Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Предостережение: повреждение мышц в результате двигательной активности может ослаблять действие инсулина на использование глюкозы



Как было описано выше, физические нагрузки обычно сопровождаются усилением инсулинстимулированного использования глюкозы в скелетной мышце. В то же время имеются сообщения о том, что после занятий силовыми упражнениями отмечается резкое снижение инсулинстимулированного метаболизма глюкозы — явление, которое в значительной мере объясняется степенью повреждения мышцы. Взаимосвязь между повреждениями и травмами всего тела и устойчивостью скелетных мышц к инсулину освещена достаточно хорошо (Black et al., 1982). Физические упражнения, которые приводят к повреждению мышц, инициируют воспалительную реакцию, в результате которой в поврежденных тканях происходит накопление иммунных клеток (Asp et al., 1997). Эти клетки принимают участие в восстановлении, реконструкции и удалении поврежденной ткани. Многие из этих восстановительных процессов опосредованы высвобождением воспалительных цитокииов, в то же время хорошо известна способность цитокинов (т. е. фактора некроза опухолей а) вызывать устойчивость к инсулину.

Вследствие особенностей динамики и распределения прикладываемого усилия, повреждения мышц более вероятны в случае эксцентрических (удлинение сокращающейся мышцы) сокращений, по сравнению с концентрическими (укорочение сокращающейся мышцы), тогда как одиночное занятие с выполнением концентрических упражнений вызывает усиление действия инсулина в скелетной мышце (Richter et al., 1982, 1989; Bogardus ct al., 1983). После занятия эксцентрическими упражнениями наблюдается нарушение действия инсулина во всем теле, которое продолжается на протяжении 48 ч после завершения занятия (Kirwan et al., 1992). Подобный эффект отмечается и в изолированной мышце, а это позволяет считать, что резистентность к инсулину представляет собой локальное явление (Asp, Richter, 1996). Различия в характере инсулинстимулированного метаболизма глюкозы подтверждаются и тем, что концентрические упражнения обычно сопровождаются повышением уровня белка GLUT4 (Richter et al., 1989), в то время как эксцентрические упражнения влекут за собой снижение процессов образования мРНК и белка GLUT4 в скелетной мышце на 65 % (Asp et al., 1995; Kristiansen et al., 1996). Интересно отметить, что несмотря на нарушение метаболизма глюкозы после выполнения эксцентрических упражнений, уровень синтеза белка остается повышенным. Это может быть обусловлено селективным нарушением работы PI3-киназного сигнального пути и перемещением GLUT4 (Fluckey et al., 1999) наряду с нормальной активацией MAP-киназного каскада (Haddad, Addams, 2002). В действительности активация МАРК происходит не только под влиянием мышечных сокращений, но и в результате растягиваний, повреждения мышц и воздействия воспалительных цитокинов (будет обсуждаться ниже).

В то время как острые физические нагрузки средней интенсивности, а также тренировка на развитие выносливости сопряжены с повышением инсулинстимулированного использования глюкозы, силовые упражнения вызывают противоположный эффект. Первоначальные исследования показали, что силовые упражнения высокой интенсивности связаны со снижением расходования глюкозы (Kirwan et al., 1992). Интенсивное занятие силовыми упражнениями приводит к снижению инсулинстимулировапного потребления глюкозы по сравнению с лицами, которые ведут малоподвижный образ жизни (Fluckey ct al., 1999). Различия в относительном количестве эксцентрических сокращений при выполнении силовых и аэробных упражнений позволяют в большой степени объяснить особенности инсулинстимулированпого метаболизма в тех и других условиях. Анаэробный характер силовых упражнений приводит к значительному сокращению запаса гликогена в скелетных мышцах. Интересно, что помимо снижения инсулинстимулированного транспорта эксцентрические упражнения нарушают инсулинстимулированный процесс образования гликогена из глюкозы в различных мышцах (Asp et al., 1997). В одном из исследований сообщалось о снижении максимальной активности гликогенсинтазы по сравнению с контролем на 16 % (Asp, Richter, 1996). Подобные нарушения часто наблюдаются в более гликолитических быстрых мышечных волокнах, которые при выполнении силовых упражнений подвергаются значительным нагрузкам (Asp, Richter, 1996).

