Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Органическое вещество и гумус почвы. Состав почвенного гумуса



Гумус – сложный комплекс органических соединений, который образуется в результате разложения и гумификации органических остатков.

Значение гумуса:

- является источником питания растений. При разложении образуются нитраты, фосфаты, сульфаты и др.;

- гумус – стимулятор роста и развития растений и корневой системы;

- улучшает азотное и кислородное питание, что способствует мощному развитию корней;

- огромная роль в структурообразовании, что обуславливает водно-воздушные свойства;

- обладает высокой поглотительной способностью и предотвращает от вымывания различные соединения, что дает возможность обменным реакциям при внесении удобрений;

- гумус увеличивает буферность почвы;

- огромная роль в формировании почвенного профиля.

Гумус состоит из ГК (ульминовых), ФК (креновых и апокреновых), негидролизуемого остатка (гумина).

ГК – это группа высокомолекулярных азотсодержащих кислот циклического строения кислой природы. Они имеют черный или темно-бурый цвет, нерастворимые в воде и кислотах, но растворимы в слабых щелочах. Элементарный состав ГК представлен С (52-62 %), О2 (31-39 %), Н (2,5-5,8%), N (2,6-5,1 %). ГК содержат в себе карбоксильную, метоксильную и гидроксильную группы. Благодаря этим группам ГК обладают высокой поглотительной способностью обменивать активные свои группы на катионы. С катионами ГК дают соли – гуматы. Одновалентные катионы создают растворимые в воде соли, способные вымываться. С 2-х и 3-х валентными катионами – нерастворимые соединения, вызывают коагуляцию, участвуют в формировании водопрочной структуры. Е=250-700 мг-экв\100 г почвы.

ФК - это группа высокомолекулярных азотсодержащих кислот циклического строения кислой природы. В отличие от ГК меньше содержат С и больше кислорода. Элементарный состав ФК представлен С (44-50 %), О2 (42-48 %), Н (4-6 %). Они имеют соломенно-желтый цвет, растворимые во всем. В почвах находятся в свободном состоянии и в подвижном и связанных с несиликатными соединениями. Имеют функциональные группы. С катионами образуют соли – фульваты, которые растворимы в воде независимо от валентности.

Гумины – это те же ГК и ФК, но прочно связанные с минеральной частью почвы. Могут растворяться в сильных кислотах.

По соотношению С гуминовых кислот к С фульвокислот судят о качестве гумуса.

Типы гумуса. Основные свойства

Типы гумуса:

- малогумусовые – почва отличается светло – серым цветом, во влажном состоянии цвет данной почвы окажется серым и коричневым. В данной почве содержится не более 1-1,5% гумуса

- умеренногумусовые – отличается серым или серо-коричневым цветом, влажная почва изменит цвет на темно-серый или темно-коричневый. Содержание гумуса в таком грунте не превышает 2-2,5%

- среднегумусовые – цвет от темно-серого до темно-коричневого цвета, влажная почва – практически черная. В этой почве содержится около 3-4%

- гумусные почвы – отличается черным цветом, при увлажнении может приобрести буро-черный окрас. В таком гренте будет содержаться не менее 4 – 8% . Такой высокий процент содержания, говорит о том, что это скорее всего чернозем. Именно данный тип грунта является наиболее благоприятным для выращивания всевозможной растительности.

Гумус: основные свойства

- именно в нем накапливаются все полезные вещества и микроэлементы.

- в его состав входит определенное вещество (гуминовая кислота), благодаря которому развиваются корневые системы.

- благодаря процессу разложения и выделению из почвы углекислоты, растения дышат

- способствует прочности структуры почвы

- гумусные почвы с высоким содержанием органических веществ влияют на поглотительные свойства грунта (именно от поглотительной особенности почвы будет зависеть ее плодородность).

- именно в нем развиваются наиболее полезные микроорганизмы, которые, в свою очередь, станут пищей для растений

- благодаря черному цвету, гумусные почвы лучше других прогреваются, поглощают и сохраняют тепло

 

41 Экологическая роль гумуса.Велика и многогранна экологическая роль почвенного гумуса. Она заключается, прежде всего, в том, что гумус содержит многие питательные элементы, является источником углекислоты и, следовательно, определяет в значительной мере уровень почвенного плодородия. Все это влияет на условия произрастания естественной и культурной растительности, на интенсивность прироста биомассы, определяя условия жизни животных и человека. Кроме того, значительное содержание в гуминовых кислотах функциональных групп определяет их высокую поглотительнуо способность; гуминовые кислоты образуют с тяжелыми металлами комплексные соединения, исключая их на длительный период из биологического круговорота веществ и значительно снижая в почве концентрацию подвижных форм тяжелых металлов. В этом также заключается важная экологическая роль почвенного гумуса.

При решении вопросов оптимизации гумусного состояния почв важно достигнуть не только оптимального содержания гумуса, но и сохранить в общих чертах соотношение в почве различных групп и фракций гумуса, характерное для целинных почв. К основным мероприятиям, направленным на оптимизацию гумусного состояния почв, следует отнести мероприятия по борьбе с водной и ветровой эрозией почв, внесение достаточных доз органических и минеральных удобрений, введение в севообороты культур, наиболее обогащающих почву органическим веществом: зернобобовых и многолетних трав.

