцепторных примесей и недостаток основных носителей то­ка— дырок в валентной зоне. Если же АМ> А (рис. 334, б), то в контактном слое полупроводника p-типа наблюдается избыток основных носителей тока — дырок в ва­лентной зоне, контактный слой обладает повышенной проводимостью.

Исходя из приведенных рассуждений, видим, что запирающий контактный слой возникает при контакте донорного полупроводника с меньшей работой выхода, чем


у металла (см. рис. 333, б), и у акцепторного — с большей работой выхода, чем у металла (рис. 333, в).

Запирающий контактный слой обладает односторонней (вентильной) проводимо- стью, т. е. при приложении к контакту внешнего электрического поля он пропускает ток практически только в одном направлении: либо из металла в полупроводник, либо из полупроводника в металл. Это важнейшее свойство запирающего слоя объясняется зависимостью его сопротивления от направления внешнего поля.:

Если направления внешнего и контактного полей противоположны, то основные носители тока втягиваются в контактный слой из объема полупроводника; толщина контактного слоя, обедненного основными носителями тока, и его сопротивление уменьшаются. В этом направлении, называемом пропускным, электрический ток может проходить через контакт металл — полупроводник. Если внешнее поле совпадает по знаку с контактным, то основные носители тока будут перемещаться от границы с металлом; толщина обедненного слоя возрастает, возрастает и его сопротивление. Очевидно, что в этом случае ток через контакт отсутствует, выпрямитель заперт — это запорное направление. Для запирающего слоя на границе металла с полупроводником n-типа М> А) пропускным является направление тока из металла в полупроводник, а для запирающего слоя на границе металла с полупроводником р-типа М< А) — из полупроводника в металл.

§ 249. Контакт электронного и дырочного полупроводников

(р-n-переход)

Граница соприкосновения двух полупроводников, один из которых имеет электронную, а другой — дырочную проводимость, называется электронно-дырочным переходом (или р-n-переходом). Эти переходы имеют большое практическое значение, являясь основой работы многих полупроводниковых приборов. p-n-Переход нельзя осущест­вить просто механическим соединением двух полупроводников. Обычно области раз­личной проводимости создают либо при выращивании кристаллов, либо при соответ­ствующей обработке кристаллов. Например, на кристалл германия n-типа накладыва­ется индиевая «таблетка» (рис. 335, а). Эта система нагревается примерно при 500°С в вакууме или в атмосфере инертного газа; атомы индия диффундируют на некоторую глубину в германий. Затем расплав медленно охлаждают. Так как германий, содер­жащий индий, обладает дырочной проводимостью, то на границе закристаллизовав­шегося расплава и германия n-типа образуется р-п-персход, (рис. 335, б).

Рассмотрим физические процессы, происходящие в p-n-переходе (рис. 336). Пусть донорный полупроводник (работа выхода — А„, уровень Ферми — EFn) приводится в контакт (рис. 336, 6) с акцепторным полупроводником (работа выхода — Ар, уровень


Ферми — Е ). Электроны из n-полупроводника, где их концентрация выше, будут диффундировать в p-полупроводник, где их концентрация ниже. Диффузия же дырок происходит в обратном направлении — в направлении

В n-полупроводнике из-за ухода электронов вблизи границы остается нескомпен-сированный положительный объемный заряд неподвижных ионизованных донорных атомов. В р-полупроводнике из-за ухода дырок вблизи границы образуется отрица­тельный объемный заряд неподвижных ионизованных акцепторов (рис. 336, а). Эти объемные заряды образуют у границы двойной электрический слой, поле которого, направленное от n-области к p-области, препятствует дальнейшему переходу электро­нов в направлении и дырок в направлении Если концентрации доноров и акцепторов в полупроводниках п- и р-типа одинаковы, то толщины слоев d1 и d2 (рис. 336, в), в которых локализуются неподвижные заряды, равны (d1 = d2.) При определенной толщине р-п-перехода наступает равновесное состояние, харак­теризуемое выравниванием уровней Ферми для обоих полупроводников (рис. 336, в). В области р-n-перехода энергетические зоны искривляются, в результате чего возника­ют потенциальные барьеры как для электронов, так и для дырок. Высота потенциаль­ного барьера определяется первоначальной разностью положений уровня Ферми в обоих полупроводниках. Все энергетические уровни акцепторного полупроводника подняты относительно уровней донорного полупроводника на высоту, равную причем подъем происходит на толщине двойного слоя d.

Толщина d слоя р-n-перехода в полупроводниках составляет примерно 10-6—10-7 м, а контактная разность потенциалов — десятые доли вольт. Носители тока способны преодолеть такую разность потенциалов лишь при температуре в неско-


лысо тысяч градусов, т. е. при обычных температурах равновесный контактный слой является запирающим (характеризуется повышенным сопротивлением).

Сопротивление запирающего слоя можно изменить с помощью внешнего элект­рического поля. Если приложенное к p-n-переходу внешнее электрическое поле направ­лено от n-полупроводника к p-полупроводнику (рис. 337, а), т. е. совпадает с полем контактного слоя, то оно вызывает движение электронов в n-полупроводнике и дырок в p-полупроводнике от границы p-n-перехода в противоположные стороны. В резуль­тате запирающий слой расширится и его сопротивление возрастет. Направление вне­шнего поля, расширяющего запирающий слой, называется запирающим (обратным). В этом направлении электрический ток через p-n-переход практически не проходит. Ток в запирающем слое в запирающем направлении образуется лишь за счет неосновных носителей тока (электронов в p-полупроводнике и дырок в n-полупроводнике).

Если приложенное к p-n-переходу внешнее электрическое поле направлено проти­воположно полю контактного слоя (рис. 337, б), то оно вызывает движение электронов в n-полупроводнике и дырок в p-полупроводнике к границе p-n-перехода навстречу друг другу. В этой области они рекомбинируют, толщина контактного слоя и его сопротив­ление уменьшаются. Следовательно, в этом направлении электрический ток проходит сквозь p-n-переход в направлении от p-полупроводника к n-полупроводнику; оно назы­вается пропускным (прямым).

Таким образом, p-n-переход (подобно на контакте металл — полупроводник) об­ладает односторонней (вентильной) проводимостью.

На рис. 338 представлена вольт-амперная характеристика p-n-перехода. Как уже указывалось, при пропускном (прямом) напряжении внешнее электрическое поле спо­собствует движению основных носителей тока к границе p-n-перехода (см. рис. 337, б). В результате толщина контактного слоя уменьшается. Соответственно уменьшается и сопротивление перехода (тем сильнее, чем больше напряжение), а сила тока становит­ся большой (правая ветвь на рйс. 338). Это направление тока называется прямым.

При запирающем (обратном) напряжении внешнее электрическое поле препятству­ет движению основных носителей тока к границе p-n-перехода (см. рис. 337, а) и способ­ствует движению неосновных носителей тока, концентрация которых в полупровод­никах невелика. Это приводит к увеличению толщины контактного слоя, обедненного основными носителями тока. Соответственно увеличивается и сопротивление перехода. Поэтому в данном случае через p-n-переход протекает только небольшой ток (он называется обратным), полностью обусловленный неосновными носителями тока (ле­вая ветвь рис. 338). Быстрое возрастание этого тока означает пробой контактного слоя и его разрушение. При включении в цепь переменного тока p-n-переходы действуют как выпрямители.


Поделиться:



Последнее изменение этой страницы: 2017-05-04; Просмотров: 421; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.021 с.)
Главная | Случайная страница | Обратная связь