Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Свойства неопределенного интеграла.



Неопределенный интеграл.

 

Основной задачей дифференциального исчисления является нахождение производной или дифференциала от данной функции.

В интегральном исчислении основной задачей является обратная задача – отыскание функции по заданной ее производной или дифференциалу , т.е. для данной функции надо найти такую функцию , что:

или

Функция называется первообразной для функции на отрезке [a, b], если во всех точках этого отрезка выполняются равенства

или

Например, для функции первообразной будет функция

т.к.

Легко видеть, что если первообразная для функции , то функция тоже является первообразной для функции , так как

Если функция является первообразной для функции , то выражение называется неопределенным интегралом от функции и обозначается символом

Функция называется подынтегральной функцией, – подынтегральным выражением, С – произвольная постоянная.

Нахождение первообразной для данной функции называется интегрированием.

 

Свойства неопределенного интеграла.

1. Производная от неопределенного интеграла равна подынтегральной функции

2. Дифференциал от неопределенного интеграла равен подынтегральному выражению

3. Неопределенный интеграл от дифференциала некоторой функции равен этой функции плюс произвольная постоянная.

Справедливость свойств 1 – 3 вытекает непосредственно из определения неопределенного интеграла.

4.Неопределенный интеграл от алгебраической суммы двух или нескольких функций равен алгебраической сумме их интегралов

Для доказательства достаточно найти производные от левой и правой частей этого равенства

5. Постоянный множитель можно выносить за знак интеграла

Для доказательства найдем производные от левой и правой частей равенства

6. Если функция является первообразной для функции , то функция

является первообразной для функции , то есть, если , то

Для доказательства найдем производные от левой и правой частей равенства

Таблица интегралов.


Таблица интегралов получается непосредственно из определения неопределенного интеграла и таблицы производных. Для установления справедливости указанных в таблице формул достаточно найти производные от правых частей равенств и получить подынтегральные функции.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

Заметим, что функций, стоящих в правых частях последних формул нет в таблице производных. Однако, эти интегралы часто встречаются в практических задачах, поэтому они помещены в таблицу. Справедливость их нетрудно проверить непосредственным дифференцированием функций, стоящих в правых частях равенств.

Например, формула 12 доказывается так:

Аналогично проверяются остальные формулы.

 

Непосредственное интегрирование.

 

Пользуясь таблицей интегралов, свойствами неопределенного интеграла и различными алгебраическими или трансцендентными преобразованиями подынтегральных функций можно вычислить многие интегралы.

 

Например:

1.

2.

3.

4.

5.

6.

7.

Интегрирование методом подстановки.

 

Пусть требуется найти интеграл непосредственное интегрирование, которого не дало окончательного результата.

Заменим переменную в подынтегральном выражении, положив , где непрерывная вместе со своей производной функция. Получим

.

Вычислим полученный интеграл по переменной , а затем после интегрирования по переменной перейдем к прежней переменной , вновь воспользовавшись формулой

 

Например:

1.

Сделаем замену переменной, положив , тогда интеграл примет вид

 

2.

Положим , отсюда выразим и найдем

Тогда

3.

Полагаем , тогда

4.

Положим тогда

 

Заметим, что подобрать нужную подстановку удается не всегда быстро, необходимы определенные навыки и практический опыт.

 

Интегрирование по частям.

 

Формула интегрирования по частям имеет вид

Справедливость формулы вытекает из того факта, что

Интегрируя обе части получаем

Откуда

Формула интегрирования по частям сводит вычисление интеграла к вычислению интеграла . Метод интегрирования по частям применяют тогда, когда подынтегральное выражение представляет произведение двух дифференцируемых функций, при этом производная от одной из функций, проще по отношению к самой заданной функции.

 

Например:

1.

Полагаем и

Тогда и

 

следовательно

2.

 

Полагаем и

тогда и

следовательно

 

3.

Применим формулу интегрирования по частям дважды

Сначала положим и

тогда и

подставив полученные выражения будем иметь

Далее полагаем и

тогда и

 

4.

полагаем и

тогда и

Следовательно

Для интеграла, стоящего в правой части снова применим формулу интегрирования по частям

Полагаем и

тогда и

Подставляя найденные значения в формулу, будем иметь

Таким образом получим алгебраическое уравнение относительно исходного интеграла

Откуда

 

Неопределенный интеграл.

 

Основной задачей дифференциального исчисления является нахождение производной или дифференциала от данной функции.

В интегральном исчислении основной задачей является обратная задача – отыскание функции по заданной ее производной или дифференциалу , т.е. для данной функции надо найти такую функцию , что:

или

Функция называется первообразной для функции на отрезке [a, b], если во всех точках этого отрезка выполняются равенства

или

Например, для функции первообразной будет функция

т.к.

Легко видеть, что если первообразная для функции , то функция тоже является первообразной для функции , так как

Если функция является первообразной для функции , то выражение называется неопределенным интегралом от функции и обозначается символом

Функция называется подынтегральной функцией, – подынтегральным выражением, С – произвольная постоянная.

Нахождение первообразной для данной функции называется интегрированием.

 

Свойства неопределенного интеграла.

1. Производная от неопределенного интеграла равна подынтегральной функции

2. Дифференциал от неопределенного интеграла равен подынтегральному выражению

3. Неопределенный интеграл от дифференциала некоторой функции равен этой функции плюс произвольная постоянная.

Справедливость свойств 1 – 3 вытекает непосредственно из определения неопределенного интеграла.

4.Неопределенный интеграл от алгебраической суммы двух или нескольких функций равен алгебраической сумме их интегралов

Для доказательства достаточно найти производные от левой и правой частей этого равенства

5. Постоянный множитель можно выносить за знак интеграла

Для доказательства найдем производные от левой и правой частей равенства

6. Если функция является первообразной для функции , то функция

является первообразной для функции , то есть, если , то

Для доказательства найдем производные от левой и правой частей равенства

Таблица интегралов.


Таблица интегралов получается непосредственно из определения неопределенного интеграла и таблицы производных. Для установления справедливости указанных в таблице формул достаточно найти производные от правых частей равенств и получить подынтегральные функции.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

Заметим, что функций, стоящих в правых частях последних формул нет в таблице производных. Однако, эти интегралы часто встречаются в практических задачах, поэтому они помещены в таблицу. Справедливость их нетрудно проверить непосредственным дифференцированием функций, стоящих в правых частях равенств.

Например, формула 12 доказывается так:

Аналогично проверяются остальные формулы.

 


Поделиться:



Последнее изменение этой страницы: 2017-05-11; Просмотров: 156; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.055 с.)
Главная | Случайная страница | Обратная связь