42 Лесная подстилка и особенности ее образования в разных типах леса.Лесная подстилка - напочвенное образование, формирующееся под пологом леса из продуктов опада надземных ярусов лесного биоценоза. Это не только продукт леса и его компонентов, но и фактор, влияющий на них и на лес в целом. От мощности лесной подстилки, ее состава, влажности, особенностей разложения и гумификации зависит возобновление леса. Она влияет на рост и продуктивность древостоя, а также на др. компоненты лесного биогеоценоза: физические, химические и биологические свойства и водный режим почвы, предохраняет от эрозии почв. Лесная подстилка обеспечивает жизнедеятельность некоторых видов почвенной фауны, многочисленных микроорганизмов. Это один из основных источников углекислоты, азотного питания, важное звено в биологическом круговороте веществ и энергии.

Природа подстилки, ее накопление, формирование, последующие превращения зависят от количества опада, его состава, времени поступления; климатических, почвенных и биотических факторов. Лесная подстилка накапливается постепенно, по мере увеличения опада она достигает большой мощности. В сформировавшейся лесной подстилке различают несколько слоев: верхний - свежий опад, не затронутый процессами разложения и гумификации; средний - состоит из полуразложившихся остатков, во влажных и сырых сомкнутых лесах он пронизан мицелием грибов; нижний - аморфная гумифицированная масса, органические вещества темно-серого, бурого или черного цвета. При активной деятельности роющей фауны нижний слой лесной подстилки может быть смешан с минеральными частицами нижележащей почвы. В верхнем слое идет образование С02, в среднем - накопление азота, в нижнем - остаточных продуктов.

Запас лесной подстилки зависит от географических условий, видового состава лесообразующих пород, возраста и ярусно-сти насаждения, сомкнутости лесного полога, развития живого напочвенного покрова. Наибольшие запасы накапливаются в таежной зоне, особенно в северной и средней подзонах тайги. В заболоченных лесах при пониженном разложении лесной подстилки запас ее может достигать 100 т/га. Наиболее интенсивно процессы разложения происходят в лесостепных районах, где запасы лесной подстилки не превышают 20 т/га. Эти процессы зависят от состава опада. Хвоя ели, пихты, иногда листья осины, дуба, а также растения из мохового покрова (особенно сфагнум и кукушкин лен) замедляют разложение подстилки и затрудняют образование гумуса. Так, хвоинки ели плотно прилегают друг к другу и образуют плотный слой с затрудненной аэрацией. В грубой подстилке еловых лесов процессы нитрификации отсутствуют или протекают крайне медленно. В опаде из хвои сосны остаются промежутки для воздуха, что ускоряет процесс разложения. Разложение хвойной подстилки (за исключением лиственницы) затрудняется смолистостью хвои, наличием воскового налета. Березовые листья, скручивающиеся при опадании, создают аэробные условия, благоприятствующие разложению опада. Примесь березы в ельниках или липы в сосняках усиливает нитрификацию, которой способствуют также многие травянистые растения (за исключением злаков). Способствуют разложению опада листья липы, лещины, березы, букаильмовых, ольхи, граба, ясеня, рябины, дуба, можжевельника и др. Одна и та же порода в разных условиях может оказывать неодинаковое влияние, т. к. процесс формирования подстилки и гумуса зависит от взаимодействия многих факторов. Так, под сомкнутым буковым древостоем образуется мощный слой т. н. мертвого напочвенного покрова. Бук в таких условиях затрудняет нитрификацию. Но в разреженном буковом древостое с живым напочвенным покровом из травянистых растений бук - почвоулучшающая порода, способствующая нитрификации.

Характер подстилки связан с типами леса. Выделяют следующие типы лесной подстилки: в ельниках - слабогрубогумусные, грубогумусные, торфяные; в сосняках - сухогру-богумусные, сухоторфянистые, торфяные. Каждый тип отличается содержанием общего углерода и азота, а также содержанием их в различных углеродных соединениях. Сбор лесной подстилки и вывоз ее наносит лесу вред, нарушая естественный круговорот веществ и энергии в лесном биогеоценозе. Лесные пожары, рубки, очистка мест рубок изменяют мощность и качественные особенности лесной подстилки.

Ежегодно поступающий опад формирует лесную подстилку. Ее запасы зависят от количества опада и скорости разложения подстилки. Естественно, чем быстрее разлагается подстилка, тем ее запасы меньше. В подстилке сосредоточено большое количество азота и зольных элементов.

Вследствие того, что лесная подстилка гниет при достаточном количестве воздуха, гниение в ней не может происходить так, как в болотах, и, стало быть, лесной перегной не может бить одинаков с болотным перегноем. лесной подстилка почвообразование.

43 Почвенные коллоиды и их происхождение.Почвенные коллоиды образуются в процессе выветривания и почвообразования в результате дробления крупных частиц или путем соединения молекулярно раздробленных веществ. В почве хорошо развита поверхность раздела между твердой (дисперсная фаза), жидкой и газообразной (дисперсионная среда) фазами, между ними постоянно происходят процессы взаимодействия и устанавливается динамическое равновесие. Газообразная и жидкая фазы почвы вследствие присущей им подвижности обладают наибольшей изменчивостью. Твердая фаза в целом значительно более инертна, главным образом вследствие того, что входящие в ее состав соединения большей частью нерастворимы в воде.Однако некоторая доля твердой фазы способна принимать участие во многих быстро протекающих процессах благодаря присущей ей большой удельной поверхности, которая, в свою очередь, зависит от размера частиц. Эта доля твердой фазы выделяется из общей массы почвы под названием почвенного коллоидного комплекса.

