Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ПРОГРАММА ПОВЫШЕНИЯ НАДЕЖНОСТИ



Менеджмент риска

ПРОГРАММА ПОВЫШЕНИЯ НАДЕЖНОСТИ

IEC 61014:2003

Programme for reliability growth (MOD)

Москва Стандартинформ 2006

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 «Стандартизация в Российской Федерации. Основные положения».

Сведения о стандарте

1. ПОДГОТОВЛЕН Открытым акционерным обществом «Научно-исследовательский центр контроля и диагностики технических систем» (ОАО НИЦ КД) на основе собственного аутентичного перевода стандарта, указанного в пункте 4

2. ВНЕСЕН Управлением развития, информационного обеспечения Федерального агентства по техническому регулированию и метрологии

3. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 30 сентября 2005 г. № 236-ст

4. Настоящий стандарт является модифицированным по отношению к международному стандарту МЭК 61014:2003 «Программа повышения надежности» (IEC 61014:2003 «Programme for reliability growth», MOD) путем внесения технических отклонений, объяснение которых представлено во введении к настоящему стандарту.

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5-2004 (подраздел 3.5).

Изменения, введенные в настоящий стандарт по отношению к международному стандарту, обусловлены необходимостью наиболее полного достижения целей национальной стандартизации

5. ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок - в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте национального органа Российской Федерации по стандартизации в сети Интернет.

Содержание

1. Область применения 2. Нормативные ссылки 3 Термины и определения 4 Основные принципы 4.1 Общие положения 4.2 Происхождение слабых мест и отказов 4.3 Основные принципы повышения надежности при проектировании продукции. Общие принципы разработки надежности 4.4 Основные принципы повышения надежности на стадии испытаний 4.5 Планирование повышения надежности и оценка достигнутой надежности на стадии проектирования 5 Аспекты менеджмента 5.1 Общие положения 5.2 Процедуры, включающие процессы на стадии проектирования 5.3 Взаимодействия и обмен информацией 5.4 Трудовые ресурсы и затраты на стадии проектирования 5.5 Эффективность затрат 6 Планирование и выполнение программы повышения надежности 6.1 Концепция и краткий обзор интегрированного повышения надежности 6.2 Действия по повышению надежности на этапе проектирования 6.3 Действия по повышению надежности на стадии валидации 6.4 Испытания на повышение надежности 7 Повышение надежности при эксплуатации Приложение А (справочное) Приложение В (справочное) Библиография

Введение

Совершенствование продукции в соответствии с программой повышения надежности должно быть частью действий в сфере надежности при разработке продукции. Это особенно важно для проекта, в котором используются новые методы, компоненты или значительное место занимает программное обеспечение. В этом случае, программа может выявить со временем много слабых мест, причины которых связаны с проектом. Уменьшение вероятности отказа из-за этих причин в максимально возможной степени позволяет предотвратить их появление на испытаниях или при эксплуатации. На этой последней стадии корректировка проекта обычно является очень сложной, дорогостоящей и отнимает много времени.

Стоимость жизненного цикла может быть снижена, если необходимые изменения проекта сделаны на самой ранней стадии.

Раздел 1 МЭК 60300-3-5 [1] относит к «программе повышения (или совершенствования) надежности» проведение анализа надежности оборудования и испытания на надежность при проектировании с целью повышения надежности. В процессе анализа надежности проекта применяют аналитические методы, описанные в ГОСТ Р 51901.5 (МЭК 60300-3-1). Анализ надежности проекта имеет особое значение, поскольку позволяет провести раннюю идентификацию потенциально слабых мест проекта, задолго до завершения этапа проектирования. Введение в проект модификаций на этой стадии является недорогим и относительно простым, не вызывая существенных изменений в разработке, задержек при выполнении программы, модификации производства и производственных процессов.

Программа повышения надежности, интегрированная в процессы проектирования и разработки продукции (интегрированная разработка надежности), позволяет сократить время разработки продукции, планировать затраты и снизить стоимость всей программы.

Хотя программа испытаний на повышение надежности весьма эффективна для раскрытия потенциальных проблем эксплуатации, она обычно требует больших затрат времени испытаний и ресурсов. Корректирующие действия в этом случае являются значительно более дорогостоящими, чем в ситуации, когда они проводятся на ранних стадиях разработки проекта. Кроме того, продолжительность этих испытаний может серьезно повлиять на маркетинг и график введения системы.

Рентабельным решением этих проблем является программа повышения надежности, полностью интегрированная в процессы проектирования, оценки и испытаний. Программа требует активного участия руководителя проекта, а часто и участия заказчика. За прошлые несколько лет ведущие организации промышленности разработали и применили аналитический и испытательный методы, полностью интегрированные в процесс проектирования, для повышения надежности на стадии проектирования продукции. Эта технология изложена в настоящем стандарте и рассматривается в разделе 6.

В отличие от применяемого международного стандарта в настоящий стандарт не включены ссылки на МЭК 60050-191:1990 «Международный электротехнический словарь. Глава 191. Надежность и качество обслуживания», который нецелесообразно применять в национальном стандарте из-за отсутствия принятых гармонизированных национальных стандартов. В соответствии с этим изменено содержание раздела 2. Кроме того, изменена нумерация пунктов раздела 6.. Сравнение структуры настоящего стандарта со структурой указанного международного стандарта приведено в дополнительном приложении В.

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
Менеджмент риска ПРОГРАММА ПОВЫШЕНИЯ НАДЁЖНОСТИ Risk management. Programme for reliability growth  

Дата введения - 2006 - 02 - 01

Область применения

Настоящий стандарт устанавливает требования и дает рекомендации для устранения слабых мест из аппаратных объектов и программного обеспечения с целью повышения надежности.

Стандарт применяют, когда спецификация на продукцию требует выполнения программы повышения надежности оборудования (электронного, электромеханического, механических аппаратных средств, а также программного обеспечения) или когда требуется доработка проекта.

Рекомендации сопровождаются описаниями управления, планирования, испытаний (лабораторных или эксплуатационных), анализа отказов, корректирующих методов.

Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ Р ИСО 9000-2001 Системы менеджмента качества. Основные положения и словарь

ГОСТ Р ИСО 9001-2001 Системы менеджмента качества. Требования

ГОСТ Р 51901.2-2005 (МЭК 60300-1:2003) Менеджмент риска. Системы менеджмента надежности

ГОСТ Р 51901.5-2005 (МЭК 60300-3-1:2003) Менеджмент риска. Руководство по применению методов анализа надежности

ГОСТ Р 51901.13-2005 (МЭК 61025:1990) Менеджмент риска. Анализ дерева неисправностей

ГОСТ Р 51901.16-2005 (МЭК 61164:1995) Менеджмент риска. Повышение надежности. Статистические критерии и методы оценки

ГОСТ 27.310-95 Надежность в технике. Анализ видов, последствий и критичности отказов. Основные положения.

Примечание: При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте национального органа Российской Федерации по стандартизации в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться замененным (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями.

Примечание: Для анализа данных испытаний на повышение надежности важно различать термины «параметр потока отказов» (для восстанавливаемых объектов) и «интенсивность отказов» или «мгновенная интенсивность отказов» (для невосстанавливаемых объектов).

3.1 элемент (объект) (Item entity): Любая часть, компонент, устройство, подсистема, функциональный модуль, оборудование или система, которые рассматриваются самостоятельно.

Примечание: Элемент (объект) может представлять собой аппаратные средства, программное обеспечение или то и другое вместе и может в специфических случаях включать персонал.

3.2 совершенствование надежности (reliability improvement): Процесс, предпринятый с целью повышения надежности и направленный на устранение причин систематических отказов и/или уменьшения вероятности появления других отказов.

Примечания:

1. Метод, описанный в настоящем стандарте, направлен на разработку корректирующих модификаций, обеспечивающих сокращение количества слабых мест системы и вероятности их появления.

2. Для любого объекта имеются пределы реального и экономического совершенствования и достижимого уровня повышения надежности.

3.3 повышение надежности (reliability growth): Состояние, характеризуемое совершенствованием показателей надежности объекта во времени.

Примечание: Моделирование (прогнозирование) и анализ совершенствования надежности на стадии проектирования основаны на стандартной оценке ожидаемой надежности продукции в пределах заданного периода времени.

3.4 интегрированная разработка надежности (integrated reliability engineering): Инженерный метод, состоящий из множества методов анализа надежности/ безотказности, интегрированных во все технические стадии и действия, относящиеся к продукции от стадии разработки до эксплуатации при взаимодействии всех заинтересованных сторон.

3.5 целевое значение надежности продукции (product reliability goal): Требования надежности для продукции, основанные на целях предприятия, требованиях рынка или необходимой вероятности успешного выполнения задачи, которая является разумно достижимой согласно прошлому опыту и развитию техники.

Примечание: Для некоторых проектов требования надежности устанавливаются заказчиком. Целевое значение надежности для продукции является итоговым значением процесса повышения надежности.

3.6 систематические слабые места (systematic weakness): Недоработки, которые могут быть устранены или влияние которых уменьшено только введением модификаций в проект, производственный процесс, процедуры эксплуатации, документацию или замены нестандартных компонент компонентами с более высокой надежностью.

Примечания:

1. Слабые места часто являются источником отказов и связаны со слабыми местами в проекте или производственном процессе, или документации.

2. Ремонт или замена (или перезапуск в случае программного обеспечения) без модификации могут привести к отказам того же самого вида.

3. Слабые места программного обеспечения всегда являются систематическими.

3.7 остаточные слабые места (residual weakness): Слабые места, которые не являются систематическими.

Примечания:

1. Для остаточных слабых мест риск отказа соответствующего вида является маленьким или даже незначительным в пределах ожидаемого времени испытаний.

2. Слабые места программного обеспечения не могут быть остаточными.

3.8 отказ (failure): Потеря объектом способности исполнять требуемую функцию.

Примечания:

1. В результате объект получает неисправность.

2. Отказ - это событие, в отличие от неисправности, которая является состоянием.

