Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Трансгенез – проблема или польза?



Человечеству дан единственный воспроизводящийся ресурс – биологический. Все остальные ресурсы исчерпаемы. Именно поэтому приоритеты в науке на следующее тысячелетие постепенно смещаются в пользу наук о жизни. Человечество, естественно, стремится взять под контроль самовоспроизведение биологических ресурсов, раскрыть механизмы энергетики клетки, синтеза биологических продуктов, фотосинтеза, азотфиксации и др. Все энергетические и синтетические процессы в клетке человек в ближайшее время попытается познать и некоторые из них превратить в промышленные биотехнологии.

Это, естественно, имеет прямое отношение к решению самых важных проблем человечества, а именно, проблем продовольственного потенциала планеты, экологии обитания человека, здоровья человека и, в перспективе, энергетики на основе биотехнологий.

На первом месте закономерно стоит проблема создания достаточного продовольственного потенциала для растущей человеческой популяции. Естественно, что с этой проблемой тесно связана проблема демографическая. Прогнозы таковы: если к 2000 г. население планеты составило около 6,2 млрд. чел., значит к 2025 г. составит 8,3 млрд., затем наступит стабилизационный период и к концу ХХI в. ожидается 11 млрд. чел., т.е. почти удвоение популяции по сравнению с сегодняшним днем. В этой демографической динамике важен фактор ее географического распределения: почти 70% прироста населения ожидается в развивающихся странах, т.е. там, где ситуация с продовольствием наиболее напряженная.

Еще в 1998 г. в Иерусалиме состоялся IX Международный конгресс по биотехнологии растений, во вступительной статье к материалам которого лауреат Нобелевской премии, родоначальник “зеленой революции” Н. Борлауг рассмотрел многие аспекты создания продовольственного потенциала, прежде всего селекции растений. Он отметил, что поэты и художники идеализировали сельское хозяйство как гармонию между человеческой деятельностью и природой, на самом же деле это жесточайшая борьба между силами, поддерживающими биологическое разнообразие и силами человеческого интеллекта, используемыми в борьбе за производство пищи и выводящими репродукционные системы живых организмов на максимум в ущерб биологическому разнообразию и приспособлению как основам экологического равновесия.

Такая борьба длится уже 10-12 тыс. лет – с тех пор, как человек начал доместикацию, т.е. введение в культуру диких видов растений и животных. К настоящему времени всего около 40 видов доместицированных растений обеспечивают наш основной белковый и энергетический баланс, только восемь видов основных злаковых растений составляют 66% продовольственного потенциала человечества. В целом из многих сотен тысяч видов высших растений человек использует сегодня около 200 – весьма скромная победа человека над природой за 12 тыс. лет. Вопреки И.В.Мичурину, нам приходится ждать милостей от природы, и ждать долго, а цена за них очень высока как для человека, так и для природы.

В наиболее развитых странах доля продукции растительного происхождения составляет 70%, животного – 30%, в развивающихся странах – соответственно – 90 и 10%. В 1994 г. был детально проанализирован продовольственный баланс планеты. Всего сегодня производится около 5 млрд. т различных видов продовольствия, из них всех видов зерна – около 2 млрд. тонн. Если распределить все производимое поровну, что очень далеко от реальности, то по нормам, в соответствии с которыми в день человеку необходимо 2350 калорий, можно обеспечить продовольствием более 6,5 млрд. чел., т.е. несколько больше, чем ныне существующая человеческая популяция.

С учетом демографических прогнозов для обеспечения растущей человеческой популяции мы должны увеличивать продовольственный потенциал ежегодно в среднем на 2%. Возникает вопрос: за счет чего? Резерв пахотных земель почти исчерпан, предел урожайности по важнейшим культурам почти достигнут в результате интенсивной селекции, проводившейся в последние 100 лет. По этим двум параметрам оставшиеся резервы весьма незначительны и ни в коей мере не обеспечат темпы роста народонаселения. Значит, нужны новые подходы к решению продовольственной проблемы, которые могут появиться только на основе анализа достижений фундаментальной науки. Именно это и осуществляется сегодня в мире. Так как в основе любой технологии производства в растениеводстве лежит сорт или гибрид и от уровня его продуктивности в огромной степени зависит конечный результат, один из путей решения проблемы - возможность создания новых форм растений. Естественно, чтобы удвоить в обозримом будущем объем производимого продовольствия, необходимо создать принципиально новые формы – с реконструированными геномами и более продуктивные, качественные и устойчивые.