В состав почвенной массы входят частицы разного размера. Самые мелкие тонкодисперсные из них с размером менее 0,0001 мм, относятся к коллоидам. Образуются коллоиды путем раздробления более крупных частиц или путем конденсации молекул в агрегаты молекул. Эти частицы проходят через обычные фильтры, не оседают в воде и обнаруживают броуновское движение - беспорядочное движение частиц вещества, взвешенных в жидкости или газе, происходящее под влиянием соударений этих частиц с молекулами окружающей среды.

В почвах коллоиды образуют двухфазную систему, состоящую из дисперсной фазы (твердые коллоидные частицы) и дисперсной среды (почвенный раствор). Высокодисперсные системы по величине частиц делятся на три группы: предколлоидные системы (1 микрометр»микрон» (10-6м) – 100 нанаметр (10-9м), коллоидные системы (диаметр частиц 100-1 нм), молекулярные растворы (менее 1 нм).

Почва относится к гетерогенным полидисперсным образованиям, для которых коллоидное состояние вещества имеет большое значение. Поглотительной способностью обладают как коллоидные частицы (0,2-0, 001 мкм), так и предколлоидная фракция (0,2-1 мкм). Диаметр частиц в 1 мкм представляет собой грань, отделяющую механические элементы с резко выраженной поглотительной способностью.

Коллоиды в почвах всегда представлены сложной системой минеральных, органических и органоминеральных соединений, состав и количественное соотношение которых зависит от характера почвообразующих пород и типа почвообразования.

В большинстве почв преобладают минеральные коллоиды, на долю которых приходится 85-90% их общей массы. Они состоят главным образом из частиц глинистых минералов, которые в почве могут быть унаследованы от материнской горной породы, но могут и создаваться вновь в процессе почвообразования.

К минеральным относятся глинистые минералы (каолинит, монтмориллонит, галлуазит, гидрослюда, иллит, вермикулит и др.); гидроксиды железа, алюминия, марганца, кремния и их комплексные соли – коагели.

К органическим относятся аморфные гумусовые вещества, некоторые полисахариды и клетки наиболее мелких бактерий.

Органоминеральные коллоиды представлены сложными образованиями гумусовых веществ с минеральными коллоидами и окончательно пока не изучены.

Таким образом, большая часть почвенных коллоидов представлена минералами, имеющими кристаллическое строение. Однако в состав коллоидов входят и аморфные образования- гели гидратов окисей железа и алюминия, органического вещества.

Основное свойство коллоидов – способность к поглощению веществ из растворов как в виде молекул, так и в виде ионов. Поглощенные вещества могут обмениваться на другие, находящиеся в растворе, т.е. коллоиды обусловливают поглотительную и обменную способность почв.

Основными почвенными коллоидами являются глина, гумус, кремнезем (электроотрицательные коллоиды), алюминий и железо (электроположительные коллоиды). Коллоиды среднестатистической почвы обычно на 80 % представлены алюмосиликатами, 10 % составляют свободные полуторные окислы, 5 % гумус и 5 % кремнезем и др.

44 Построение почвенной мицеллы, гидрофобные и гидрофильные почвенные коллоиды.Строение коллоидной мицеллы. В ППК единицу коллоида представляет коллоидная мицелла. В ней различают три составные части, или слоя: 1) ядро мицеллы; 2) потенциалопределяющий слой — слой, определяющий заряд коллоидной частицы; 3) слой компенсирующих ионов — внешний слой ионов, нейтрализующих заряд.

Слой компенсирующих ионов подразделяется на два слоя: слой неподвижных ионов и подвижный слой диффузных ионов. Ядро, потенциалопределяющий слой и слой компенсирующих неподвижных ионов составляют коллоидную частицу. Между ней и окружающим раствором возникает электрокинетический потенциал (свободная поверхностная энергия), под влиянием которого находится подвижный слой компенсирующих ионов — диффузный слой.

Он располагается на некотором расстоянии от слоя потенциалопределяющих ионов.

Таким образом, коллоидная частица имеет заряд, коллоидная мицелла электронейтральна и окружена водной оболочкой.

Основу коллоидной частицы (коллоидная мицелла) составляет ее ядро. Ядро представляет собой сложное соединение аморфного или кристаллического строения различного химического состава.

На поверхности ядра расположен прочно удерживаемый слой ионов, несущий заряд, -- слой потенциалопределяющих ионов. Ядро мицеллы вместе со слоем потенциалопределяющих ионов называется гранулой. Между гранулой и раствором, окружающим коллоид, возникает термодинамический потенциал, под влиянием которого из раствора притягиваются ионы противоположного знака (компенсирующие ионы). Так, вокруг ядра коллоидной мицеллы образуется двойной электрический слой, состоящий из слоя потенциалопределяющих и слоя компенсирующих ионов.

Компенсирующие ионы, в свою очередь, располагаются вокруг гранулы двумя слоями. Один - неподвижный слой, прочно удерживаемый электростатическими силами потенциалопределяющих ионов (слой Гельмгольца).

