Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Перспективы ветроэнергетики.



Ветроэнергетика является бурно развивающейся отраслью, так в конце 2007 года общая установленная мощность всех ветрогенераторов составила 94, 1 гигаватта, увеличившись впятеро с 2000 год. Ветряные электростанции всего мира в 2007 году произвели около 200 млрд кВт·ч, что составляет примерно 1, 3 % мирового потребления электроэнергии. Прибрежная ферма ветроэнергетических установок Миддельгрюнден, около Копенгагена, Дания. На момент постройки она была крупнейшей в мире.

Возможности реализации ветроэнергетики в России. В России возможности ветроэнергетики до настоящего времени остаются практически не реализованными. Консервативное отношение к перспективному развитию топливно-энергетического комплекса практически тормозит эффективное внедрение ветроэнергетики, особенно в Северных районах России, а также в степной зоне Южного Федерального Округа, и в частности в Волгоградской области.

3. Термоядерная энергетика. Солнце — природный термоядерный реактор. Ещё более интересной, хотя и относительно отдалённой перспективой выглядит использование энергии ядерного синтеза. Термоядерные реакторы, по расчётам, будут потреблять меньше топлива на единицу энергии, и как само это топливо (дейтерий, литий, гелий-3), так и продукты их синтеза нерадиоактивны и, следовательно, экологически безопасны.

Перспективы термоядерной энергетики. Данная область энергетики имеет огромный потенциал, в настоящее время в рамках проекта " ITER", в котором участвуют Европа, Китай, Россия, США, Южная Корея и Япония во Франции идет строительство крупнейшего термоядерного реактора, целью которого является вывести УТС (Управляемый термоядерный синтез) на новый уровень. Строительство планируется завершить в 2010 году.

4. Биотопливо, биогаз. Биотопливо — это топливо из биологического сырья, получаемое, как правило, в результате переработки стеблей сахарного тростника или семян рапса, кукурузы, сои. Различается жидкое биотопливо (для двигателей внутреннего сгорания, например, этанол, метанол, биодизель) и газообразное (биогаз, водород).

Виды биотоплива:

– Биометанол
– Биоэтанол
– Биобутанол
– Диметиловый эфир
– Биодизель
– Биогаз
– Водород

На данный момент самые развитые – биодизель и водород.

5. Геотермальная энергия. Под вулканическими островами Японии скрыты огромные количества геотермальной энергии, этой энергией можно воспользоваться извлекая горячую воду и пар. Преимущество: выделяет примерно в 20 раз меньше углекислого газа при производстве электричества, что снижает ее влияние на глобальную окружающую среду.

6. Энергия волн, приливов и отливов. В Японии важнейший источник энергии волновые турбины, которые преобразуют вертикальное движение океанских волн в давление воздуха вращающего турбины электрогенераторов. На побережье Японии установлено большое количество буев, использующих энергию приливов и отливов. Так используют энергию океана для обеспечения безопасности океанского транспорта.

Огромный потенциал энергии Солнца мог бы теоритически обеспечить все мировые потребности энергетики. Но КПД преобразования тепла в электроэнергию всего 10%. Это ограничивает возможности Солнечной энергетики. Принципиальные трудности возникают и при анализе возможностей создания генераторов большой мощности, использующих энергию ветра, приливы и отливы, геотермальную энергию, биогаз, растительное топливо и т.д. Всё это приводит к выводу об ограниченности возможностей рассмотренных так называемых «воспроизводимых» и относительно экологически чистых ресурсов энергетики, по крайней мере, в относительно близком будущем. Хотя эффект от их использования при решении отдельных частных проблем энергообеспечения может быть уже сейчас весьма впечатляющим.

2.

3. Задача с использованием формулы емкостного сопротивления.

 

Билет № 11

Самоиндукция. Индуктивность. Взаимоиндукция.
Каждый проводник, по которому протекает эл.ток, находится в собственном магнитном поле.


При изменении силы тока в проводнике меняется м.поле, т.е. изменяется магнитный поток, создаваемый этим током. Изменение магнитного потока ведет в возникновению вихревого эл.поля и в цепи появляется ЭДС индукции.



Это явление называется самоиндукцией.
Самоиндукция - явление возникновения ЭДС индукции в эл.цепи в результате изменения силы тока.
Возникающая при этом ЭДС называется ЭДС самоиндукции


Проявление явления самоиндукции

Замыкание цепи



При замыкании в эл.цепи нарастает ток, что вызывает в катушке увеличение магнитного потока, возникает вихревое эл.поле, направленное против тока, т.е. в катушке возникает ЭДС самоиндукции, препятствующая нарастанию тока в цепи ( вихревое поле тормозит электроны).
В результате Л1 загорается позже, чем Л2.

Размыкание цепи



При размыкании эл.цепи ток убывает, возникает уменьшение м.потока в катушке, возникает вихревое эл.поле, направленное как ток ( стремящееся сохранить прежнюю силу тока), т.е. в катушке возникает ЭДС самоиндукции, поддерживающая ток в цепи.
В результате Л при выключении ярко вспыхивает.

Вывод

в электротехнике явление самоиндукции проявляется при замыкании цепи (эл.ток нарастает постепенно) и при размыкании цепи (эл.ток пропадает не сразу)

 


ИНДУКТИВНОСТЬ

От чего зависит ЭДС самоиндукции?