3. Термин «потеря» подразумевает, что объект имел способность исполнять требуемую функцию и затем утратил ее. Если проект системы способен обеспечить выполнение заданного требования эффективности, то отказ - утрата этой способности.

3.9 режим отказа (failure mode): Способ, которым система или компонент прекращают исполнять свою функцию, предусмотренную проектом.

Примечания:

1. Режим отказа может быть охарактеризован частотой его появления или вероятностью его появления для включения в показатели надежности компонента или системы.

2. Для исследования надежности системы в предназначенных условиях эксплуатации должны быть исследованы соответствующие режимы отказов, их причины, частоты или вероятности их появления.

3.10 уместный отказ (relevant failure): Отказ, который должен быть включен в результаты испытаний, данные эксплуатации и использован при расчетах оценки показателя надежности.

Примечания:

1. Критерии для включения в уместные отказы должны быть установлены.

2. Критерии уместных отказов описаны в 6.4.6.

3.11 неуместный отказ (non-relevant failure): Отказ, который должен быть исключен из результатов испытаний, данных эксплуатации и не должен использоваться при расчетах оценки показателя надежности.

Примечание: Критерии для выделения неуместных отказов описаны в 6.4.5.

3.12 систематический отказ (systematic failure): Отказ, для которого анализ физических процессов, обстоятельств, условий или модель отказа указывают на возможность его повторного появления.

Примечания:

1 Корректирующее техническое обслуживание без модификации обычно не устраняет причину отказа.

2 Систематический отказ может быть вызван по желанию моделированием причины отказа.

3. В настоящем стандарте систематический отказ интерпретируется как отказ, следующий из систематического слабого места.

3.13 остаточный отказ (residual failure): Отказ, вызванный остаточными слабыми местами.

3.14 отказ категории A (failure category А): Систематический отказ, выявленный на испытаниях, относительно которого руководство принимает решение не делать корректирующей модификации из-за затрат времени, технологических ограничений или других причин.

3.15 отказ категории В (failure category В): Систематический отказ, выявленный при испытаниях, для которого руководство принимает решение ввести корректирующую модификацию

Примечание: Классификация отказа не применима для повышения надежности на стадии проектирования продукции, поскольку представления о потенциальных режимах отказов не позволяют это сделать. Все компоненты могут потенциально отказать в одном или другом режиме, но вероятность и последствия такого события могут сильно различаться. Сначала изучаются режимы отказа и их потенциальные причины, которые могут иметь высокую вероятность реализации, и, если ресурсы и графики позволяют, исследуются другие режимы отказа, менее вероятные. Продукция с большим количеством компонентов, каждый из которых может иметь много режимов отказа, а каждый из режимов отказа может иметь много причин, требует много усилий для классификации режимов отказов или их причин и может быть слишком сложной и дорогостоящей для обоснования классификации. Поэтому классификация отказов не применяется для повышения надежности продукции на стадии проектирования.

3.16 неисправность (fault): Состояние объекта, характеризующееся неспособностью исполнять требуемую функцию, исключая время профилактического технического обслуживания или других запланированных действий, или простои из-за недостатка внешних ресурсов.

Примечание : Неисправность часто является результатом отказа объекта, но может существовать и без отказа.

3.17 режим неисправности (fault mode): Одно из возможных состояний дефектного объекта для заданной требуемой функции.

Примечание: Использование термина «режим отказа» в этом смысле допустимо для идентификации потенциального отказа объекта или компонента.

3.18 мгновенный показатель надежности: (instantaneous reliability measure): Показатель надежности для объекта в данной точке времени (прошлого или настоящего) при выполнении программы повышения надежности.

Примечания:

1. Показатель надежности, используемый при анализе проекта, - это математическое ожидание показателя надежности продукции в заданный момент времени или его эквивалентный параметр потока отказов, рассчитанный на основе оценок показателей надежности продукции в исследуемый период времени.

2. Иногда показатель надежности может быть выражен с помощью эквивалентных значений средней наработки на отказ (MTBF) или средней наработки до отказа (MTTF), вычисленных на основе оценок надежности продукции в исследуемый период времени.

3. Используемый в настоящем стандарте термин «время» может быть заменен другими характеристиками, такими как циклы, расстояния (мили, километры) и т.п.

4. В настоящем стандарте термин «параметр потока отказов» используется для показателя надежности восстанавливаемой системы, а такие термины как «интенсивность отказов», «мгновенная интенсивность отказов» применяются для невосстанавливаемой системы, MTBF и MTTF могут заменять друг друга соответственно. Далее система предполагается восстанавливаемой, если определенно не заявлено обратное.

5. Показатели надежности системы, обычно используемые при испытаниях, - это параметр потока отказов, MTBF, (мгновенная) интенсивность отказов, MTTF.

6. Значения показателей надежности оцениваются на основе моделей повышения надежности, определенных отдельно для улучшения продукции на стадиях проектирования и испытаний.

3.19 экстраполируемый показатель надежности (extrapolated reliability measure): Показатель надежности объекта, предсказанный для заданной будущей точки в программе испытаний на повышение надежности, если много корректирующих модификаций присутствует в программе.

Примечания:

1. Применение термина «экстраполяция» предполагает наличие ограничений по времени.

2. Условия предыдущих испытаний и процедуры корректирующих модификаций принимаются в неизменном виде.

3. Значение показателя надежности оценивается на основе модели повышения надежности, применяемой к предыдущим данным. Тот же подход применяется к будущему периоду программы.

4. Наиболее часто используемые показатели надежности - (мгновенный) параметр потока отказов, MTBF, (мгновенная) интенсивность отказов, MTTF.

5. Экстраполируемый показатель надежности не применим для использования в программе повышения надежности в процессе проектирования.

3.20. прогнозируемый показатель надежности (projected reliability measure): Показатель надежности, предсказанный для объекта после одновременного введения ряда корректирующих модификаций.

Примечания:

1. Модификации часто вводятся между двумя последовательными этапами программы.

2. Показатели надежности, обычно используемые при проверке повышения надежности, - это (мгновенный) параметр потока отказов, MTBF, (мгновенная) интенсивность отказов, MTTF.

3. Показатель надежности в процессе повышения надежности на этапе проектирования - это показатель надежности продукции, прогнозируемый для заданного периода времени, такого как гарантийный период или срок службы.

4. Значения этих показателей оцениваются на основе модели повышения надежности.

3.21 профиль использования (usage profile): Детальная информация по вопросам эксплуатации и условий окружающей среды (их содержание, ограничения продолжительности и последовательности) для новой продукции.

3.22 отчет об эффективности эксплуатации (field performance report): Обзор и анализ данных эксплуатации, подходящих для разрабатываемой продукции.

3.23 спецификация надежности (product specification for reliability): Описание ожидаемой эффективности продукции для указанного периода времени с ожидаемым профилем использования.

3.24 испытания на безотказность и долговечность (reliability and life test): Испытания (на действия окружающей среды или другие воздействия), предназначенные для подтверждения или оценки вероятности появления режимов отказов или их причин, когда эти оценки трудно получить только на основе анализа.

Примечание: Эксплуатационные испытания (испытания на долговечность) выполняются для демонстрации надежности продукции.

3.25 планирование повышения надежности (reliability growth planning): Планирование действий в сфере надежности, таких как исследования, выбор материалов, испытания компонентов, способствующих повышению надежности продукции.

Примечание: Один и тот же термин может относиться к планированию параметра и величины улучшения проекта, необходимых для достижения целей в области надежности продукции. Планирование состоит из разработки аналитического представления в разделе о повышении надежности проекта и оценки величины изменений (улучшений) характеристик проекта, необходимых для достижения целей в области надежности.

3.26 предварительные оценки надежности (preliminary reliability estimates): Оценки надежности новой продукции на основе данных предыдущего проекта.

3.27 предварительное распределение надежности (preliminary reliability allocation): Распределение надежности по частям проектируемой продукции, для которых из-за недостатка информации предварительные оценки не могут быть получены.

3.28 проектные рекомендации (design guidelines): Проектный документ, в котором приводятся критерии повышения надежности продукции.

3.29 непрерывная оценка надежности при проектировании (continuous design reliability assessment): Обновление оценки надежности новой продукции одновременно с разработкой проекта и при испытании компонентов и подсистем продукции.

3.30 FMEA и сокращение режимов отказов (FMEA and failure mode mitigation): Идентификация критических и/или связанных с безопасностью режимов отказов, их причин и последствий, оценка вероятности их появления в соответствии с профилем использования и ресурсом продукции.

Примечание: Объектом уменьшения являются причины и режимы отказов с высокой вероятностью и тяжестью последствий. Очень полезным инструментом для анализа режимов отказов проекта является анализ дерева неисправностей, который является логическим представлением режимов отказов аппаратных средств.

3.31 ключевые компоненты (key components): Компоненты, которые являются существенными для достижения необходимой эффективности продукции и которые оценивались и выбирались на основе доступных и выполнимых требований надежности и условий окружающей среды.

3.32 заключительный отчет о надежности (final reliability report): Собрание методов, исследований, испытаний, результатов, опыта, полученных последствий режимов отказов, критических компонентов и их итоговой надежности, достигнутое повышение надежности, итоговая оценка надежности объекта в целом.

Примечание: Отчет включает информацию, которая должна использоваться как источник информации для ссылок, сообщений и является отправной точкой для разработки следующей версии или новых версий продукции.

3.33 оценка надежности продукции при заменах (reliability assessment of product changes): Оценка надежности при заменах компонентов продукции в процессе проектирования или производства.

Примечание: Изменения надежности продукции могут быть следствием корректирующих действий, сокращения затрат на продукцию или изменений в процессе производства.

3.34 непрерывные испытания на надежность (continuing reliability testing): Испытания на надежность находящейся в производстве партии продукции для подтверждения неснижения надежности продукции под воздействием процессов производства или большого количества компонентов низкого качества.