Гранула вместе с неподвижным слоем называется коллоидной частицей. Между коллоидной частицей и окружающим раствором возникает электрокинетический потенциал (дзета-потенциал), под влиянием которого находится второй (диффузный) слой компенсирующих ионов, обладающих способностью к эквивалентному обмену на ионы того же знака заряда из окружающего раствора.

Коллоидная мицелла электронейтральна. Основная масса ее принадлежит грануле, поэтому заряд последней рассматривается как заряд всего коллоида. Возникновение заряда у различных коллоидов связано с особенностями их химического состава и структуры. Отрицательный заряд приобретают коллоиды за счет разрыва связей и облома пакетов глинистых минералов, различных форм почвенных кальцитов, несиликатных соединений железа и алюминия (их оксидов и гидроксидов) и освобождения валентных краевых ионов кислорода, при изоморфном замещении кислородных тетраэдрах минералов группы монотмориллонита 4-х валентного кремния 3-х валентным алюминием, алюминия - двухвалентными катионами - железом, магнием.

Коллоиды, имеющие в потенциалопределяющем слое отрицательно заряженные ионы и диссоциирующие в раствор Н-ионы называются ацидоидами (кислотоподобными), а положительные ионы, посылающие в раствор ионы ОН - базоидами (основания).

Коллоиды в почве находятся главным образом в форме гелей, в которых частицы сцепляются между собой и образуют пространственную структурную сетку, в ячейках которых удерживается вода. Во влажной почве небольшое количество коллоидов может находиться в состоянии золя (частицы разделены водной фазой). Раздельное существование коллоидных частиц в состоянии золя связано с наличием электрокинетического потенциала и водной (гидратационной) оболочки на поверхности частиц. Одноименно заряженные частицы отталкиваются друг от друга, могут долго находиться в суспензии, не образуя, осадка.

При падении электрокинетического потенциала и уменьшении заряда частиц разноименно заряженные коллоиды, сталкиваясь, друг с другом при хаотическом движении, склеиваются, увеличиваются в размерах и выпадают в осадок. Процесс соединения коллоидных частиц и образования геля из золя называется коагуляцией.

Взаимодействию и соединению коллоидных частиц мешают водные пленки, которые удерживаются на их поверхности. По количеству воды, удерживаемой коллоидами, они разделяются на гидрофильные и гидрофобные. Гидрофильные коллоиды сильно гидротированы, труднее коагулируют. К ним относятся некоторые органические вещества, встречающиеся в почвах, минералы монтмориллонитовой группы. Гидрофобные коллоиды содержат небольшое количество воды. Это - гидрооксид железа, минералы каолинитовой группы. Деление коллоидов на гидрофильные и гидрофобные несколько условно, поскольку при измельчении твердых коллоидных частиц степень гидратации их возрастает.

Потенциал почвенных коллоидов зависит от их природы и реакции среды. Поскольку почвенные частицы имеют заряд, они способны притягивать дипольные молекулы воды из окружающего раствора, образуя гидратные пленки. Толщина этой пленки зависит от величины заряда. В связи с этим различают гидрофильные коллоиды (кремниевая кислота, гумусовые кислоты), удерживающие многослойные пленки воды, и гидрофобные, то есть слабогидратированные коллоиды (гидроксид железа, каолинит). Гидрофильные коллоиды имеют сродство с водой и способны сильно набухать, что предотвращает их слипание. Гидрофобные коллоиды набухают слабо, поэтому у них выражена способность свертываться и выпадать в осадок.

45 Почвенно-поглотительный комплекс.Почвенный поглощающий комплекс - коллоидный комплекс, совокупность нерастворимых в воде мелкодисперсных минеральных, органических и органо-минеральных соединений, образовавшихся в процессе формирования почвы и частично унаследованных от материнской породы. Минеральная часть п. п. к. состоит из соединений SiO2, Al2O3, Fe2Oз и продуктов синтеза их коллоидных гидратов. В органическую часть входят гумусовые вещества в свободном или почти свободном состоянии и соли гуминовых кислот и фульвокислот. Состав, свойства и устойчивость её зависят от условий образования и развития почвы. Органическая часть обладает большей подвижностью (легко вымывается из почвы) по сравнению с минеральной; количество её является важным классификационным признаком почв. Органо-минеральная часть содержит соединения типа хелатов и адсорбционные соединения гуминовых кислот и фульвокислот с частицами глинистых минералов.

П.п.к., особенно его коллоидная фракция с диаметром частиц менее 0,1 мк, определяет поглотительную способность почвы. С увеличением дисперсности почвы возрастают её удельная поверхность и поверхностная энергия, что повышает химическую активность и ёмкость обмена. Фракции от 0,1 до 5 мк для явлений ионного обмена имеют меньшее значение, а частицы крупнее 5 мк в нём не участвуют.

П.п.к. играет существенную роль в почвообразовательных процессах, в эволюции и генезисе почв. Многие свойства почвы, которые определяют уровень почвенного плодородия (сложение, физико-химические свойства, водный, воздушный, микробиологический и питательный режимы), в значительной мере зависят от природы и состава п. п. к. Поэтому исследования п.п.к. имеют важное значение для разработки наиболее эффективных приёмов улучшения земель.