Работы по генетической реконструкции, или генной инженерии, начались не более 30 лет тому назад, а первые сообщения о получении измененных геноинженерных высших, или эукариотических, организмов появились всего 15 лет назад. Но этому предшествовала огромная исследовательская работа. Только на растениях нужно было отработать методы культивирования клеток, тканей и органов, создать новые генетические конструкции, методы их переноса в геном и т.д.. Именно этим и занималась фундаментальная наука, из достижений которой и родилась генная, хромосомная и клеточная инженерия растений как существенная часть биотехнологии.

Одним из основных направлений биотехнологии являются получение и многопрофильное использование трансгенных растений, т.е. форм, несущих в своем геноме встроенные геноинженерными методами чужие гены, нормально работающие в новом геноме. В геном растения встраиваются гены животных, человека, бактерий, других растений, которые нарабатывают новые продукты. Трансгенные растения и животные – формы с существенно реконструированными геномами. В будущем это направление будет одним из наиболее перспективных в плане значительного улучшения необходимых для селекции признаков.

Что сделано в области трансгенных растений уже сегодня? На последнем конгрессе по биотехнологии было отмечено, что в настоящее время трансгенные растения уже возделываются на десятках миллионов гектаров. Только в США трансгенная соя занимает около 15% всех посевных площадей, трансгенная кукуруза – около 10%.

Улучшение растений путем трансгенеза идет по следующим направлениям. Наиболее успешно решается проблема устойчивости к гербицидам, что важно для борьбы с сорняками, засоряющими поля и снижающими урожай культивируемых растений. Известны и клонированные гены, определяющие устойчивость к большинству коммерческих гербицидов. Получены и используются гербицидоустойчивые сорта хлопчатника, кукурузы, рапса, сои, сахарной свеклы, пшеницы и других растений.

Именно вокруг этого направления трансгенеза в настоящее время развернулись серьезные дискуссии о негативных последствиях переноса генов гербицидоустойчивости в культурные растения. Обсуждается возможность спонтанного переноса этих генов в сорняки, так как между культурными видами и сопровождающими их дикими сородичами в определенных условиях может происходить гибридизация, а следовательно, и перенос генов.

Устойчивость растений к насекомым-вредителям – еще одна проблема, успешно решаемая благодаря внедрению трансгенных растений. Большая часть работ по этой проблеме посвящена белку дельта-эндотоксину, продуцируемому разными штаммами бактерии Bacillus turingensis. Этот белок токсичен для многих видов насекомых и безопасен для млекопитающих, в том числе для человека. У бактерий выделены гены, контролирующие синтез дельта-эндотоксина, которые включены в специальные генетические конструкции и перенесены в геном растений. В чужом для них геноме гены начали нормально функционировать и производить токсин, который при поедании растений насекомыми приводит к лизису у них клеток кишечника и гибели.

Однако действие дельта-эндотоксина строго специфично и зависит от связывания его с определенным рецептором клетки. Поэтому все белки дельта-эндотоксина делятся на четыре класса в зависимости от специфичности их действия на насекомых разных отрядов. Именно по этой причине потребовались 10 лет интенсивной работы и большие денежные вложения для получения трансгенных сортов картофеля, устойчивых к колорадскому жуку4.

Естественно, что получение таких растений решает крупную экономическую проблему. Вместе с тем возникают и некоторые опасения при использовании трансгенных растений, устойчивых к колорадскому жуку, другим насекомым, вирусным, грибковым и бактериальным инфекциям, о чем пойдет речь ниже. Общее опасение во всех этих случаях состоит в том, что устойчивые трансгенные растения создают фон для отбора и более устойчивых паразитов и возбудителей инфекций, т.е. возможность коэволюции. Вопрос о реальности этого процесса и его продолжительности весьма дискуссионный, но исключать такую возможность нельзя.

Обеспечение устойчивости растений к вирусным заболеваниям является также одним из наиболее интенсивно разрабатываемых направлений трансгенеза. Вирусные и бактериальные инфекции резко снижают урожай растений, поэтому создание трансгенных сортов, устойчивых к заболеваниям, решает крупную практическую задачу. Подходы к ее решению разные, но все они сводятся к блокированию размножения вирусных частиц в растениях. Для этого в геном растительной клетки вводятся гены, синтезирующие противовирусные агенты, например интерферон, нуклеазы и т.д. Нами получены трансгенные растения табака и люцерны с геном бета-интерферона человека.

Одним из первых коммерческих продуктов генетической инженерии растений стали знаменитые трансгенные томаты с практически неограниченным сроком хранения. Получены были они в двух фирмах разными методами. В первом случае в томаты был введен блокатор гена (антисмысловая конструкция) фермента, играющего главную роль в процессе разложения плодов томатов. В другом случае блокировался ген синтеза этилена – фитогормона, регулирующего созревание плодов. Плоды у таких трансгенных растений могут храниться неограниченно долго, вплоть до принудительной обработки этиленом, когда нужно получить спелые плоды.

Естественно, что геноинженерные работы с растениями ведутся и по многим другим направлениям. Очень перспективными являются исследования, направленные на получение через трансгенные растения белков, антител, вакцин и других уникальных компонентов животного происхождения для медицины и ветеринарии. В этих случаях в растительный геном встраиваются гены человека или животных, контролирующие синтез необходимых для медицины белковых компонентов. Таким образом, растение превращается в своеобразную фабрику для производства необходимых нам продуктов. В этом же плане ведутся работы по превращению животных в доноров необходимых медицине и ветеринарии белков, ферментов, гормонов, антител, вакцины и т.д. Однако работы по трансгенным животным сопряжены с большими трудностями в силу специфики объекта и пока менее результативны, чем работы по растениям.

Сравнительно детальные сведения о трансгенезе у растений приведены для формирования представлений о самом процессе геноинженерных работ, показать, что они сложны технологически и требуют довольно больших затрат. Именно по этим причинам приоритеты, как в плане организации исследований, так и в плане их финансирования сегодня смещаются в сторону биотехнологий.

Если оценивать последние достижения биотехнологий в методологическом аспекте, то речь идет, несомненно, о серьезном вмешательстве в эволюционно устоявшиеся геномы растений, животных, да и самого человека. Весь трансгенез, т.е. введение чужих генов в геном и их работа в нем, – серьезная генетическая реконструкция, приводящая к появлению новых функций, новых продуктов генома, которые вносят существенный дисбаланс в эволюционно сложившиеся механизмы взаимодействия как внутригеномных, так и внешних систем. Но, как мы уже отмечали, человек вынужден искать новые подходы к созданию принципиально новых организмов, отвечающих его запросам, так как ему угрожает дефицит продовольствия, так как существует угроза его здоровью и экологическому благополучию. Исчерпав естественные ресурсы, человек должен будет приступить к созданию искусственных биологических систем, обеспечивающих ему необходимые компоненты, но не нарушающих экологическое равновесие. Все споры и дискуссии лежат именно в этой плоскости. Усугубляются они тем, что мы пока не знаем последствий нашего вмешательства в геном, хотя исследования в этом направлении ведутся интенсивно.

Из-за отсутствия четких доказательств безопасности использования трансгенных растений и животных в одних странах законодательно разрешено культивировать трансгенные растения, в других – пока запрещено их коммерческое использование. На наш взгляд, в большинстве случаев использование трансгенных растений и животных будет безопасным для человека и экосистем, однако усилить исследование последствий внедрения таких организмов крайне важно.

Выше мы рассмотрели только один аспект геноинженерных работ по переносу отдельных генов из геномов одних видов в геномы других. Однако мысль исследователя опережает реальные события и устремляется в будущее. Если можно переносить отдельные гены далеких в систематическом отношении видов и заставлять их успешно работать, то почему нельзя переносить более крупные генетические блоки – части хромосом или целые хромосомы. Область цитогенетики, где решаются эти проблемы, получила название хромосомной инженерии. Методы и подходы хромосомной инженерии уже сравнительно давно успешно разрабатываются на растениях как наиболее удобном для этих целей объекте. Перенесение из одного генома в другой хромосом или их частей является еще более масштабной реорганизацией геномов. Пока это удается только у растений, но попытки, и уже успешные, делаются и на животных. В данном случае речь идет не об отдельных продуктах перенесенных генов, а о получении организмов, сочетающих многие признаки разных видов.

У растений сравнительно давно получены организмы, сочетающие геномы разных родов. Удалось совместить геномы пшеницы и ржи и получить в процессе гибридизации с последующим удвоением у гибридов хромосом новый искусственный вид злаковых – тритикале. Хотя он и не нашел широкого применения в практике, это показало возможности создания новых, не существовавших ранее форм растений. Хромосомная инженерия имеет огромные перспективы в отношении растений, а вслед за ними и в отношении животных. Это подкрепляется тем, что в последние годы усилены фундаментальные исследования по структуре и функциям хромосом у разных видов организмов, роли хромосомных реорганизаций в эволюции и селекции.

 

Развитие сельского и промыслового хозяйства, медицины

Человек как гетеротрофный организм не способен непосредственно усваивать солнечную энергию, поступающую на Землю. Необходимые для питания белки, жиры, углеводы, витамины человек получает в основном от культурных растений и прирученных животных, используя в одних случаях длинные, в других короткие "цепи" от автотрофов (главным образом зелёных растений) до гетеротрофов (животных). Знание законов генетики и селекции, а также физиологических особенностей культурных видов позволяет совершенствовать агротехнику и зоотехнию, выводить более продуктивные сорта растений и породы животных. Уровень знаний в области биогеографии и экологии определяет возможность и эффективность интродукции и акклиматизации полезных видов, борьбы с вредителями посевов, с паразитами сельскохозяйственных животных. Биохимические исследования позволяют полнее использовать получаемые органические вещества растительного и животного происхождения.

На современном этапе необходима разработка новых методов селекции, теории гетерозиса (обеспечивающего повышение продуктивности сельскохозяйственных животных и растений), получение организмов с заранее заданными свойствами (и оценку их возможного влияния на здоровье человека), совершенствование методов биологической борьбы с вредителями. Также необходим перевод лесного хозяйства, звероводства, промыслов (охоты, рыболовства и т.д.) на плановые, научно обоснованные рельсы (что связано с решением ряда проблем, например динамики численности, оптимального размера, места и времени промыслового изъятия части популяции и т.д.).

Другой важнейший практический аспект биологии - использование её в медицине. Учение о причинах и распространении инфекционных болезней и принципах борьбы с ними основано не только на узко микробиологических и вирусологических исследованиях но и изучении биологии и экологии микроорганизмов. Уже выделено, вероятно, большинство болезнетворных бактерий, изучены пути их переноса и попадания в человеческий организм, разработаны методы борьбы с ними путём асептики, антисептики и химиотерапии. Выделены и исследованы многие патогенные вирусы, изучаются механизмы их размножения, разрабатываются средства борьбы со многими из них.

Представления о механизмах иммунитета, лежащего в основе сопротивляемости организма инфекциям, также опираются на экологические исследования. Подлинная революция в лечении инфекционных заболеваний, служивших в прошлом основной причиной смертности, связана с открытием антибиотиков. Использование в медицине веществ, выделяемых микроорганизмами для борьбы друг с другом, - крупнейшее открытие 20 в.

С увеличением средней продолжительности жизни людей, обусловленным в значительной мере успехами медицины, возрос удельный вес заболеваний старшего возраста - сердечно-сосудистых, злокачественных новообразований, а также наследственно обусловленных болезней. Так же необходимо учитывать и значительное изменение окружающей среды. Это поставило перед современной экологией человека и медициной новые проблемы. Генетический анализ позволяет обнаруживать у человека вредные мутации. Борьба с ними ведётся путём лечения и медико-генетических консультаций и рекомендаций. Разумные пути избавления человечества от вредных мутаций напрямую связаны с экологическими исследованиями. Всё большее внимание привлекает проблема психического здоровья человечества, решение которой невозможно без глубокого анализа предельной урбанизации и разрыва связи человека и природы.

Связь биологии с сельским хозяйством и медициной обусловливает не только их развитие, но и развитие самой биологии. Перспективные в практическом отношении области биологии наиболее щедро финансируются обществом. В будущем союз биологии с медициной и сельским хозяйством, для которых биология служит научной основой, будет укрепляться и развиваться.

 


Поделиться:



Последнее изменение этой страницы: 2019-04-11; Просмотров: 453; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.022 с.)
Главная | Случайная страница | Обратная связь