3.35 анализ отчета об отказах системы и корректирующих действий (FRACAS) (failure reporting analysis and corrective action system): Система закрытого цикла для обеспечения прослеживаемости действий проекта вплоть до его завершения.

Примечание: FRACAS - источник информации об эксплуатационных и экспериментальных отказах продукции, связанной с новым проектом. Анализ может помочь выявлению режимов отказов в исследуемом проекте.

3.36 система (system): Совокупность взаимосвязанных и взаимодействующих объектов. [ГОСТ Р ИСО 9000, статья 3.2.1]

Примечания:

1. С позиции надежности система должна иметь:

а) определенную цель, выраженную через требования к функциям системы;

b) установленные условия эксплуатации и использования.

2. Система имеет иерархическую структуру.

3.37 компонент (component): Элемент, рассматриваемый на самом низком уровне анализа системы.

3.38 распределение (allocation): Процедура, применяемая при проектировании системы (объекта) и направленная на распределение требований к значениям характеристик объекта по компонентам и подсистемам в соответствии с установленным критерием.

3.39 интегрированное повышение надежности (integrated reliability growth): Повышение надежности, достигнутое на основе объединения информации анализа, испытаний, рабочего проекта и других данных и действий по идентификации и сокращению потенциальных режимов отказов объекта.

3.40 перемежающийся отказ (intermittent failure): Отказ, который не может быть восстановлен каждый раз после тестирования и появляется спорадически.

3.41 повторяющийся отказ (recurrent failure): Отказ, который появляется повторно.

3.42 список действий (action list): Список, подготовленный для выделения действий, необходимых для обеспечения повышения надежности.

3.43 условие или образец отказа (condition or pattern of failure): Способ выявления некоторых отказов.

3.44 анализ обстоятельств (circumstantial analysis): Анализ обстоятельств, в которых появляются некоторые отказы.

3.45 эквивалентная интенсивность отказов (equivalent failure rate): Интенсивность отказов компонента или объекта, рассчитанная для достигнутой им надежности и соответствующего периода времени в предположении о постоянной интенсивности отказов в этот период времени.

Примечание: Полученное значение эквивалентной интенсивности отказов допустимо применять только для выделенного периода времени.

Основные принципы

Общие положения

Основные принципы повышения надежности продукции сохраняются при обнаружении слабых мест продукции при проектировании, анализе и испытаниях.

В программе анализа повышения надежности на этапе проектирования проводится анализ проектируемой продукции для определения слабых мест среди компонентов продукции и их взаимодействий при эксплуатации в ожидаемых и возможных экстремальных условиях окружающей среды. Результаты анализа проекта необходимо сравнивать с целями и требованиями надежности продукции, а для необходимых улучшений разрабатывать рекомендации. Для определения потенциальных отказов, улучшений и повышения надежности применяется инструментальный анализ.

Анализ проекта не должен ограничиваться электроникой, поскольку механические компоненты также подвержены отказам. По этой причине более подходящим показателем надежности является вероятность безотказной работы или вероятность отказа, а не интенсивность отказов или параметр потока отказов, поскольку отказы механических компонентов часто не могут быть описаны постоянной интенсивностью отказов.

Для выявления потенциальных режимов отказов, особенно там, где анализ является слишком сложным или может привести к сомнительным результатам, могут применяться все аналитические методы надежности. Режимы отказа, имеющие высокую вероятность появления, устраняют улучшением проекта, а затем определяют новую оценку надежности. Таким образом, повышение надежности зафиксировано, а продвижение проекта зарегистрировано. Анализ надежности проекта охватывает также встроенное программное обеспечение и аппаратно-программные взаимодействия.

В программе испытаний на повышение надежности для выявления слабых мест и совершенствования надежности системы, модуля, подсистемы или компонента используются лабораторные или эксплуатационные испытания. Появление отказа должно диагностироваться, после чего должны быть выполнены ремонт и/или замена, а затем соответствующие испытания должны быть продолжены. Одновременно с испытаниями необходимо анализировать прошлые отказы для поиска их основных причин, а также для определения, где должны быть включены в проект соответствующие корректирующие модификации или другие процедуры, направленные на повышение надежности. Эта методология применяется как к аппаратным средствам, так и к встроенному программному обеспечению.

Программа повышения надежности для неремонтируемых и невосстанавливаемых объектов или компонентов должна только обеспечивать получение последовательных выборок, каждая из которых соответствует более высокой надежности проекта, чем предыдущая.

Общие положения

Слабые места обычно неизвестны, пока они не проявятся через отказы при использовании продукции. Однако слабое место может быть создано намного раньше появления отказа непреднамеренной человеческой ошибкой в некоторой операции, воздействующей на элемент и вызывающей чрезмерные эксплуатационные нагрузки или воздействия окружающей среды, или неадекватное ухудшение компонента, при котором его прочность не может противостоять ожидаемому напряжению или комбинации напряжений. Слабые места могут быть присущи материалу или компоненту из-за процесса, не находящегося в полном управлении.

Остаточные слабые места

Остаточные слабые места связаны с неконтролируемыми изменениями объекта или его компонентов. Факторы, приведенные в 4.2.2, также способствуют проявлению остаточных слабых мест, но их воздействие может быть уменьшено путем обучения персонала и контроля качества.

Остаточные слабые места присутствуют только в аппаратных средствах. В отличие от систематических слабых мест их последствия ограничиваются воздействиями на отдельные элементы. Существенная часть существующих остаточных слабых мест в объекте может быть полностью устранена с помощью проверки на надежность с отбраковкой, однако оставшиеся слабые места приводят к отказам через случайные интервалы времени на протяжении всего времени жизни объекта. Любой обширный ремонт, замена или модификация вносят риск появления остаточных слабых мест.

Остаточные слабые места очень трудно обнаружить в процессе испытаний, так как они присутствуют только в малой доле продукции. Для их обнаружения могут требоваться большие объемы выборки. Лучшим способом избежать остаточных слабых мест является защита от ошибок, использование контроля качества (статистического управления процессами) или адекватных ограничений при проектировании. Следует избегать термина «случайный отказ». Время появления отказа может быть случайным, но причина отказа является детерминированной, даже если неизвестна физика процесса, приводящего к отказу.

Рисунок 1 - Сравнение процесса повышения надежности и ремонта

Программа повышения надежности для неремонтируемых и невосстанавливаемых объектов или компонентов (расходуемые объекты, ракеты) должна обеспечивать последовательное получение измененных выборок, каждая из которых соответствует более высокой надежности проектируемого объекта.

Испытания на повышение надежности программного обеспечения не зависят от физической среды (например, температуры и влажности), но могут зависеть от других условий (например, использования и сопровождения) и не зависят от разбраковки надежности. Однако оценки показателей надежности программного обеспечения могут быть получены только на основе наблюдений программных средств при работе испытуемых или эксплуатируемых аппаратных средств, программного выполнения кодирования, мониторинга и регистрации отказов. Следовательно, на повышение надежности программного обеспечения воздействует способность испытаний выявлять слабые места в ходе выполнения программы. Поэтому такие испытания должны быть настолько всесторонними, насколько возможно, и включать все специфические и непредвиденные условия, которые могут возникать при использовании.

Планирование повышения надежности и оценка достигнутой надежности на стадии проектирования

Общие положения

Так как параметр потока отказов испытуемого объекта уменьшается после успешной модификации, методы оценки мгновенной интенсивности отказов, эквивалентной интенсивности отказов, параметра потока отказов, вероятности отказов или MTBF, которые предполагают параметр потока отказов постоянным, не допустимы в процессе повышения надежности. Однако в каждой точке введения улучшений концепция постоянного эквивалентного параметра потока отказов (интенсивности отказов) может применяться.

Настоящий стандарт выделяет принципы математического моделирования для оценки достигнутого повышения и проектируемой надежности. Соответствующие методы могут использоваться при планировании программ улучшения надежности на основе подсчета оценки количества и важности проблем в списке действий, а также изменений проекта или времени, необходимого для достижения указанной цели надежности.

Рисунок 4 - Уместные испытательные или эксплуатационные отказы во времени

Аспекты менеджмента

Общие положения

Менеджмент должен установить процедуры для планирования и выполнения программы повышения надежности и важные связи между испытательными действиями и ответственностью за корректирующие модификации. Соответствующие рекомендации приведены в ГОСТ Р 51901.2.

При высоких требованиях надежности и коротком времени разработки продукции невозможно сначала проектировать продукцию, а затем испытывать ее на надежность. Поэтому качество проектируемой продукции, компонентов и производственных процессов должно создаваться в процессе проектирования. При проведении анализа и испытаний потенциальные проблемы и режимы отказов необходимо идентифицировать, верифицировать, проанализировать и принять по ним решение (о внесении изменений в проект).

Процесс повышения надежности включает классическую концепцию повышения надежности, когда продукция выпущена на рынок или направлена в эксплуатацию, но главный акцент делается на действиях по повышению надежности до начала производства продукции.

Для информирования о состоянии надежности отчет по процессу повышения надежности направляют руководству и, если это предусмотрено контрактом, заказчику. Такой отчет включают в каждый промежуточный отчет по проекту при каждом выпуске нового проекта и подготовке производства для каждого опытного образца. Отчет должен включать проектирование будущей надежности на основе анализа испытаний, запланированных действий улучшения и последствий таких действий в предыдущих проектах. Такой подход позволяет на ранних этапах обнаружить возможные различия между проектируемой надежностью и целями по надежности для продукции. В случае существенного расхождения можно вовремя добавить ресурсы. Однако необходимо подчеркнуть, что проектируемая надежность основана на запланированных действиях улучшения и их, ранее выявленных последствиях. Если число запланированных действий сокращено, например, из-за недостатка времени или ресурсов, то нельзя ожидать проектируемого повышения надежности.

Необходимо отметить, что действия, которые имели определенные последствия в предыдущих проектах, необязательно будут иметь те же самые последствия для нового проекта. Кроме того, могли измениться технология, группа проектирования или руководитель проекта. Поскольку компания имеет опыт предыдущего проекта, можно ожидать, что надежность в начале процесса проектирования ниже, так как первые отказы проще устранить, чем последние. Однако для одинаковых действий нельзя ожидать одинаковых последствий для нового и старого проектов.