Эл.ток создает собственное магнитное поле. Магнитный поток через контур пропорционален индукции магнитного поля (Ф ~ B), индукция пропорциональна силе тока в проводнике
(B ~ I), следовательно магнитный поток пропорционален силе тока (Ф ~ I).
ЭДС самоиндукции зависит от скорости изменения силы тока в эл.цепи, от свойств проводника
(размеров и формы) и от относительной магнитной проницаемости среды, в которой находится проводник.
Физическая величина, показывающая зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, называется коэффициентом самоиндукции или индуктивностью.



Индуктивность - физ. величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1Ампер за 1 секунду.
Также индуктивность можно рассчитать по формуле:



где Ф - магнитный поток через контур, I - сила тока в контуре.

Единицы измерения индуктивности в системе СИ:


Индуктивность катушки зависит от:
числа витков, размеров и формы катушки и от относительной магнитной проницаемости среды
( возможен сердечник).


ЭДС САМОИНДУКЦИИ


ЭДС самоиндукции препятствует нарастанию силы тока при включении цепи и убыванию силы тока при размыкании цепи.


ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ ТОКА

Вокруг проводника с током существует магнитное поле, которое обладает энергией.
Откуда она берется? Источник тока, включенный в эл.цепь, обладает запасом энергии.
В момент замыкания эл.цепи источник тока расходует часть своей энергии на преодоление действия возникающей ЭДС самоиндукции. Эта часть энергии, называемая собственной энергией тока, и идет на образование магнитного поля.

Энергия магнитного поля равна собственной энергии тока.
Собственная энергия тока численно равна работе, которую должен совершить источник тока для преодоления ЭДС самоиндукции, чтобы создать ток в цепи.

Энергия магнитного поля, созданного током, прямо пропорциональна квадрату силы тока.
Куда пропадает энергия магнитного поля после прекращения тока? - выделяется ( при размыкании цепи с достаточно большой силой тока возможно возникновение искры или дуги)

Энергосбережение. Основные характеристики электротехнических устройств, применяемых в быту. Энергосберегающее оборудование нового поколения.
В настоящее время рынок электротехники является одним из самых динамично развивающихся в сфере производства электротоваров и оборудования. В первую очередь, это обусловлено постоянно увеличивающимся спросом потребителей, которые широко используют электроприборы, как в быту, так и в различных отраслях современной промышленности.

Если говорить о низковольтном оборудовании, то потребность только в защитных аппаратах измеряется сотнями тысяч штук. Примечательно, что и в этой сфере аналитики отрасли отмечают постоянно увеличивающийся рост потребления, а саму низковольтную защитную аппаратуру относят к разряду наиболее прогрессивно развивающихся сегментов рынка.

Чем вызвано такое пристальное внимание к низковольтному сектору? С какими проблемами сегодня сталкиваются отечественные производители? Какие новинки отрасти вызывают интерес потребителей?

 

Под определение низковольтного оборудования, предназначенного для использования при номинальном напряжении до 1 тыс. В переменного и до 1, 5 тыс. В постоянного тока, подпадает широкая линейка электротехнической продукции. Ее делят на три основные группы:

§ Защитное оборудование (устройства отключения электроэнергии и пускорегулирующая аппаратура);

§ Приборы, предназначенные для наблюдения, учета, поддержания и измерения электромагнитного сигнала;

§ Комплексы, управляющие электротехническими устройствами.

По оценкам экспертов, которые проанализировали состав импортно/экспортных операций российских производителей, на начало 2015 года доля низковольтной продукции в импорте электротехнических устройств составляла более 83%, а в экспорте – 73, 8%. В ходе исследования были рассмотрены такие виды продукции: термостаты, автоматические выключатели, нажимные кнопки, контакторы, скользящие контакты и размыкатели цепи.

При этом будет справедливым отметить, что информацию об объемах производства ни Росстат, ни сами производственные компании не раскрывают. Однако при оформлении таможенных деклараций обязательно указывается название производителя. Это и позволило провести исследование, отследить объемы низковольтной электротехнической продукции, поставляемой на экспорт, ее виды и компанию-экспортера.

Аналитики пришли к выводу, что в РФ, по сравнению с импортом, объемы производства низковольтного оборудования невелики. Так, на начало 2015 года в разрезе исследуемой номенклатуры отечественными предприятиями выпускалось не более 4% от общего количества импортируемой продукции.

1.

2. Задача на вычисление мощности в цепи переменного тока.

 

Билет № 12

Цепь с активным сопротивлением. Активная мощность. График изменения тока, напряжения, мощности. Векторная диаграмма.
Электрические лампы накаливания, печи сопротивления, бытовые нагревательные приборы, реостаты и другие приемники, где электрическая энергия преобразуется в тепловую, на схемах замещения обычно представлены только сопротивлением R.
Для схемы, изображенной на рис. 13.1, а, заданы сопротивление R и напряжение, изменяющееся по закону

u = Umsinω t

Найдём ток и мощность в цепи.


Поделиться:



Последнее изменение этой страницы: 2017-05-11; Просмотров: 174; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.023 с.)
Главная | Случайная страница | Обратная связь