В то время как повреждение мышечной ткани, возникающее в результате одиночного занятия силовыми упражнениями, может приводить к ослаблению действия инсулина в скелетной мышце, другие данные свидетельствуют о том, что силовые тренировки сопровождаются усилением инсулинстимулированного расходования глюкозы (Miller et al., 1994; Yaspclkis ct al., 2002). Несколько факторов помогают объяснить наблюдаемые противоречия. Во-первых, силовые упражнения содержат и концентрический, и эксцентрический компоненты мышечного сокращения. Программы силовых упражнений, включающие большее количество эксцентрических сокращений, будут сопровождаться более сильными повреждениями мышечной ткани и ослаблением действия инсулина, и наоборот. Далее, хотя одиночное занятие эксцентрическими упражнениями сопровождается нарушениями метаболизма глюкозы, регулярные силовые упражнения вызывают адаптации скелетных мышц, усиливающие в них действие инсулина (например, образование GLUT4). И наконец, хотя неблагоприятные последствия одиночного занятия силовыми упражнениями обусловлены локальными эффектами (воспалительная реакция), соответствующие изменения состава тела (уменьшение массы жировой ткани и увеличение мышечной массы), обусловленные регулярными занятиями силовыми упражнениями на протяжении длительного времени, сопровождаются усилением действия инсулина на уровне всего организма.

Инсулин и физическая нагрузка активируют MAP-киназный сигнальный каскад

Известно, что инсулин стимулирует утилизацию глюкозы с использованием Р13-киназного сигнального пути, а при физической нагрузке стимуляция происходит с помощью альтернативного сигнального каскада (в частности, АМРК), однако последние данные свидетельствуют о том, что и физические упражнения, и инсулин могут активировать в скелетной мышце общие сигнальные каскады. Наряду с тем что уже давно известно об активации представителей семейства МАРК под влиянием инсулина, все большее количество данных говорит о том, что МАР-киназный путь передачи сигнала играет важную роль в опосредовании эффектов двигательной активности в скелетной мышце. MAP-киназы представляют собой семейство белков, занимающих важное место в сигнальных каскадах, образование которых происходит в клетках всех эукариот (рис. 27.3). Описаны четыре подгруппы МАРК: а) киназы, регулируемые внеклеточным сигналом (extracellular-signal regulated kinases, ERK); б) c-JUN NH2-терминальные киназы (JNK); в) p38 МАРК; г) ERK5/большая МАР-киназа 1 (ERK5/big MAP kinase 1, ВМК1). Активация ERK происходит преимущественно под влиянием ростовых факторов, тогда как JNK и р38 МАРК известны под общим названием активируемых стрессом протеинки-наз и принимают участие в большом количестве разнообразных клеточных реакций, включая пролиферацию и дифференциацию клеток, гипертрофию, воспаление, апоптоз, метаболизм углеводов и транскрипцию (Force, Bonventre, 1998; Sweeney et al., 1999; Kyriakis, Avruch, 2001). В 1996 г. появилось первое сообщение о том, что физическая нагрузка активирует ERK1 /2, JNK и р38 сигнальные пути в скелетных мышцах (Goodyear et al., 1996). Начиная с этого времени, регуляция этих путей передачи сигнала в скелетных мышцах вызывает повышенный интерес.

Сигнальный каскад ERK

Давно известно, что инсулин является мощным стимулятором ERK в скелетных мышцах. Кроме того, имеются сообщения об активации ERK1 /2 в скелетных мышцах крысы после бега на тредмиле (Goodyear et al., 1996; Nader, Esser, 2001), мышечного сокращения in vitro (Hayashi et al., 1999; Wojtaszewski ct al., 1996b, 2000; Ryder ct al., 2000; Wrctman ct al., 2000, 2001), мышечного сокращения in situ (Sherwood et al., 1999; Martincau, Gardiner, 2001; Nader, Esscr, 2001), чрезмерной мышечной нагрузки (Carlson et al., 2001) и растягиваний (Boppart et al., 2001); в скелетных мышцах мыши после бега на тредмиле (Dufrcsne et al., 2001), а также в скелетных мышцах человека после выполнения упражнений на велоэргометре (Aronson et al., 1997а, 1997b; Widegren et al., 1998; Osman et al., 2000) и после марафонского бега (Yu et al., 2001). Активность MEK1/2 и Rafl, расположенных в сигнальном каскаде перед ERK1/2 (Aronson et al., 1997а, 1997b; Sherwood et al., 1999), возрастает под влиянием физической нагрузки и мышечных сокращений. В число молекул, активируемых физическими упражнениями, расположенных в сигнальном пути после ERK1/2, входят RSK2 (Goodyear et al., 1996; Aronson et al., 1997a, 1997b; Sherwood et al., 1999; Krook et al., 2000; Osman et al., 2000; Ryder et al., 2000; Yu et al., 2001), а также митоген и стрессактивируемая киназа 1/2 (MSK1/2) (Ryder et al., 2000; Yu et al., 2001). Активация MEK1/2 необходима для активации ERK1/2, поскольку ингибитор МЕК1/2 PD98059 подавляет индуцированное мышечным сокращением фосфорилирование ERK1/2 (Hayashi et al., 1999; Wojtaszewski et al., 1996b, 2000; Ryder et al., 2000) и расположенных далее в сигнальном каскаде субстратов этой киназы RSK2 (Hayashi et al„ 1999) и MSK1 (Ryder et al., 2000).

При выполнении упражнений одной ногой в мышцах ноги, подвергавшейся физической нагрузке, но не находившейся в состоянии покоя, наблюдается активация ERK1/2 (Aronson et al., 1997b; Widegren et al., 1998) и ее мишеней, расположенных после Нее в сигнальном каскаде (Aronson et al., 1997b; Krook et al., 2000). Эти данные свидетельствуют о том, что стимуляция ERK1/2 сигнального пути в ответ на физическую нагрузку в скелетных мышцах представляет собой результат событий на локальном, ткане-специфическом уровне, а не системный ответ. Вещества, которые принимают участие в такой тканеспецифической стимуляции, еще предстоит выяснить.

Сигнальный каскад JNK

B отличие от ERK активация JNK в скелетных мышцах под влиянием инсулина выражена в значительно меньшей степени, а некоторым исследователям не удалось обнаружить ее вообще (Aronson et al., 1996). Активация сигнального пути с участием JNK в скелетных мышцах крысы происходит под влиянием сокращений in vitro (Boppart et al., 2001), сокращений in situ (Aronson ct al., 1997a; Martincau, Gardiner, 2001), бега на тредмиле (Goodyear et al., 1996), чрезмерной мышечной нагрузки (Carlson ct al., 2001) и механического растяжения (Boppart ct al., 2001). У человека активация сигнального пути JNK происходит в ответ па двигательную активность на велоэргометре (Aronson et al., 1998), разгибание йог в коленях, при которых происходят концентрические и эксцентрические сокращения четырехглавой мышцы бедра (Boppart et al., 1999), а также марафонский бег (Boppart ct al., 2000). В отличие от сигнального пути ERK1/2 активация сигнального каскада JNK поддерживается при мышечном сокращении в условиях in situ, в то время как активация каскада ERK1/2 происходит более стремительно и носит кратковременный характер. Это свидетельствует о том, что в регуляции этих двух сигнальных путей участвуют различные белки (Aronson et al., 1997а). Вследствие отсутствия в настоящий момент избирательных ингибиторов сигнального пути JNK, способных свободно проникать в клетку, о физиологических функциях JNK в сокращающейся скелетной мышце известно очень мало.

Сигнальный каскад р38

Как и в случае JNK, активация р38 под влиянием инсулина выражена достаточно слабо и может отсутствовать вообще. В то же время сильная активация р38 происходит в скелетной мышце крысы под влиянием бега на тредмиле (Goodyear et al., 1996; Nader, Esser, 2001), мышечного сокращения in vitro (Ryder et al., 2000; Somwar et al., 2000; Wretman et al., 2000, 2001; Boppart et al., 2001), мышечного сокращения in situ (Nader, Esser, 2001), чрезмерной мышечной нагрузки (Carlson et al., 2001) и механических растягиваний (Boppart et al., 2001). Кроме того, было показано, что активация р38 возрастает у человека во время двигательной активности на велоэргометре (Widegren et al., 1998) и марафонского бега (Boppart et al., 2000; Yu et al., 2001). Фосфорили-рование MAP-KAPK-2, нисходящего субстрата p38 взаимосвязано с изменениями активности р38 во время физических упражнений или сокращения мышц и подавляется антагонистом р38 SB203580 (Krok et al., Ryder et al., 2000; Yu et al., 2001).


Поделиться:



Последнее изменение этой страницы: 2017-05-05; Просмотров: 393; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.011 с.)
Главная | Случайная страница | Обратная связь