Рисунок 5 - Общая структура программы повышения надежности

При планировании целей и программы (см, раздел 6) должен быть предусмотрен период подготовки. Это позволяет всему персоналу ознакомиться с испытуемым оборудованием и официальными, и неформальными связями между испытаниями и проектными действиями (см. 5.3). Требования к испытаниям описаны в 6.4, классификация отказов - в 6.4.4, а корректирующая модификация - в 6.4.8. Эти три процедуры изображены на рисунке 5.

Математическое моделирование для программы повышения надежности на стадии разработки/проектирования продукции может быть начато, как только получена информация относительно начальной надежности продукции и установлена цель надежности.

Математическое моделирование (см. 6.4.9) для программы испытаний на повышение надежности не должно начинаться, пока не произошло статистически значимое количество отказов. Чтобы избежать получения ложных результатов, моделирование не должно применяться, если требования модели не выполняются.

Регистрация отказов, выявленных на испытаниях, состоит по существу из ежедневной детальной регистрации, обратной связи с процессом проектирования и пользователем (см. 6.4.12).

Рисунок 6 - Диаграмма взаимодействий и функций

На рисунке 6 показан пример существенных линий взаимодействия. Различные поставщики могут относиться к различным организациям, а персонал может иметь различные обязанности или несколько обязанностей.

Эффективность затрат

Инвестиции в программе повышения надежности могут дать существенную экономию затрат на полный жизненный цикл всей совокупности объектов.

Эта экономия зависит от многих факторов, включая размер совокупности объектов, среднюю длину жизненного цикла, стоимость ремонта и объем инвестиций в средствах технического обслуживания при эксплуатации. Обычно анализ эффективности затрат определяет затраты на эффективность программы повышения надежности.

Источником существенного дополнения экономии затрат является то, что в случае изменений проекта не требуется никаких изменений в подготовке рабочих мест, компоновке монтажных плат схемы или в производственном процессе, если изменения сделаны до завершения этих действий.

Планирование и выполнение программы повышения надежности

Рисунок 7. Интегрированный процесс разработки надёжности

Этап проектирования

Оценки и моделирование надежности FMEA/FTA выполняются для определения надежности продукции на различных стадиях разработки проекта, а также идентификации и сокращения режимов отказов, уменьшения их последствий, которые могли бы представлять потенциальную проблему для эксплуатации продукции. Сокращение режимов отказов и соответствующих причин или минимизация их последствий способствуют повышению надежности продукции.

Анализ режимов и последствий отказов FMEA (ГОСТ 27.310) при проектировании должен выполняться для каждого вида продукции и обеспечивать оценку всех режимов отказов и соответствующих причин, включая вероятности их появления.

Для оценки вероятности отказа или вероятности безотказной работы системы в целом отдельные режимы отказов и их причины должны быть связаны с аппаратными средствами и представлены в виде фактической архитектуры системы. Для этого могут использоваться традиционные методы моделирования надежности для представления структуры аппаратных средств, в том числе ручные, с применением программных средств по прогнозированию надежности или с использованием построения дерева неисправностей (ГОСТ Р 51901.13 иГОСТ Р 51901.5). Анализ дерева неисправностей (FTA) выполняют вручную или с использованием программного обеспечения.

FTA является нисходящим анализом и выявляет все возможные пути неисправностей, которые могут приводить к отказу отдельных блоков с помощью клапанов более низкого уровня, представляющих режимы отказов программного обеспечения или аппаратных средств. Потенциальные причины режимов отказов обычно представляют основными событиями с соответствующей вероятностью появления. Значение вероятности, соответствующее вершине событий, позволяет определять вероятность отказа (вероятность безотказной работы) продукции. Преимущество методологии использования FTA состоит в том, что анализ режимов отказов и моделирование надежности выполняются одновременно. Самостоятельного моделирования надежности не требуется, а изменения проекта легко учесть.

Для определения приоритетов сокращения режимов отказов или снижения вероятности их появления оценивают величину и тяжесть последствий отдельных режимов отказов и их причин. Приоритет следует отдавать причинам режимов отказов, которые влияют на безопасность и имеют значимую вероятность появления. Режимы отказов, которые являются критическими для эксплуатации продукции и имеют высокую вероятность появления, также относят к приоритетным. Возможным решением может быть изменение надежности компонента, если она имеет существенное влияние на надежность системы в целом или ее блока. Правильный выбор ключевых компонентов гарантирует, что компоненты, которые существенно влияют на функции продукции, имеют требуемую надежность. Надежность этих компонентов обычно вычисляют на основе данных ресурсных испытаний, полученных от изготовителей компонентов с учетом условий использования продукции.

Сокращение режимов отказов является результатом тесного сотрудничества проектировщиков и специалистов по надежности в поиске решений повышения надежности продукции. Такое решение может включать изменения проекта и компонент, ограничение допустимых значений характеристик компонентов, изменение компоновки тепловых режимов и другие решения. Сокращение режимов отказов способствует повышению надежности продукции.

Вместо аналитического определения надежности компонентов могут проводиться испытания на надежность. Компоненты могут быть электронными компонентами, блоками или подсистемами продукции, а испытания могут проводиться для определения назначенной наработки, назначенного ресурса или выполнения задания. Это особенно полезно в случаях, когда проектируемая продукция включает много покупных компонентов. Испытания в этом случае предназначены для подтверждения надежности компонентов в соответствии с профилем использования продукции.

Формальный и неформальный анализ проекта при решении указанных вопросов надежности способствует тесному взаимодействию проектировщиков и специалистов по надежности для создания более надежной продукции (МЭК 61160 [4]).

Оценка ремонтопригодности должна подтвердить разумную трудоемкость и стоимость технического обслуживания продукции. Эти действия не способствуют непосредственному повышению надежности, но позволяют сократить количество отказов, которые могут потребовать обширного технического обслуживания.

Мониторинг повышения надежности состоит из построения графика достигнутой надежности продукции в соответствии с оценками, полученными в процессе проектирования, проведения время от времени улучшений проекта (изменений) и сравнения полученного графика с моделью повышена надежности, запланированной для продукции. Тогда любые действия, необходимые для достижения; запланированного повышения надежности, можно выполнять своевременно.

6.2.4 Стадия подготовки производства и изготовления

Испытания компонентов и системы в целом для технической оценки производства, валидации улучшений проекта или замены компонентов, а также запланированные испытания на повышение надежности являются частью последних действий до начала производства продукции.

Тщательный отбор воздействий окружающей среды может быть сделан на опытных образцах для оценки полноты производственных процессов или на образцах промышленной партии для улучшения процесса производства.

Валидационные испытания проводят на этапах подготовки производства или изготовления продукции для валидации использования продукции в критических условиях эксплуатации и окружающей среды.

Испытания на повышение надежности - это запланированный процесс для идентификации режимов отказов продукции, не идентифицированных при более ранних исследованиях. Поскольку это один из методов повышения надежности, он описан в 6.3.

Ресурсные испытания проводят, при необходимости, для определения ресурса или надежности продукции. Часто они проводятся на компонентах, которые не были проверены изготовителем и необходимы для замены в процессе улучшения проектируемой продукции.

Отчет о надежности необходим для регистрации и документирования всех действий, относящихся к анализу надежности продукции, проведенных улучшений, испытаний и их результатов, достигнутого повышения надежности и всех результатов исследований, которые могут использоваться при проектировании другой продукции.

Общие положения

В пределах реальных экономических затрат и ограничений времени не все слабые места могут быть устранены. Систематические и остаточные не устраненные слабые места определяют поток отказов или вероятность отказа проектируемой продукции. Цель программы повышения надежности при проектировании и на стадии испытаний - устранение систематических слабых мест или снижение вероятности их появления до установленного значения. Необходимость выполнения специализированной программы испытаний на повышение надежности определяется следующими основными причинами:

a) необходимостью продолжения повышения надежности продукции, подвергая ее условиям ускоренной эксплуатации для выявления слабых мест, которые были не замечены при анализе проекта;

b) требованием заказчика демонстрации надежности продукции. В этом случае классическая демонстрация надежности с установленной продолжительностью испытаний заменяется специализированными испытаниями на повышение надежности, допускающими улучшения продукции и в то же время позволяющими подтвердить его требуемую надежность. Эти испытания могут иметь вид периода приработки или приемочных испытаний с продолжительностью, установленной в контракте.

Обычно общее время испытаний для совершенствования надежности зависит от параметра потока отказов (или MTBF), деленного на коэффициент ускорения (МЭК 60300-3-5 [1]), если надежность не была улучшена с помощью аналитических методов или испытаний, направленных на выявление возможных режимов отказов в подсистемах или блоках.

Организационные усилия, используемые в испытаниях на повышение надежности, - это отчет об отказах и система корректирующих действий, называемые иногда анализом отчета об отказах и системой корректирующих действий (FRACAS). Это система закрытого цикла, когда анализируют каждый зарегистрированный отказ. Если установлено, что отказ связан с проектом, то определяют корректирующие действия для улучшения проекта и сокращения количества отказов. Эта система допускает активное повышение надежности за счет устранения недоработок. Корректирующие действия проводятся только после валидации действий по уменьшению количества отказов.

Планирование испытаний

Общие положения

Для обеспечения своевременной поставки всех необходимых объектов и средств планирование испытаний на повышение надежности должно начинаться на ранней стадии выполнения программы. При подготовке плана испытаний программы повышения надежности, необходимо принять решения относительно:

- количества испытуемых объектов каждого типа и статуса/пересмотра соответствующего проекта;

- испытательного оборудования (стандартного и специального);

- запасных частей (модулей и компонентов);

- средств обеспечения условий и испытаний окружающей среды;

- ожидаемой продолжительности программы в календарном времени и наработке;

- трудовых ресурсов для подготовки, испытаний, обмена информацией, ремонта, анализа, исследований и модификации.

Ускоренные испытания

Поскольку слабые места обычно проявляются через отказы, в программу повышения надежности включают стимуляцию появления отказов, исключение или снижение вероятности появления отказов, которые выявляют систематические слабые места. Однако преднамеренная стимуляция обычно приме­няется в лабораторных испытаниях, а не в эксплуатации.

Выбор соответствующих воздействий окружающей среды для стимулирования отказов должен проводиться в соответствии с МЭК 60605-2 [2]. Для стимулирования появления отказов необходимо применять методы ускоренных испытаний. При этом необходимо учитывать экстремальные значения характеристик проекта, которые не должны быть превышены. Если проектная спецификация содержит экстремальные значения параметров окружающей среды (больше или равные параметрам окружающей среды для некоторых компонентов или материалов), то эти значения параметров окружающей среды не должны применяться в течение специализированных испытаний на повышение надежности. Это требование должно выполняться даже в том случае, если соответствующие компоненты или материалы могут противостоять этим экстремальным нагрузкам в течение квалификационных испытаний с ограниченной продолжительностью. Например изделие, содержащее электролитические конденсаторы, рассчитанные на номинальную температуру 85 °С, может выдержать высокотемпературные квалификационные испытания до 85 °С, но те же самые конденсаторы могут отказать при увеличенной выдержке с той же самой температурой в процессе испытаний на повышение надежности. Рабочие напряжения также должны быть усилены, но не должны превышать максимум нагрузки компонентов в испытуемом изделии,

Напряжения от воздействия окружающей среды и рабочие напряжения должны соответствовать условиям использования объекта, но могут быть предназначены для усиленного выявления скрытых слабых мест. Необходимо проявить осторожность, чтобы не ввести механизмы отказа, нетипичные для нормального использования, что может сделать математическую модель неадекватной. Отдельная техническая оценка или квалификационные испытания в критических условиях, если они проводятся являются источником дополнительных данных об отказах. Тип и степень используемого усиления нагрузок могут изменяться в соответствии с уровнем блоков.

Чтобы гарантировать обнаружение всех отказов, кроме испытательной спецификации, в процессе испытаний должен быть разработан подробный график испытаний на эффективность. Если элемент имеет встроенное программное обеспечение, то график испытаний должен охватывать все возможные режимы работы и их комбинации.

Плановое повышение надежности и мониторинг

Пользователь должен определить целевое значение показателя надежности для испытуемого оборудования.

Для оценки продвижений в повышении надежности при выполнении программы необходимо подготовить плановую кривую повышения надежности. Она покажет надежность, ожидаемую в указанных точках программы в единицах календарного времени или наработок. Если программа разбита на отдельные этапы времени, то эти точки могут совпадать с концами этапов.

Плановое повышение надежности определяют с помощью идеализированной кривой повышения надежности, которую строят на основе принятой математической модели ГОСТ Р 51901.16. Параметры этой кривой отражают реальную скорость повышения надежности и определяются на основе предыдущего опыта. Если имеются отдельные этапы, то в пределах каждого этапа должна быть установлена своя цель. В указанных точках программы фактическое повышение надежности должно сравниваться с запланированным повышением (мониторинг повышения надежности).

6.4.3 Особенности для перемонтируемых, невосстанавливаемых объектов и компонентов Принципы, которые применяются к программе повышения надежности ремонтируемых объектов, также применяют к программе повышения надежности перемонтируемых и невосстанавливаемых объектов или компонентов. Имеются, однако, некоторые различия. В этом случае наиболее используемыми показателями надежности являются интенсивность отказов и MTTF.

Объем каждой испытуемой выборки одного типа объектов должен быть как можно больше. Отказавший элемент не должен заменяться. Для выявления всех скрытых слабых мест испытания должны продолжаться параллельно с анализом систематических отказов. Для устранения систематических отказов должна проводиться корректирующая модификация объекта, после которой вся испытуемая выборка должна дорабатываться в соответствии с модификацией. Испытания должны возобновиться для проверки эффективности этой и других модификаций и продолжать выявлять скрытые слабые места. В некоторых случаях может быть принято решение продолжить испытания даже в том случае, когда начаты испытания после нового пересмотра проекта, чтобы выявить отказы, которые происходят только при более длинной наработке (например, связанные с износом).

Если износ объекта является существенным, то улучшение состоит в увеличении ресурса объекта (параметр положения распределения Вейбулла) и в уменьшении изменений ресурса (параметр формы распределения Вейбулла). Эти действия требуют применения других методов анализа, таких как анализ Вейбулла, МЭК 60605-4 [3].

Классификация отказов

Классы отказов, причины которых скрыты в проекте или конструкции, как описано в разделе 4, являются неуместными для корректирующей модификации, а также для моделирования и оценки повышения надежности. На первом этапе классификации необходимо идентифицировать и исключить неуместные отказы. На втором этапе необходимо разделить уместные отказы на систематические и остаточные отказы.

Классификация требует технического анализа, основанного на всей доступной информации исследований. Классификация пытается проследить назад концептуальную последовательность, описанную в 4.2, то есть от отказа до слабого места к характеру первоначальной причины.

Классы неуместных отказов

Неуместные отказы описаны в 7.2.1 МЭК 60300-3-5. В зависимости от специальных требований конкретных программ (как определено в соответствующей спецификации или плане), некоторые или все типы отказов, перечисленные ниже, могут быть классифицированы, как не требующие корректирующей модификации, а также как неуместные для оценки повышения надежности (см. 6.4.9).

Если отказы любого из следующих типов приводят к более широким изменениям значений надежности (например, отказы в интерфейсах, связанном оборудовании или испытательном оборудовании), они могут рассматриваться как уместные отказы для корректирующей модификации в этих областях, даже если они являются неуместными по отношению к главному элементу программы.

a) Зависимые отказы

Если отказ рассматривается как систематический, то он является уместным.

b) Эксплуатационные отказы

Если отказ рассматривается как систематический, то он является уместным.

c) Отказ в процессе корректировки или уже устраненный за счет корректировки

При использовании математических моделей для оценки повышения надежности, конкретные требования могут исключать или не исключать эти отказы.

d) Идентичные неустойчивые отказы

После первого появления любого типа отказов такие отказы могут быть неуместными. Слабые места, вызывающие отказы, вероятно, являются систематическими и, следовательно, уместными.

e) Отказ, требующий регулирования или технического обслуживания (используется только обычный оператор)

Отказы, которые могут быть исправлены этими средствами, могут быть неуместны. Если рассматривается систематический отказ, то он является уместным.

f) Компоненты, отказывающие при проведении специфических испытаний, но выполняющие свою функцию

Если общая эффективность единицы оборудования не снизилась, то отказы, которые могут быть обнаружены в процессе исследования, могут рассматриваться как неуместные.

g) Отказы, которые произошли после установленного срока службы

Отказы объектов, подверженных износу, которые отказывают после указанного минимального срока службы, могут быть неуместными.

h) Отказы в процессе разбраковки по надежности

Эти отказы должны быть неуместными для оценки повышения надежности. Однако отказы, выявляющие новые систематические слабые места при разбраковке по надежности, всегда требуют исследования и возможно корректирующей модификации,

Классы уместных отказов

Уместные отказы должны быть классифицированы как систематические или остаточные

- для решения о необходимости корректирующей модификации;

- для некоторых методов моделирования повышения надежности, чтобы обеспечить определением ввод категории отказа.

При классификации отказов полезно использовать следующие основные правила:

a) Систематические отказы

Систематические отказы после анализа физических обстоятельств или проекта - условие или модель отказа, которые могут вызвать повторные отказы. Это может подтверждаться фактическими повторениями отказа после достаточно длительного времени испытаний. Например, компонент, который находится в условиях повышенных нагрузок в состоянии слабого повышения нагрузок из-за ошибки в проекте, может проявляться в виде текущего отказа в течение достаточно длительного периода.

b) Остаточные отказы

Остаточный отказ - это отказ, который не вызывает повторного отказа и причины не указывают на то, что это вероятно (например, случайная ошибка мастера).

Классификации должны постоянно пересматриваться, поскольку более поздние события могут давать новые основания для проведения переклассификации. Это наиболее часто происходит в систематических отказах категории В (см. рисунок 8).

Категории уместных отказов

Систематические отказы должны быть отнесены к категориям А или В:

a) Отказы, не сопровождающиеся корректирующими модификациями, потому что ожидаемые результаты не устранили бы проблемы стоимости, времени или технические трудности;

b) Отказы, сопровождающиеся корректирующей модификацией, направленной на предотвращение их повторения.

Рисунок 8 - Процесс испытаний на повышение надежности

После отказа сменные части могут быть заменены на резервные для восстановления работоспособности системы. Это позволяет включить модификацию в запасной модуль и сэкономить время, не прибегая к прерыванию испытаний. Наличие набора таких запасных модулей очень удобно, но, пока эти модули не включают всех предыдущих модификаций, они должны использоваться только временно.

Эффективность модификации не известна до завершения испытаний, продолжительность которых должна быть в несколько раз больше времени испытаний до первого отказа конкретного типа слабого места. Это позволяет не только выявить, были ли воздействия конкретного слабого места успешно уменьшены или устранены, но также, не появились ли новые систематические слабые места. Любые ошибки в изготовлении или новые компоненты привносят новые слабые места. Для их выявления требуется дополнительное время работы. В качестве статистических методов могут использоваться методы, приведенные в МЭК 60300-3-5.

Рисунок 9 - Характерная кривая, показывающая мгновенные и экстраполируемые интенсивности отказов

Рисунок 10 - Примеры кривых повышения надежности и скачков

Методика прогнозирования предполагает, что каждый распознаваемый тип систематического слабого места имеет собственный постоянный параметр потока отказов после периода приработки. Этот параметр потока отказов можно подтвердить, если появлялось достаточное количество повторных отказов данного типа. При успешной модификации только наработка до первого отказа каждого типа может быть получена для оценки соответствующего параметра потока отказов.