Поглотительная способность зависит от п.п.к. Основная часть п.п.к. - почвенные коллоиды. Состав и величина п.п.к. зависит от реакции среды, а величина - от содержания гумуса и гранулометрического состава почвы. Наиболее способны поглощать почвы, в которых больше коллоидов – тяжелосуглинистые и высокогумусные. Физико-химическая или обменная поглотительная способность - способность почвы поглощать и обменивать ионы почвенного раствора на ионы твёрдой фазы; в основном обмениваются ионы диффузного слоя коллоидной мицеллы. Для большинства почв характерно именно катионное поглощен, т.к. в ней больше кремниевой кислоты, гумусовых кислот. Одновременно с поглощением идёт вытеснение из п.п.к. катионов. Быстрее вытесняются катионы на внешней поверхности, чем между слоями кристаллической рещётки.

46 Современные представления о почвенных коллоидах.Высокодисперсная часть почвы состоит преимущественно из коллоидов. Почвенные коллоиды – совокупность почвенных частичек размером от 1 до 100 нм. Таким образом, коллоидные растворы занимают промежуточное положение между истинными, или молекулярными растворами (размер частичек 100 нм), с другой.

Почву относят к сложной полидисперсной системе – в ее состав входят частицы различного размера. Исключительно важную роль играет высокодисперсная часть почвы. Она представлена частицами, имеющими размер меньше 0,001 мм. Их содержание в почве может колебаться от 1–2% до 30–40% к массе почвы. Значение высокодисперсной части почвы состоит в том, что она во многом определяет физические и водно-физические свойства почвы, режим питания растений, поглотительную способность почвы.

Происхождение почвенных коллоидов может быть связано с раздроблением более крупных частичек, что происходит при выветривании пород. Другой путь образования коллоидов – в результате активизации поликонденсации и полимеризации низкомолекулярных органических соединений.

По составу бывают минеральные, органические и органоминеральные коллоиды.

Минеральные коллоиды представлены преимущественно глинистыми, а также некоторыми первичными минералами (например, кварц), измельченными до коллоидного состояния. На долю минералов коллоидов приходится около 80–90 % от массы всех коллоидов почвы.

Органические коллоиды образуются при гумификации органического вещества. Представлены в почве гумусовыми кислотами и их солями: гуматами, фульватами, алюмо-железогумусовыми соединениями.

При взаимодействии гумуса с высокодисперсными минеральными частичками почвы образуются комплексные соединения сложного состава – органо-минеральные коллоиды.

Количество коллоидов в почве может сильно колебаться в зависимости от содержания в ней гумусовых веществ и частичек физической глины, с их увеличением возрастает количество коллоидов. Коллоидная система почвы состоит из дисперсной фазы (масса коллоидных частичек) и дисперсионной среды (почвенного раствора), они взаимодействуют, в результате этого вокруг коллоидной частички создается двойной ионогенный слой. Коллоидную частичку с двойным ионогенным слоем называют мицеллой. Некоторые коллоиды (гидроксиды железа, алюминия) при изменении реакции среды меняют и знак заряда: в кислой среде они заряжены положительно, а в щелочной – отрицательно. Такие коллоиды называют амфолитоидами. Большинство почвенных коллоидов являются ацидоидами – это коллоиды гумусовых веществ, глинистых минералов и кремнекислоты. К базидам можно отнести гидрооксиды алюминия, железа.

Взаимодействию и соединению коллоидных частиц препятствуют водные пленки, образующиеся на их поверхности. По количеству воды, которую удерживают коллоиды, они подразделяются на гидрофильные и гидрофобные. Первые сильно гидротируются, набухают в воде. К ним относятся коллоиды гумуса, глинистых минералов. Гидрофобные коллоиды удерживают небольшое количество воды – это минералы каолинитовой группы и др.

Почвенные коллоиды могут находиться в двух состояниях: золя или коллоидного раствора, и геля или студенистого, комковатого или аморфного осадка. Под влиянием тех или других факторов коллоиды из состояния раствора могут переходить в осадок и наоборот. Процесс соединения отдельных коллоидных частичек и выпадения осадка называется коагуляцией. Осадок, образующийся при коагуляции, называется гелем. Переход геля в золь – пептизация. Коагуляцию почвенных коллоидов могут вызывать и такие явления, как старение коллоидов, обезвоживание и замораживание почв. Коллоиды передаются вниз по профилю, что может ухудшить физико-химические свойства почвы.

Почвенные коллоиды являются носителями сорбционных свойств почвы. Они способны поглощать и обменивать ионы диффузного слоя мицеллы на ионы почвенного раствора. Адсорбционные свойства коллоидов обусловлены большой удельной поверхностью, благодаря которой коллоидные частички приобретают силы электростатического притяжения – вокруг их могут концентрироваться молекулы воды, газов и др.

47 Почвенная кислотность и щелочность, их формы и методы определения.Кислотность или щелочность водного раствора, в том числе почвенного, определяется соотношением ионов Н+ и гидроксила ОН-.

При разложении органических остатков образуется много органических кислот, которые при определенных условиях нейтрализуются не полностью и поэтому почвы приобретают кислую реакцию. Первоисточником кислотности любой почвы являются водородные ионы угольной, и особенно органических, кислот, образующихся при разложении органических остатков и выделяемых корнями растений. Реакцию почвенного раствора выражают величиной рН, представляющей собой отрицательный логарифм концентрации водородных ионов в растворе. почвы могут иметь нейтральную (рН 7), кислую (рН менее 7) или щелочную (рН более 7) реакцию.

Кислотность делится на: актуальную (активную) и потенциальную (скрытую), которая, в свою очередь, подразделяется на обменную и гидролитическую.

Актуальная кислотность – кислотность почвенного раствора, обусловленная повышенной концентрацией ионов водорода по сравнению с ионами гидроксила. Она определяется наличием в нем водорастворимых кислот – щавелевой, лимонной, фульвокислот, гидролитических кислых солей, а прежде всего угольной кислоты (Н2СО3). Для большинства почв реация почвенного раствора рН колеблется от 4до 8. В дерново-подзолистых и торфяно-болотных почвах она находится в пределах 4,0-5,5.

Актуальная кислотность имеет большое значение в жизни растений и микроорганизмов.

Потенциальная кислотность – кислотность твердой фазы почвы. Она обусловлена наличием ионов водорода и алюминия в ППК в поглощенном состоянии. Подразделяется на два вида: обменную и гидролитическую

Обменная кислотность обусловлена наличием в поглощенном состоянии ионов водорода и алюминия, способных обмениваться на катионы нейтральных солей, например хлорида калия. Обменная кислотность- это кислотность, обусловленная обменно-поглощенными ионами водорода и алюминия, которые извлекаются из почвы при ее обработке раствором нейтральной соли. В величину обменной кислотности входит и актуальная кислотность. Следовательно, обменная кислотность всегда больше, чем актуальная, а рН солевой вытяжки ниже рН водной.

Обменная кислотность наиболее ярко выражена в подзолистых и красноземных почвах (рН 3-4). Для пахотного слоя дерново-подзолистых почв рН солевой вытяжки колеблется от 4 до 6, а в хорошо окультуренных почвах повышается до 6,0-6,5.

У почв с повышенной обменной кислотностью неблагоприятные агрономические свойства, которые могут быть улучшены известкованием и внесением достаточного количества органических удобрений.

Гидролитическая кислотность (Hr) определяется наличием в почве поглощенных ионов водорода и алюминия, способных обмениваться на катионы гидролитически щелочных солей. Эта кислотность обнаруживается в растворе после обработки почвы уксуснокислым натрием и включающая все содержащиеся в почве ионы водорода - не только легко подвижные, но и менее подвижные, способные к замене на основания лишь при щелочной реакции среды.

Гидролитическая кислотность является первой формой кислотности, появляющейся при обеднении почвы основаниями. В дерново-подзолистых почвах ее уровень может быть значительным при сильно выраженной обменной кислотности, и в этих почвах она характеризует насыщенность почв основаниями.

Щелочная реакция почвенных растворов и водных вытяжек обуславливается наличием повышенной концентрации в почве ионов гидрооксила ОН-. Различают актуальную и потенциальную щелочность.

Актуальная щелочность обусловлена наличием в почвенном растворе гидролитически щелочных солей: карбонатов и гидрокарбонатов калия и натрия, кальция и магния (Na2CO3 , NaHCO3, Актуальная щелочность выражается величиной рН.

При характеристике актуальной щелочности природных вод и почвенных растворов различают общую щелочность, щелочность от нормальных карбонатов и щелочность от гидрокарбонатов. Эти виды щелочности различаются по граничным значениям рН. Щелочность от нормальных карбонатов является результатом обменных реакций почв, содержащих поглощенный натрий.

Потенциальная щелочность обусловлена наличием в почве поглощенного натрия и проявляется при взаимодействии с угольной кислотой. Потенциальная щелочность дает представление о суммарном содержании щелочей в почвенном растворе.

Щелочная реакция неблагоприятна для большинства растений, а почвы приобретают неблагоприятные физические и химические свойства. При рН 9-10 они отличаются твердостью в сухом, вязкостью и липкостью во влажном состоянии. Щелочность почв характерна для солонцов, каштановых почв, сероземов, засоленных почв. Устраняют щелочность гипсованием, которое проводится при содержании более 10% поглощенного натрия от емкости катионного обмена.

48 Емкость поглощения, насыщенность и буферность почвы.Ёмкостью поглощения или емкостью катионного обмена (ЕКО) называется общее количество катионов, которое может быть вытеснено из почвы. Выражается в мг-эквивалент на 100 г почвы. ЕКО характеризует физико-химическую поглотительную способность почв и зависит от минерального и гранулометрического состава почв, а также от содержания в них гумуса. Емкость поглощения колеблется в широких пределах: она выше в суглинистых почвах, чем в песчаных, и выше в черноземах, чем в дерново- подзолистых. Органическая часть почвы обладает более высокой поглотительной способностью, чем минеральная. Поэтому несмотря на то, что в составе мелкодисперсной фракции преобладают минеральные коллоиды, ЕКО тем выше, чем больше в почве гумуса, а увеличение гумусированности почвы не влияет на емкость поглощения минеральной части. Различные почвы отличаются не только по ЕКО, но и по составу поглощенных катионов. Он разнообразен: все почвы содержат в поглощенном состоянии почти все катионы, среди них больше катионов кальция, магния, калия, аммония, присутствуют микроэлементы, катионы водорода и алюминия.

Общее содержание поглощенных катионов оснований (кроме Н+ и А13+) называют суммой обменных оснований. На их долю в черноземах приходится до 80—90%; в дерново-подзолистых почвах и красноземах иногда 50% и более от ЕКО приходится на ионы водорода и алюминия. В солонцах и солончаках наряду с кальцием и магнием в поглощенном состоянии присутствует натрий. Сумма обменных оснований (S), выраженная в процентах от общей емкости катионного обмена (ЕКО), называется степенью насыщенности основаниями (V), которую определяют по формуле V= S+ ЕКО х 100%. По этому показателю почвы делятся на насыщенные (V > 80%) и ненасыщенные (V 50—70%) основаниями. Наилучшие условия для растений создаются при V в пределах 80—90% от ЕКО. При этом, однако, важны уровни насыщения ППК отдельными обменными катионами, особенно кальцием, магнием и калием. Уровни определяются так же, как и степень насыщенности основаниями. Реакция почвенного раствора зависит не только от размеров обменной и гидролитической кислотности, но и от степени насыщенности почвы основаниями. Степень насыщенности показывает, какая часть общей емкости приходится на поглощенные основания и какая — на гидролитическую кислотность. Величина степени насыщенности основаниями — важный показатель для характеристики поглотительной способности и степени кислотности почвы.

Буферность почвы - способность почвы противостоять резкому изменению концентрации веществ в почвенном растворе путём протекающих обменных реакций в сторону кислого или щелочного интервала. Буферная способность зависит не только от состава почвенного раствора, но и от свойств твердой фазы почвы. Роль буферности почвенного раствора в общей буферной способности почвы обычно невелика. Более сильным фактором буферного действия является твердая фаза почвы, главным образом ее коллоидная часть. Среди этих свойств главные: количество и состав почвенных коллоидов, состав обменных катионов и емкость поглощения. Выше емкость - выше буферность - больше органического вещества в растворе. Если в почве, насыщенной основаниями, появляется кислота, то ионы водорода кислоты обмениваются с катионами поглощающего комплекса (водород переходит в поглощенное состояние, а в растворе образуется нейтральная соль) и реакция почвенного раствора изменяется мало. Буферность почвы в целом зависит от буферных свойств ее твердой и жидкой фаз. Буферная способность почвенного раствора обусловливается содержащимися в ней слабыми кислотами и их солями. Слабые кислоты диссоциируют не полностью, поэтому в растворе значительная часть их будет находиться в виде недиссоциированных молекул и лишь небольшое количество будет диссоциировано.

Способность почвы противостоять изменению реакции почвенного раствора имеет большое значение при внесении минеральных удобрений. На почвах, обладающих низкой буферностью (песчаных и супесчаных, многих дерново-подзолистых, бедных гумусом), при внесении кислых удобрений возможны резкие сдвиги реакции, которые могут оказать неблагоприятное влияние на развитие растений и почвенных микроорганизмов. На тяжелых и богатых гумусом почвах, обладающих высокой емкостью поглощения и значительным буферным действием, реакция раствора смещается слабо даже при систематическом внесении высоких норм кислых или щелочных минеральных удобрений. Против подкисления раствора особенно устойчивы почвы с высокой степенью насыщенности основаниями, а против подщелачивания — почвы с низкой степенью насыщенности. Систематическое внесение органических удобрений в сочетании с известкованием повышает емкость поглощения и степень насыщенности почвы основаниями, а, следовательно, увеличивает и ее буферность.

При одной и той же величине гидролитической кислотности почвы в зависимости от емкости поглощения могут иметь разную степень кислотности, а при равной емкости поглощения их степень насыщенности основаниями и степень кислотности определяется величиной гидролитической кислотности. Степень насыщенности почв основаниями - важный показатель для правильной оценки степени кислотности почвы и нуждаемости в известковании.

49 Почвенный раствор и его значение в почвообразовании и питании растений.Жидкая часть почвы или, как ее еще называют, почвенный раствор – это содержащаяся в почве вода с растворенными в ней газами, минеральными и органическими веществами, попавшими в нее при прохождении через атмосферу и просачивании через почвенную толщу. Состав почвенной влаги определяется процессами почвообразования, растительностью, общими особенностями климата, а также временем года, погодой, деятельностью человека (внесение удобрений и др.).

Почвенный раствор образуется в результате взаимодействия воды, поступающей в почву, с ее твердой фазой и растворения некоторых органических и минеральных веществ и их производных. Наиболее существенным источником почвенных растворов являются атмосферные осадки. Атмосферные осадки, поверхностные воды, росы, грунтовые воды, попадая в почву и переходя в категорию жидкой ее фазы, изменяют свой состав при взаимодействии с твердой и газообразной фазами почвы, с корневыми системами растений и живыми организмами, населяющими почву. Образующийся почвенный раствор, в свою очередь, играет огромную роль в динамике почв, питании растений и микроорганизмов, принимает активное участие в процессах преобразования минеральных и органических соединений в почвах, в их передвижении по профилю.

Основные химические и биологические процессы в почве могут идти только при наличии свободной воды. Почвенная вода является той средой, в которой происходит миграция химических элементов в процессе почвообразования, снабжение растений водой и растворенными элементами питания.

Реакция почвенного раствора в почвах разных типов неодинакова: кислую реакцию (pH < 7) имеют подзолистые, серые лесные, торфяные почвы, красноземы, желтоземы, щелочную (pH>7) – содовые солонцы, нейтральную или слабощелочную (pH = 7) – обыкновенные черноземы, луговые и коричневые почвы. Слишком кислый и слишком щелочной почвенный раствор отрицательно влияет на рост и развитие растений.

Почвенный раствор имеет огромное значение в генезисе почв и их плодородии. Он участвует в процессах преобразования (разрушение и синтез) минеральных и органических соединений, в составе почвенного раствора по профилю почв перемещаются разнообразные продукты почвообразования. Исключительно велика роль почвенного раствора в питании растений. Поэтому важно знать его состав, свойства (реакция, буферность, осмотическое давление) и динамику.

Почвенные растворы служат непосредственным источником питания растений. Изменение концентрации и состава растворов ведет к изменению режима водного и минерального питания растений, что, естественно, непосредственно отражается на их развитии и продуктивности.

Для питания растений большую роль играет осмотическое давление почвенного раствора. Если осмотическое давление почвенного раствора равно осмотическому давлению клеточного сока растений или выше его, то поступление воды в растения прекращается. Сосущая сила корней большинства сельскохозяйственных растений не превышает 100-120 МПа.

Осмотическое давление зависит от концентрации почвенного раствора и степени диссоциации растворенных веществ. Осмотическое давление сильно изменяется при изменении влажности почвы, т.к. концентрация почвенного раствора при этом сильно варьирует. Наиболее высоким осмотическим давлением почвенного раствора характеризуются засоленные почвы, особенно тяжелые по механическому составу, с высокой поглотительной способностью. На предельное значение осмотического давления, при которых влага перестает поступать в растения, существенное влияние оказывает состав растворов.

50 Методы изучения почвенного раствора.Для выделения и изучения почвенных растворов в зависимости от условий и задач исследования применяются различные методы.

1 группа методов: выделение и изучение почвенных растворов с помощью вытяжек, т.е. извлечение раствора добавлением в почву воды в количестве, значительно превышающем навеску почвы (наиболее часто применяемое соотношение почва:вода — 1:5). Составы почвенных растворов и водных вытяжек весьма сильно различаются между собой. Поэтому в настоящее время водные вытяжки используются в основном для характеристики в почвах легкорастворимых солей и иногда для определения ряда легкодоступных растениям питательных элементов.

2 группа методов: выделение раствора из почвы в сравнительно неизменном виде. Для выделения почвенного раствора из образца почвы предварительно отобранного из почвы, необходимо преодолеть силу взаимодействия твердой и жидкой фаз почвы. Поэтому все методы основываются на применении внешней силы: давление, создаваемое прессом; давление сжатого газа; центробежная сила; вытесняющая способность различных жидкостей. Количество выделяющегося почвенного раствора зависит от водоудерживающих свойств почвы и степени ее увлажнения. Получить почвенные растворы центрифугованием возможно лишь в почвах с влажностью, близкой к полной влагоемкости. Практически в современных почвенных исследованиях наиболее часто применяются первый и последний методы, т.е. отпрессовывание раствора или вытеснение замещающей жидкостью. Выделение почвенного раствора замещением его другой жидкостью заключается в том, что через колонку, заполненную исследуемой почвой с естественной влажностью, сверху просачивается вытесняющая жидкость. Наиболее удобен для этой цели этиловый спирт. Для улучшения фильтрационных свойств тяжелых почв их рекомендуется смешивать с хорошо отмытым кварцевым песком. При использовании этих методов после выделения раствора в почве остается еще некоторое количество влаги. Преимущества данных методов — возможность получения растворов при влажности, характерной для почв в вегетационный период, поэтому практически динамику почвенного раствора можно изучить лишь этими методами. Недостаток их — некоторое нарушение карбонатного равновесия и окислительно-восстановительного состояния раствора при его отделении от почвы.

3 группа методов: т.н. лизиметрические методы, действующие по принципу замещения и вытеснения растворов почвенных растворов талыми и дождевыми водами. Для количественного учета и изучения состава просачивающихся сквозь почву растворов применяют лизиметры различного устройства: лизиметры-контейнеры с бетонированными стенками и дном, лизиметры-монолиты, лизиметры-воронки, плоские лизиметры закрытого типа, в наименьшей степени нарушающие естественное залегание почвы, лизиметрические хроматографические колонки. Недостаток всех лизиметрических установок — возможность получения растворов лишь в периоды сильного увлажнения почв. Кроме того, в лизиметрических установках, особенно типа подставных воронок, нарушается в определенной мере естественный ход фильтрации, что не позволяет получать строго количественной характеристики выноса тех или иных компонентов почвы. Поэтому при изучении динамики состава почвенных растворов желательно сочетать лизиметрический метод с другими методами выделения почвенных растворов (отпрессовывание и др.).

4 группа методов: непосредственные исследования водной фазы почв в почве естественного залегания в полевых условиях. В последние годы развития потенциометрических и, в частности, ионометрических методов позволяет более широко проводить эти исследования, определять широкий набор ионов (Ca, Mg, K, Na, NO3, Cl), измеряя их активность в почве.


Поделиться:



Последнее изменение этой страницы: 2019-04-01; Просмотров: 1087; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.067 с.)
Главная | Случайная страница | Обратная связь