Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


I . КОСМИЧЕСКИЙ КАЛЕНДАРЬ



 

Что видишь ты еще

В пучине темной лет минувших?

У. Шекспир. Буря

 

Наш мир очень стар, а человечество очень молодо. Длительность важных событий жизни измеряется годами или еще меньшими сроками, вся продолжительность нашей жизни — десятилетиями, генеалогия семьи — столетиями, а вся известная история человечества — тысячелетиями. Но всему этому предшествовала внушающая благоговейный трепет бездна времени, протянувшаяся в далекое прошлое, о котором мы знаем очень мало: и потому, что не существует никаких письменных свидетельств тех лет, и потому, что нам сложно осмыслить саму огромность временного интервала, о котором идет речь.

И все же у нас есть возможность датировать события достаточно отдаленного прошлого. Геологические исследования и радиоактивный метод предоставляют данные об археологических, палеонтологических и геологических событиях, а астрофизическая теория позволяет судить о возрасте планет, звезд и всей нашей Галактики, а также оценить время, прошедшее после того чрезвычайного события, которое мы называем Большой Взрыв — взрыв, в котором участвовала вся материя и вся энергия мироздания. Большой Взрыв мог быть началом нашей Вселенной или же разрывом во времени, когда погибла вся информация о ее ранней истории. Но, безусловно, это самое раннее событие, от которого мы можем вести отсчет.

Я не знаю более наглядного способа изобразить космическую хронологию, чем представить себе пятнадцать миллиардов лет жизни Вселенной (или по крайней мере ее нынешнего воплощения после Большого Взрыва) спрессованными в один-единственный год. Тогда каждому миллиарду лет истории Земли будет соответствовать примерно двадцать четыре часа нашего космического года, а одна секунда этого года окажется равной 475 истинным обращениям Земли вокруг Солнца. На таблицах I, II и III я представил эту космическую хронологию тремя различными способами: в виде списка некоторых важных додекабрьских дат, как календарь декабря и в форме подробного хронометража позднего вечера 31 декабря — кануна нового космического года. На этой шкале все события, указанные в наших учебниках истории, даже в тех из них, в которых делаются попытки показать далекие корни настоящего, сжаты до такой степени, что приходится посекундно анализировать последние мгновения космического года. Но даже и в этом случае события, которые мы привыкли считать весьма отдаленными, оказываются в наших таблицах рядом с современными. Чтобы построить хронологию жизни на Земле, надо было бы соткать ковер со столь же плотным расположением нитей, но только в другом временном периоде — скажем, в интервале между 10 часами 02 минутами и 10 часами 03 минутами 6 апреля или 16 сентября. Но в нашем распоряжении есть подробные сведения только о самом конце космического года.

Эта хронология соответствует самым последним научным данным. Но некоторые из них не очень точны. Никто не удивится, если, например, окажется, что растения завоевали Землю в ордовике, а не в силуре или что кольчатые черви появились в докембрийский период — раньше, чем это указано в таблице. Точно так же совершенно очевидно, что в хронологию последних десяти секунд космического года невозможно было включить все важнейшие события. Я надеюсь, мне извинят отсутствие прямого упоминания о важных вехах в искусстве, музыке, литературе или же об имеющих огромное значение для истории человечества революциях в Америке, Франции, России и Китае.

Подобные таблицы и календари неизбежно упрощают картину. Приходишь в замешательство, когда видишь, что Земля выделилась из звездной материи не раньше начала сентября, динозавры появились в канун Рождества, цветы расцвели 28 декабря, а люди ведут свое происхождение с 22 часов 30 минут последнего новогоднего дня. