Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


КЛАССИФИКАЦИЯ ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ И ИХ ЭКОНОМИЧЕСКИЕ ОСОБЕННОСТИ



В настоящее время применяется разделение электростанций на КЭС, ТЭЦ, ПГУ, газотурбинные электростанции (ГТЭС), АЭС, ГЭС. Для более полной характеристики электростанции можно классифицировать по следующим основным признакам:

1) по видам использованных первичных энергоресурсов;

2) процессам преобразования энергии;

3) числу и виду энергоносителей;

4) видам отпускаемой энергии;

5) кругу охватываемых потребителей;

6) режиму работы.

По видам использованных первичных энерго­ресурсов различаются электростанции, применяющие: орга­ническое топливо — ТЭС; ядерное топливо — АЭС; гидроэнер­гию — ГЭС, ГАЭС и приливные; солнечную энергию — солнеч­ные электростанции (СЭС); энергию ветра — ВЭС; подземное тепло — геотермальные (ГЕОЭС).

По применяемым процессам преобразования энер­гии выделяются электростанции, в которых: тепловая энергия пре­образуется в механическую, а затем в электрическую энергию — ТЭС, АЭС; тепловая энергия непосредственно превращается в элек­трическую — электростанции с МГД-генераторами (МГД-ЭС), СЭС с фотоэлементами и др.; энергия воды и воздуха превращается в механическую энергию вращения, затем в электрическую — ГЭС, ГАЭС, ПЭС, ветроэлектрические (ВЭС), воздушно-аккумулиру­ющие газотурбинные электростанции.

По числу и виду энергоносителей различаются сле­дующие электростанции: с одним энергоносителем — КЭС и ТЭЦ, атомные КЭС и ТЭЦ на паре, АЭС с газовым энергоносителем, ГТЭС; с двумя разными по фазовому состоянию энергоносителя­ми — парогазовые (ПГ) электростанции, в том числе ПГ-КЭС и


ПГ-ТЭЦ; с двумя разными энергоносителями одинакового фазо­вого состояния — бинарные электростанции.

По видам отпускаемой э н е р г и и различаются следу­ющие электростанции: отпускающие только или в основном элек­трическую энергию — ГЭС, ГАЭС, КЭС, атомные КЭС, ГТЭС, ПГ-КЭС и др.; электрическую и тепловую энергию — ТЭЦ, атом­ные ТЭЦ, ГТ-ТЭЦ и др. В последнее время КЭС и атомные КЭС все в большей степени увеличивают отпуск тепловой энергии. Теплоэлектроцентрали кроме электроэнергии вырабатывают теп­ло. Использование тепла отработавшего пара при комбинирован­ном производстве энергии обеспечивает значительную экономию топлива. Если отработавший пар или горячая вода используется для технологических процессов, отопления и вентиляции про­мышленных предприятий, то ТЭЦ называются промышленными. При использовании тепла для отопления и горячего водоснабжения жилых и общественных зданий городов ТЭЦ называются комму­ нальными (отопительными). Промышленно-отопительные ТЭЦ снабжают теплом как промышленные предприятия, так и населе­ние. На отопительных ТЭЦ, наряду с теплофикационными турбо-установками, имеются водогрейные котлы для отпуска тепла в периоды пиков тепловой нагрузки.

По кругу охватываемых потребителей выделяют: районные электростанции — ГРЭС (государственная районная электрическая станция); местные электростанции для электроснаб­жения отдельных населенных пунктов; блок-станции для элек­троснабжения отдельных потребителей.

По режиму работы в электроэнергетической системе (ЭЭС) различаются электростанции: базовые; маневренные, или полупиковые; пиковые.

К первой группе относятся крупные, наиболее экономичные КЭС, АЭС, ТЭЦ на теплофикационном режиме и частично ГЭС, ко второй — маневренные конденсационные электростанции, пи­ковые КЭС и ТЭЦ, а к третьей — пиковые ГЭС, пиковые ТЭС. Частично в пиковом режиме работают ТЭЦ и менее экономичные КЭС.

Кроме общих основных признаков классификации электростан­ций для каждого их типа имеются свои внутренние признаки клас­сификации. Например, КЭС и ТЭЦ различаются по начальным параметрам, технологической схеме (блочные и с поперечными связями), единичной мощности блоков и т.п. Атомные электро­станции классифицируются по типу реакторов (на тепловых и быстрых нейтронах), конструкции и др.

В настоящее время развиваются также парогазовые и чисто га­зотурбинные электростанции. Парогазовые электростанции (ПГЭС) применяются в двух вариантах: с высоконапорным паро­генератором и сбросом выхлопных газов в котлоагрегаты обычно-


го типа. В первом случае продукты сгорания из камеры сгорания под давлением направляются в высоконапорный компактный па­рогенератор, где вырабатывается пар высокого давления, а про­дукты сгорания охлаждаются до 750...800°С, после чего они на­правляются в газовую турбину, а пар высокого давления подается в паровую турбину.

Во втором случае продукты сгорания из камеры сгорания с добавлением необходимого количества воздуха для снижения тем­пературы до 750... 800 °С направляются в газовую турбину, откуда отходящие газы при температуре примерно 350...400°С с боль­шим содержанием кислорода поступают в обычные котлоагрегаты паротурбинных ТЭС, где выполняют функцию окислителя и отдают свое тепло.

В первой схеме сжигается природный газ либо специальное га­зотурбинное жидкое топливо, во второй — топливо должно сжи­гаться только в камере сгорания газовой турбины, а в котлоагрегатах — мазут или твердое топливо, что представляет определен­ное преимущество. Комбинирование двух циклов даст повышение общего КПД ПГЭС примерно на 5... 6 % по сравнению с паротур­бинной КЭС. Мощность газовых турбин ПГЭС составляет при­мерно 20...25 % мощности парогазового блока. В связи с тем, что удельные капиталовложения в газотурбинную часть ниже, чем в паротурбинную, в ПГЭС достигается уменьшение удельных ка­питаловложений на 10... 12 %. Парогазовые блоки обладают боль­шей маневренностью, чем обычные конденсационные блоки, и могут быть использованы для работы в полупиковой зоне, так как более экономичны, чем маневренные КЭС.

Чисто газотурбинные электростанции используются как пико­вые. Удельные капиталовложения в ГТЭС примерно на 25...30 % меньше, чем в маневренные паротурбинные КЭС. Коэффициент полезного действия ГТЭС на 4... 5 % ниже, чем на паротурбинных ТЭС, что допустимо при работе в пиковом режиме. В настоящее время в России выпускаются газовые турбины для ГТЭС мощно­стью 100 и 150 МВт. При использовании для теплоснабжения теп­ла выхлопных газов от газовых турбин ГТЭС можно повысить КПД ГТЭС.

Контрольные вопросы

1. Охарактеризуйте ТЭЦ и КЭС по всем классификационным приз­накам.

2. Какие основные особенности ТЭЦ вы знаете? Для покрытия какой
части графика нагрузки используются их мощности?

3. Перечислите особенности ГЭС и ГАЭС. Каково их участие в покры­тии суточного графика нагрузки?

4. В чем состоят основные особенности ПГЭС и ГТЭС, как это влияет
на технико-экономические показатели?


Глава 17

РЕСУРСОСБЕРЕГАЮЩИЕ И ЭКОЛОГИЧЕСКИ СОВЕРШЕННЫЕ

ТЕХНОЛОГИИ

Среди источников загрязнения биосферы электроэнергетика занимает первое место. Она является также главным источником загрязнения естественных водоемов за счет тепловых отходов. До 60 % количества теплоты, выделяемой при сжигании на КЭС орга­нического топлива, через охлаждающую воду (при отсутствии гра­дирен) попадают в реки, пруды и озера. Еще большее количество теплоты получают естественные водоемы от АЭС, что приводит к засорению их вредными водорослями и обмелению. Электростан­ции, работающие на твердом топливе, не только загрязняют воз­душный бассейн, но и вызывают необходимость создания золо- и шлакоотвалов, занимающих большие площади и нарушающих эко­логическое равновесие.

Эти и другие факторы должны в полной мере учитываться при решении вопросов централизации энергоснабжения, концентра­ции и размещения энергетических мощностей. Концентрация мощ­ности на КЭС в некоторой степени уменьшает количество вред­ных выбросов на единицу установленной мощности в связи с по­вышением экономичности использования топлива, усовершен­ствованием топочных устройств, золоуловителей и повышением их КПД. Кроме того, применение дымовых труб с максимально возможной высотой позволяет снизить концентрацию выбросов над поверхностью земли за счет их рассеяния на большие площа­ди. Вместе с тем нормированные предельно допустимые концен­трации (ПДК) золы и газовых выбросов ограничивают по эколо­гическим причинам возможные мощности отдельных КЭС в зави­симости от вида сжигаемого топлива. По мере совершенствования способов улавливания выбросов, дальнейшего увеличения высо­ты дымовых труб, а также возможного облагораживания топлива перед поступлением на КЭС их установленная мощность будет возрастать.

В действующих КЭС основные мероприятия по защите среды обитания должны быть направлены: на повышение экономично­сти использования топлива и КПД газоочистных и улавливающих устройств; промышленное использование золы и шлаков; частич­ный переход на теплофикационный режим; применение оборот­ного водоснабжения и др. Для вновь сооружаемых КЭС эти меро­приятия в полной мере должны предусматриваться в проектах.

Так как расход топлива на теплоснабжение городов превосхо­дит его расход на выработку электрической энергии, особое вни­мание должно быть уделено максимальному сокращению вредных выбросов от теплоисточников. Замена мелких индивидуальных и


групповых котельных крупными районными позволяет резко со­кратить вредные выбросы в окружающую среду за счет повыше­ния экономичности использования топлива, применения газоочи­стных устройств с высоким КПД, увеличения высоты дымовых труб и степени рассеяния выбросов. Расширение строительства в городах ТЭЦ на органическом топливе приводит к его экономии по сравнению с раздельной схемой энергоснабжения, в то же время с увеличением ТЭЦ и начальных параметров пара возрастает объем топлива, сжигаемого в городах, и вредных выбросов. Для умень­шения вредного влияния электростанций на окружающую среду требуется широкое внедрение «чистых» в экологическом отноше­нии электростанций (солнечных, ветровых, геотермальных, при­ливных).

Одним из направлений ресурсосберегающих технологий явля­ется использование побочных, или вторичных, энергоресурсов. Под побочными (вторичными) энергетическими ресурсами (ПЭР) понимаются ресурсы, полученные в качестве побочного продукта или отхода основного производства. Для уменьшения затрат необ­ходимо стремиться к максимальному сокращению выхода побоч­ных энергоресурсов за счет лучшего использования первичного топлива в технологическом агрегате и рациональных режимов его работы. Для этого разрабатываются методы совершенствования организации технологических процессов и режимов работы агре­гатов, улучшения теплоизоляции, применения рекуперации, ре­генерации, промежуточных подогревов и т. п. Если эти мероприя­тия не обеспечивают полного использования энергетических ре­сурсов в пределах технологического агрегата, то образуются ПЭР. Не менее важной является эффективная очистка уходящих газов для получения дополнительной продукции. Экономия топлива, извлечение серы и других элементов из уходящих газов обеспечи­вают заметный экологический эффект, так как при использова­нии ПЭР не требуется дополнительная добыча сырья, топлива и их применение для производства того же объема конечной про­дукции.

Побочные энергетические ресурсы могут использоваться или непосредственно для удовлетворения потребности в теплоте, топ­ливе, или в утилизационных установках для производства тепло­ты, электроэнергии, холода, механической работы. Возможны следующие основные направления использования побочных энер­горесурсов:

топливное — непосредственное использование горючих ПЭР в качестве топлива;

тепловое — применение теплоты, получаемой непосредствен­но в виде ПЭР и вырабатываемой за счет ПЭР в утилизационных установках; выработка холода за счет ПЭР в абсорбционных холо­дильных установках, пара в котлах-утилизаторах; использование


утилизированной теплоты отработавших газов газовых турбин ком­прессорных станций магистральных газопроводов для получения пресной воды и др.;

силовое — использование потребителями механической или электрической энергии, вырабатываемой в утилизационных уста­новках за счет ПЭР;

комбинированное — употребление теплоты и электроэнергии, одновременно вырабатываемых за счет ПЭР в утилизационных ус­тановках (утилизационных ТЭЦ) по теплофикационному циклу.

При раздельном централизованном энергоснабжении (элек­троснабжение из энергосистемы и теплоснабжение от котельной предприятия) и использовании побочных энергетических ресур­сов для производства теплоты получается экономия топлива в котельной, а при их использовании для производства электро­энергии — экономия топлива в энергосистеме. При энергоснаб­жении предприятия от ТЭЦ возможны случаи, когда использова­ние побочных энергоресурсов для производства теплоты приво­дит в первый период к сокращению отпуска теплоты из отборов турбин ТЭЦ и, следовательно, уменьшению выработки электро­энергии по теплофикационному режиму. Это уменьшение ком­пенсируется дополнительной выработкой электроэнергии в энер­госистеме по конденсационному циклу с большим расходом топ­лива, поэтому достигаемая в этом случае экономия топлива от использования побочных (вторичных) энергоресурсов будет со­ответственно ниже, чем при раздельной схеме. С ростом тепловой нагрузки района теплоснабжения перерасход топлива, связанный с использованием побочных энергоресурсов, может снижаться. Таким образом, тепловая экономичность использования побоч­ных энергоресурсов при комбинированной схеме энергоснабже­ния предприятия ниже, чем при раздельной, и зависит от темпов роста тепловой нагрузки рассматриваемого района. Экономия топ­лива будет тем ниже, чем ниже параметры заменяемого теплового потребления и чем выше начальные параметры пара на ТЭЦ. При повышении параметров заменяемого отбора пара экономия топ­лива будет возрастать в большей мере, чем при раздельной схеме. Эффективность использования низкопотенциальной теплоты зна­чительно выше при раздельной схеме.


где Эу — количество электроэнергии, отпущенное утилизацион­ной установкой, тыс. кВт • ч; ∆ ЭЭ с — изменение потерь электро­энергии в электрических сетях, тыс. кВт • ч; r ссредний относи-


При использовании побочных энергоресурсов для производ­ства электроэнергии в конденсационных утилизационных паро­турбинных установках экономия условного топлива в энергоси­стеме составит, т:


тельный прирост расхода условного топлива в энергосистеме, со­ответствующий ее разгрузке при использовании утилизационной установки, т/(МВт • ч).

Применение пара утилизационных установок для комбиниро­ванного производства теплоты и электрической энергии приво­дит к меньшей экономии топлива, чем при использовании пара только для электроснабжения, если получаемый при этом отбор­ный пар вызывает снижение величин отборов пара теплофикаци­онных турбин. При одинаковом объеме утилизированных побоч­ных энергоресурсов в течение года их использование для произ­водства теплоты дает большую экономию топлива, чем для про­изводства электроэнергии. Это связано с тем, что выработка элек­троэнергии утилизационными установками обычно обеспечивает разгрузку более экономичных агрегатов энергосистемы, чем сами утилизационные установки. Если годовая потребность в теплоте данного предприятия и нагрузка прилегающего к нему комму­нально-бытовой зоны ниже, чем возможная отдача, то сравни­тельная экономичность может изменяться при использовании побочных энергоресурсов.

Комбинированное применение побочных энергоресурсов воз­можно только зимой, в период большой тепловой нагрузки. В лет­ний период пар утилизационных установок может использовать­ся лишь для производства электроэнергии. Суточный и годовой режим работы утилизационной установки определяется техно­логическим процессом и может не совпадать с режимом тепло-потребления. При пиковом характере графика выхода побочных энергоресурсов может оказаться целесообразным использование специальных аккумуляторов теплоты или неполное использова­ние побочных энергоресурсов (если это не вызывает загрязнения окружающей среды).

Снижение годового числа часов использования установленной мощности утилизационной установки ведет к уменьшению эко­номии топлива, увеличению удельных капитальных затрат и го­довых эксплуатационных расходов, приходящихся на единицу от­пущенной теплоты.

Ограничений в использовании побочных энергоресурсов для производства электроэнергии практически нет. Однако может по­требоваться дублирование части мощности утилизационных уста­новок мощностями электростанций энергосистемы из-за нерав­номерности режима производства электроэнергии побочных энер­горесурсов, определяемой технологическим режимом их выхода от основного производства.

Экономичность и рациональное направление использования по­бочных энергоресурсов зависит от большого числа динамичных по времени параметров, связанных с характеристиками техноло­гических процессов, схемой энергоснабжения промышленного


узла, технико-экономическими показателями утилизационных установок, замещаемого топлива, замещаемых установок и т.п. Выбор оптимального направления и степени использования по­бочных энергоресурсов производится на основе технико-эконо­мических расчетов.

Контрольные вопросы

1. Какие факторы следует учитывать при решении вопроса о размеще­
нии энергетических источников?

2. Какие мероприятия снижают вредное влияние электростанций на
окружающую среду?

3. В каких случаях образуются ПЭР?

4. Что дает с экономической точки зрения использование ПЭР?


Поделиться:



Последнее изменение этой страницы: 2019-05-18; Просмотров: 530; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.022 с.)
Главная | Случайная страница | Обратная связь