Выполняют следующие шаги:

Используя набор наработок до отказа всех систематических типов отказов и модель, оценивают параметр потока отказов для каждого известного типа систематического отказа;

a) Определяют коэффициент эффективности улучшения;

b)По модели оценивают общий параметр потока отказов по всем систематическим слабым местам, в том числе еще необнаруженным;

c) Поскольку остаточный параметр потока отказов принят за константу, его оценивают непосредственно, разделив общее количество остаточных отказов на накопленное уместное время испытаний;

d) Прогнозируемый общий параметр потока отказов оценивают как сумму интенсивностей отказов, порожденных следующими слабыми местами:

- известные систематические слабые места, для которых могут быть разработаны корректирующие модификации;

- необнаруженные систематические слабые места, предсказанные моделью, но еще не наблюдаемые;

- остаточные слабые места.

На рисунке 11 проиллюстрированы эти концепции. Они применяются и к аппаратным средствам, и к программному обеспечению, за исключением того, что для программного обеспечения остаточный параметр потока отказов всегда равен нулю.

Другие оценки

Повышение надежности в ходе этапа или всей программы может быть измерено. Для этого оценку прогнозируемой интенсивности делят на ее мгновенное значение в начале программы. Для моделей, которые используются для оценки общего количества типов систематических слабых мест (включая необнаруженные), этот показатель можно легко получить. Затем часть, соответствующую отказам, для которых проведены модификации, находят на основе данных количества отказов категории В. Степень успеха всех модификаций и точность коэффициентов эффективности улучшения может быть оценена только по результатам дальнейших испытаний или на основе данных эксплуатации.

Рисунок 11 - Прогнозируемый параметр потока отказов, оцененный с помощью моделирования

Приложение А (справочное)

Сведения о соответствии ссылочных международных стандартов национальным стандартам, использованным в настоящем стандарте в качестве нормативных ссылок

Обозначение ссылочного национального стандарта Обозначение и наименование ссылочного международного стандарта и условное обозначение степени его соответствия ссылочному национальному стандарту
ГОСТ Р ИСО 9000-2001 ИСО 9000:2000 «Системы менеджмента качества. Основные положения и словарь» (IDT)
ГОСТ Р ИСО 9001-2001 ИСО 9001:2000 «Системы менеджмента качества. Требования» (IDT)
ГОСТ Р 51901.2-2005 (МЭК 60300-1:2003) МЭК 60300-1:2003 «Менеджмент надежности. Часть 1. Системы менеджмента надежности» (MOD)
ГОСТ Р 51901.5-2005 (МЭК 60300-3-1:2003) МЭК 60300-3-1:2003 «Управление надежностью. Часть 3-1. Руководство по применению. Методы анализа надежности. Руководство по методологии» (MOD)
ГОСТ 27.310-95 МЭК 60812:1985 «Методы анализа надежности систем. Метод анализа видов и последствий отказа» (MOD)
ГОСТ Р 51901.13-2005 (МЭК 61025:1990) МЭК 61025:1990 «Анализ дерева неисправностей (FTA)» (MOD)
ГОСТ Р 51901.16-2005 (МЭК 61164:1995) МЭК 61164:1995 «Повышение надежности. Статистические критерии и методы оценки» (MOD)

Приложение В (справочное)

Сопоставление структуры настоящего стандарта со структурой примененного в нем международного стандарта МЭК 61014:2003

Структура международного стандарта МЭК 61014:2003

Структура настоящего стандарта

Подразделы Пункты Подпункты Подразделы Пункты Подпункты
6.1 - - 6.1 - -

6.2

6.2.1 -

6.2

6.2.1 -
6.2.2   6,2.2 -
6.2.3   6.2.3 -
6.2.4   6.2.4 -
6.2.5 - 6.2.5 -
6.3 - - 6.3   -

6.4

6.4.1  

6.4

6.4.1 -
6.4.2 6.4.2.1 -6.4.2.5 6.4.2 6.4.2.1 -6.4.2.5
6.4.3   6.4.3 -
6.4.4   6.4.4 -
6.4.5  

6.4.4

6.4.4.1
6.4.6   6.4.4.2
6.4.7   6.4.4.3
6.4.8   6.4.5 -
6.4.9   6.4.6 -
6.4.10   6.4.7 -
6.4.11   6.4.8 -
6.4.12   6.4.9 -
           

Примечание: Сопоставление структуры стандартов приведено только по разделу 6, так как предыдущие и следующие разделы стандарта и их иные структурные элементы идентичны.

Библиография

[1] Международный стандарт МЭК 60300-3-5:2001 Управление общей надежностью. Часть 3-5. Руководство по применению. Условия испытаний на надежность и принципыстатистической проверки гипотез
(IEC 60300-3-5:2001) (Dependability management - Part 3-5: Application guide - Reliability test conditions and statistical test principles)
[2] Международный стандарт МЭК 60605-2:1994 Испытание аппаратуры на надежность. Часть 2: Разработка испытательных циклов. (IEC 60605-2:1994) (Equipment reliability testing - Part 2: Design of test cycles )
[3] Международный стандарт МЭК 60605-4:2001 Испытание аппаратуры на надежность. Часть 4. Статистические методы для экспоненциального распределения. Точечные оценки,доверительные интервалы, предикционные интервалы и толерантныеинтервалы (IEC 60605-4:2001) (Equipment reliability testing - Part 4: Statistical procedures for exponential distribution - Point estimates, confidence intervals, prediction intervals and tolerance intervals)
[4] Международный стандарт МЭК 61160:1992 Официальный анализ проекта
(IEC 61160:1992) (Formal design review)

 

Ключевые слова: менеджмент риска, анализ надежности, показатели надежности, параметр потока отказов, модель повышения надежности

 

 

Менеджмент риска

ПРОГРАММА ПОВЫШЕНИЯ НАДЕЖНОСТИ

IEC 61014:2003

Programme for reliability growth (MOD)

Москва Стандартинформ 2006

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 «Стандартизация в Российской Федерации. Основные положения».

Сведения о стандарте

1. ПОДГОТОВЛЕН Открытым акционерным обществом «Научно-исследовательский центр контроля и диагностики технических систем» (ОАО НИЦ КД) на основе собственного аутентичного перевода стандарта, указанного в пункте 4

2. ВНЕСЕН Управлением развития, информационного обеспечения Федерального агентства по техническому регулированию и метрологии

3. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 30 сентября 2005 г. № 236-ст

4. Настоящий стандарт является модифицированным по отношению к международному стандарту МЭК 61014:2003 «Программа повышения надежности» (IEC 61014:2003 «Programme for reliability growth», MOD) путем внесения технических отклонений, объяснение которых представлено во введении к настоящему стандарту.

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5-2004 (подраздел 3.5).

Изменения, введенные в настоящий стандарт по отношению к международному стандарту, обусловлены необходимостью наиболее полного достижения целей национальной стандартизации

5. ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок - в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте национального органа Российской Федерации по стандартизации в сети Интернет.

Содержание

1. Область применения 2. Нормативные ссылки 3 Термины и определения 4 Основные принципы 4.1 Общие положения 4.2 Происхождение слабых мест и отказов 4.3 Основные принципы повышения надежности при проектировании продукции. Общие принципы разработки надежности 4.4 Основные принципы повышения надежности на стадии испытаний 4.5 Планирование повышения надежности и оценка достигнутой надежности на стадии проектирования 5 Аспекты менеджмента 5.1 Общие положения 5.2 Процедуры, включающие процессы на стадии проектирования 5.3 Взаимодействия и обмен информацией 5.4 Трудовые ресурсы и затраты на стадии проектирования 5.5 Эффективность затрат 6 Планирование и выполнение программы повышения надежности 6.1 Концепция и краткий обзор интегрированного повышения надежности 6.2 Действия по повышению надежности на этапе проектирования 6.3 Действия по повышению надежности на стадии валидации 6.4 Испытания на повышение надежности 7 Повышение надежности при эксплуатации Приложение А (справочное) Приложение В (справочное) Библиография

Введение

Совершенствование продукции в соответствии с программой повышения надежности должно быть частью действий в сфере надежности при разработке продукции. Это особенно важно для проекта, в котором используются новые методы, компоненты или значительное место занимает программное обеспечение. В этом случае, программа может выявить со временем много слабых мест, причины которых связаны с проектом. Уменьшение вероятности отказа из-за этих причин в максимально возможной степени позволяет предотвратить их появление на испытаниях или при эксплуатации. На этой последней стадии корректировка проекта обычно является очень сложной, дорогостоящей и отнимает много времени.

Стоимость жизненного цикла может быть снижена, если необходимые изменения проекта сделаны на самой ранней стадии.

Раздел 1 МЭК 60300-3-5 [1] относит к «программе повышения (или совершенствования) надежности» проведение анализа надежности оборудования и испытания на надежность при проектировании с целью повышения надежности. В процессе анализа надежности проекта применяют аналитические методы, описанные в ГОСТ Р 51901.5 (МЭК 60300-3-1). Анализ надежности проекта имеет особое значение, поскольку позволяет провести раннюю идентификацию потенциально слабых мест проекта, задолго до завершения этапа проектирования. Введение в проект модификаций на этой стадии является недорогим и относительно простым, не вызывая существенных изменений в разработке, задержек при выполнении программы, модификации производства и производственных процессов.

Программа повышения надежности, интегрированная в процессы проектирования и разработки продукции (интегрированная разработка надежности), позволяет сократить время разработки продукции, планировать затраты и снизить стоимость всей программы.

Хотя программа испытаний на повышение надежности весьма эффективна для раскрытия потенциальных проблем эксплуатации, она обычно требует больших затрат времени испытаний и ресурсов. Корректирующие действия в этом случае являются значительно более дорогостоящими, чем в ситуации, когда они проводятся на ранних стадиях разработки проекта. Кроме того, продолжительность этих испытаний может серьезно повлиять на маркетинг и график введения системы.

Рентабельным решением этих проблем является программа повышения надежности, полностью интегрированная в процессы проектирования, оценки и испытаний. Программа требует активного участия руководителя проекта, а часто и участия заказчика. За прошлые несколько лет ведущие организации промышленности разработали и применили аналитический и испытательный методы, полностью интегрированные в процесс проектирования, для повышения надежности на стадии проектирования продукции. Эта технология изложена в настоящем стандарте и рассматривается в разделе 6.

В отличие от применяемого международного стандарта в настоящий стандарт не включены ссылки на МЭК 60050-191:1990 «Международный электротехнический словарь. Глава 191. Надежность и качество обслуживания», который нецелесообразно применять в национальном стандарте из-за отсутствия принятых гармонизированных национальных стандартов. В соответствии с этим изменено содержание раздела 2. Кроме того, изменена нумерация пунктов раздела 6.. Сравнение структуры настоящего стандарта со структурой указанного международного стандарта приведено в дополнительном приложении В.

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
Менеджмент риска ПРОГРАММА ПОВЫШЕНИЯ НАДЁЖНОСТИ Risk management. Programme for reliability growth  

Дата введения - 2006 - 02 - 01

Область применения

Настоящий стандарт устанавливает требования и дает рекомендации для устранения слабых мест из аппаратных объектов и программного обеспечения с целью повышения надежности.

Стандарт применяют, когда спецификация на продукцию требует выполнения программы повышения надежности оборудования (электронного, электромеханического, механических аппаратных средств, а также программного обеспечения) или когда требуется доработка проекта.

Рекомендации сопровождаются описаниями управления, планирования, испытаний (лабораторных или эксплуатационных), анализа отказов, корректирующих методов.

Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ Р ИСО 9000-2001 Системы менеджмента качества. Основные положения и словарь

ГОСТ Р ИСО 9001-2001 Системы менеджмента качества. Требования

ГОСТ Р 51901.2-2005 (МЭК 60300-1:2003) Менеджмент риска. Системы менеджмента надежности

ГОСТ Р 51901.5-2005 (МЭК 60300-3-1:2003) Менеджмент риска. Руководство по применению методов анализа надежности

ГОСТ Р 51901.13-2005 (МЭК 61025:1990) Менеджмент риска. Анализ дерева неисправностей

ГОСТ Р 51901.16-2005 (МЭК 61164:1995) Менеджмент риска. Повышение надежности. Статистические критерии и методы оценки

ГОСТ 27.310-95 Надежность в технике. Анализ видов, последствий и критичности отказов. Основные положения.

Примечание: При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте национального органа Российской Федерации по стандартизации в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться замененным (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями.

Примечание: Для анализа данных испытаний на повышение надежности важно различать термины «параметр потока отказов» (для восстанавливаемых объектов) и «интенсивность отказов» или «мгновенная интенсивность отказов» (для невосстанавливаемых объектов).

3.1 элемент (объект) (Item entity): Любая часть, компонент, устройство, подсистема, функциональный модуль, оборудование или система, которые рассматриваются самостоятельно.

Примечание: Элемент (объект) может представлять собой аппаратные средства, программное обеспечение или то и другое вместе и может в специфических случаях включать персонал.

3.2 совершенствование надежности (reliability improvement): Процесс, предпринятый с целью повышения надежности и направленный на устранение причин систематических отказов и/или уменьшения вероятности появления других отказов.

Примечания:

1. Метод, описанный в настоящем стандарте, направлен на разработку корректирующих модификаций, обеспечивающих сокращение количества слабых мест системы и вероятности их появления.

2. Для любого объекта имеются пределы реального и экономического совершенствования и достижимого уровня повышения надежности.

3.3 повышение надежности (reliability growth): Состояние, характеризуемое совершенствованием показателей надежности объекта во времени.

Примечание: Моделирование (прогнозирование) и анализ совершенствования надежности на стадии проектирования основаны на стандартной оценке ожидаемой надежности продукции в пределах заданного периода времени.

3.4 интегрированная разработка надежности (integrated reliability engineering): Инженерный метод, состоящий из множества методов анализа надежности/ безотказности, интегрированных во все технические стадии и действия, относящиеся к продукции от стадии разработки до эксплуатации при взаимодействии всех заинтересованных сторон.

3.5 целевое значение надежности продукции (product reliability goal): Требования надежности для продукции, основанные на целях предприятия, требованиях рынка или необходимой вероятности успешного выполнения задачи, которая является разумно достижимой согласно прошлому опыту и развитию техники.

Примечание: Для некоторых проектов требования надежности устанавливаются заказчиком. Целевое значение надежности для продукции является итоговым значением процесса повышения надежности.

3.6 систематические слабые места (systematic weakness): Недоработки, которые могут быть устранены или влияние которых уменьшено только введением модификаций в проект, производственный процесс, процедуры эксплуатации, документацию или замены нестандартных компонент компонентами с более высокой надежностью.

Примечания:

1. Слабые места часто являются источником отказов и связаны со слабыми местами в проекте или производственном процессе, или документации.

2. Ремонт или замена (или перезапуск в случае программного обеспечения) без модификации могут привести к отказам того же самого вида.

3. Слабые места программного обеспечения всегда являются систематическими.

3.7 остаточные слабые места (residual weakness): Слабые места, которые не являются систематическими.

Примечания:

1. Для остаточных слабых мест риск отказа соответствующего вида является маленьким или даже незначительным в пределах ожидаемого времени испытаний.

2. Слабые места программного обеспечения не могут быть остаточными.

3.8 отказ (failure): Потеря объектом способности исполнять требуемую функцию.

Примечания:

1. В результате объект получает неисправность.

2. Отказ - это событие, в отличие от неисправности, которая является состоянием.

3. Термин «потеря» подразумевает, что объект имел способность исполнять требуемую функцию и затем утратил ее. Если проект системы способен обеспечить выполнение заданного требования эффективности, то отказ - утрата этой способности.

3.9 режим отказа (failure mode): Способ, которым система или компонент прекращают исполнять свою функцию, предусмотренную проектом.

Примечания:

1. Режим отказа может быть охарактеризован частотой его появления или вероятностью его появления для включения в показатели надежности компонента или системы.

2. Для исследования надежности системы в предназначенных условиях эксплуатации должны быть исследованы соответствующие режимы отказов, их причины, частоты или вероятности их появления.

3.10 уместный отказ (relevant failure): Отказ, который должен быть включен в результаты испытаний, данные эксплуатации и использован при расчетах оценки показателя надежности.

Примечания:

1. Критерии для включения в уместные отказы должны быть установлены.

2. Критерии уместных отказов описаны в 6.4.6.

3.11 неуместный отказ (non-relevant failure): Отказ, который должен быть исключен из результатов испытаний, данных эксплуатации и не должен использоваться при расчетах оценки показателя надежности.

Примечание: Критерии для выделения неуместных отказов описаны в 6.4.5.

3.12 систематический отказ (systematic failure): Отказ, для которого анализ физических процессов, обстоятельств, условий или модель отказа указывают на возможность его повторного появления.

Примечания:

1 Корректирующее техническое обслуживание без модификации обычно не устраняет причину отказа.

2 Систематический отказ может быть вызван по желанию моделированием причины отказа.

3. В настоящем стандарте систематический отказ интерпретируется как отказ, следующий из систематического слабого места.

3.13 остаточный отказ (residual failure): Отказ, вызванный остаточными слабыми местами.

3.14 отказ категории A (failure category А): Систематический отказ, выявленный на испытаниях, относительно которого руководство принимает решение не делать корректирующей модификации из-за затрат времени, технологических ограничений или других причин.

3.15 отказ категории В (failure category В): Систематический отказ, выявленный при испытаниях, для которого руководство принимает решение ввести корректирующую модификацию

Примечание: Классификация отказа не применима для повышения надежности на стадии проектирования продукции, поскольку представления о потенциальных режимах отказов не позволяют это сделать. Все компоненты могут потенциально отказать в одном или другом режиме, но вероятность и последствия такого события могут сильно различаться. Сначала изучаются режимы отказа и их потенциальные причины, которые могут иметь высокую вероятность реализации, и, если ресурсы и графики позволяют, исследуются другие режимы отказа, менее вероятные. Продукция с большим количеством компонентов, каждый из которых может иметь много режимов отказа, а каждый из режимов отказа может иметь много причин, требует много усилий для классификации режимов отказов или их причин и может быть слишком сложной и дорогостоящей для обоснования классификации. Поэтому классификация отказов не применяется для повышения надежности продукции на стадии проектирования.

3.16 неисправность (fault): Состояние объекта, характеризующееся неспособностью исполнять требуемую функцию, исключая время профилактического технического обслуживания или других запланированных действий, или простои из-за недостатка внешних ресурсов.

Примечание : Неисправность часто является результатом отказа объекта, но может существовать и без отказа.

3.17 режим неисправности (fault mode): Одно из возможных состояний дефектного объекта для заданной требуемой функции.

Примечание: Использование термина «режим отказа» в этом смысле допустимо для идентификации потенциального отказа объекта или компонента.

3.18 мгновенный показатель надежности: (instantaneous reliability measure): Показатель надежности для объекта в данной точке времени (прошлого или настоящего) при выполнении программы повышения надежности.

Примечания:

1. Показатель надежности, используемый при анализе проекта, - это математическое ожидание показателя надежности продукции в заданный момент времени или его эквивалентный параметр потока отказов, рассчитанный на основе оценок показателей надежности продукции в исследуемый период времени.

2. Иногда показатель надежности может быть выражен с помощью эквивалентных значений средней наработки на отказ (MTBF) или средней наработки до отказа (MTTF), вычисленных на основе оценок надежности продукции в исследуемый период времени.

3. Используемый в настоящем стандарте термин «время» может быть заменен другими характеристиками, такими как циклы, расстояния (мили, километры) и т.п.

4. В настоящем стандарте термин «параметр потока отказов» используется для показателя надежности восстанавливаемой системы, а такие термины как «интенсивность отказов», «мгновенная интенсивность отказов» применяются для невосстанавливаемой системы, MTBF и MTTF могут заменять друг друга соответственно. Далее система предполагается восстанавливаемой, если определенно не заявлено обратное.

5. Показатели надежности системы, обычно используемые при испытаниях, - это параметр потока отказов, MTBF, (мгновенная) интенсивность отказов, MTTF.

6. Значения показателей надежности оцениваются на основе моделей повышения надежности, определенных отдельно для улучшения продукции на стадиях проектирования и испытаний.

3.19 экстраполируемый показатель надежности (extrapolated reliability measure): Показатель надежности объекта, предсказанный для заданной будущей точки в программе испытаний на повышение надежности, если много корректирующих модификаций присутствует в программе.

Примечания:

1. Применение термина «экстраполяция» предполагает наличие ограничений по времени.

2. Условия предыдущих испытаний и процедуры корректирующих модификаций принимаются в неизменном виде.

3. Значение показателя надежности оценивается на основе модели повышения надежности, применяемой к предыдущим данным. Тот же подход применяется к будущему периоду программы.

4. Наиболее часто используемые показатели надежности - (мгновенный) параметр потока отказов, MTBF, (мгновенная) интенсивность отказов, MTTF.

5. Экстраполируемый показатель надежности не применим для использования в программе повышения надежности в процессе проектирования.

3.20. прогнозируемый показатель надежности (projected reliability measure): Показатель надежности, предсказанный для объекта после одновременного введения ряда корректирующих модификаций.

Примечания:

1. Модификации часто вводятся между двумя последовательными этапами программы.

2. Показатели надежности, обычно используемые при проверке повышения надежности, - это (мгновенный) параметр потока отказов, MTBF, (мгновенная) интенсивность отказов, MTTF.

3. Показатель надежности в процессе повышения надежности на этапе проектирования - это показатель надежности продукции, прогнозируемый для заданного периода времени, такого как гарантийный период или срок службы.

4. Значения этих показателей оцениваются на основе модели повышения надежности.

3.21 профиль использования (usage profile): Детальная информация по вопросам эксплуатации и условий окружающей среды (их содержание, ограничения продолжительности и последовательности) для новой продукции.

3.22 отчет об эффективности эксплуатации (field performance report): Обзор и анализ данных эксплуатации, подходящих для разрабатываемой продукции.

3.23 спецификация надежности (product specification for reliability): Описание ожидаемой эффективности продукции для указанного периода времени с ожидаемым профилем использования.

3.24 испытания на безотказность и долговечность (reliability and life test): Испытания (на действия окружающей среды или другие воздействия), предназначенные для подтверждения или оценки вероятности появления режимов отказов или их причин, когда эти оценки трудно получить только на основе анализа.

Примечание: Эксплуатационные испытания (испытания на долговечность) выполняются для демонстрации надежности продукции.

3.25 планирование повышения надежности (reliability growth planning): Планирование действий в сфере надежности, таких как исследования, выбор материалов, испытания компонентов, способствующих повышению надежности продукции.

Примечание: Один и тот же термин может относиться к планированию параметра и величины улучшения проекта, необходимых для достижения целей в области надежности продукции. Планирование состоит из разработки аналитического представления в разделе о повышении надежности проекта и оценки величины изменений (улучшений) характеристик проекта, необходимых для достижения целей в области надежности.

3.26 предварительные оценки надежности (preliminary reliability estimates): Оценки надежности новой продукции на основе данных предыдущего проекта.

3.27 предварительное распределение надежности (preliminary reliability allocation): Распределение надежности по частям проектируемой продукции, для которых из-за недостатка информации предварительные оценки не могут быть получены.

3.28 проектные рекомендации (design guidelines): Проектный документ, в котором приводятся критерии повышения надежности продукции.

3.29 непрерывная оценка надежности при проектировании (continuous design reliability assessment): Обновление оценки надежности новой продукции одновременно с разработкой проекта и при испытании компонентов и подсистем продукции.

3.30 FMEA и сокращение режимов отказов (FMEA and failure mode mitigation): Идентификация критических и/или связанных с безопасностью режимов отказов, их причин и последствий, оценка вероятности их появления в соответствии с профилем использования и ресурсом продукции.

Примечание: Объектом уменьшения являются причины и режимы отказов с высокой вероятностью и тяжестью последствий. Очень полезным инструментом для анализа режимов отказов проекта является анализ дерева неисправностей, который является логическим представлением режимов отказов аппаратных средств.

3.31 ключевые компоненты (key components): Компоненты, которые являются существенными для достижения необходимой эффективности продукции и которые оценивались и выбирались на основе доступных и выполнимых требований надежности и условий окружающей среды.

3.32 заключительный отчет о надежности (final reliability report): Собрание методов, исследований, испытаний, результатов, опыта, полученных последствий режимов отказов, критических компонентов и их итоговой надежности, достигнутое повышение надежности, итоговая оценка надежности объекта в целом.

Примечание: Отчет включает информацию, которая должна использоваться как источник информации для ссылок, сообщений и является отправной точкой для разработки следующей версии или новых версий продукции.

3.33 оценка надежности продукции при заменах (reliability assessment of product changes): Оценка надежности при заменах компонентов продукции в процессе проектирования или производства.

Примечание: Изменения надежности продукции могут быть следствием корректирующих действий, сокращения затрат на продукцию или изменений в процессе производства.

3.34 непрерывные испытания на надежность (continuing reliability testing): Испытания на надежность находящейся в производстве партии продукции для подтверждения неснижения надежности продукции под воздействием процессов производства или большого количества компонентов низкого качества.

3.35 анализ отчета об отказах системы и корректирующих действий (FRACAS) (failure reporting analysis and corrective action system): Система закрытого цикла для обеспечения прослеживаемости действий проекта вплоть до его завершения.

Примечание: FRACAS - источник информации об эксплуатационных и экспериментальных отказах продукции, связанной с новым проектом. Анализ может помочь выявлению режимов отказов в исследуемом проекте.

3.36 система (system): Совокупность взаимосвязанных и взаимодействующих объектов. [ГОСТ Р ИСО 9000, статья 3.2.1]

Примечания:

1. С позиции надежности система должна иметь:

а) определенную цель, выраженную через требования к функциям системы;

b) установленные условия эксплуатации и использования.

2. Система имеет иерархическую структуру.

3.37 компонент (component): Элемент, рассматриваемый на самом низком уровне анализа системы.

3.38 распределение (allocation): Процедура, применяемая при проектировании системы (объекта) и направленная на распределение требований к значениям характеристик объекта по компонентам и подсистемам в соответствии с установленным критерием.

3.39 интегрированное повышение надежности (integrated reliability growth): Повышение надежности, достигнутое на основе объединения информации анализа, испытаний, рабочего проекта и других данных и действий по идентификации и сокращению потенциальных режимов отказов объекта.

3.40 перемежающийся отказ (intermittent failure): Отказ, который не может быть восстановлен каждый раз после тестирования и появляется спорадически.

3.41 повторяющийся отказ (recurrent failure): Отказ, который появляется повторно.

3.42 список действий (action list): Список, подготовленный для выделения действий, необходимых для обеспечения повышения надежности.

3.43 условие или образец отказа (condition or pattern of failure): Способ выявления некоторых отказов.

3.44 анализ обстоятельств (circumstantial analysis): Анализ обстоятельств, в которых появляются некоторые отказы.

3.45 эквивалентная интенсивность отказов (equivalent failure rate): Интенсивность отказов компонента или объекта, рассчитанная для достигнутой им надежности и соответствующего периода времени в предположении о постоянной интенсивности отказов в этот период времени.

Примечание: Полученное значение эквивалентной интенсивности отказов допустимо применять только для выделенного периода времени.

Основные принципы

Общие положения

Основные принципы повышения надежности продукции сохраняются при обнаружении слабых мест продукции при проектировании, анализе и испытаниях.

В программе анализа повышения надежности на этапе проектирования проводится анализ проектируемой продукции для определения слабых мест среди компонентов продукции и их взаимодействий при эксплуатации в ожидаемых и возможных экстремальных условиях окружающей среды. Результаты анализа проекта необходимо сравнивать с целями и требованиями надежности продукции, а для необходимых улучшений разрабатывать рекомендации. Для определения потенциальных отказов, улучшений и повышения надежности применяется инструментальный анализ.

Анализ проекта не должен ограничиваться электроникой, поскольку механические компоненты также подвержены отказам. По этой причине более подходящим показателем надежности является вероятность безотказной работы или вероятность отказа, а не интенсивность отказов или параметр потока отказов, поскольку отказы механических компонентов часто не могут быть описаны постоянной интенсивностью отказов.

Для выявления потенциальных режимов отказов, особенно там, где анализ является слишком сложным или может привести к сомнительным результатам, могут применяться все аналитические методы надежности. Режимы отказа, имеющие высокую вероятность появления, устраняют улучшением проекта, а затем определяют новую оценку надежности. Таким образом, повышение надежности зафиксировано, а продвижение проекта зарегистрировано. Анализ надежности проекта охватывает также встроенное программное обеспечение и аппаратно-программные взаимодействия.

В программе испытаний на повышение надежности для выявления слабых мест и совершенствования надежности системы, модуля, подсистемы или компонента используются лабораторные или эксплуатационные испытания. Появление отказа должно диагностироваться, после чего должны быть выполнены ремонт и/или замена, а затем соответствующие испытания должны быть продолжены. Одновременно с испытаниями необходимо анализировать прошлые отказы для поиска их основных причин, а также для определения, где должны быть включены в проект соответствующие корректирующие модификации или другие процедуры, направленные на повышение надежности. Эта методология применяется как к аппаратным средствам, так и к встроенному программному обеспечению.

Программа повышения надежности для неремонтируемых и невосстанавливаемых объектов или компонентов должна только обеспечивать получение последовательных выборок, каждая из которых соответствует более высокой надежности проекта, чем предыдущая.


Поделиться:



Последнее изменение этой страницы: 2019-03-21; Просмотров: 315; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.566 с.)
Главная | Случайная страница | Обратная связь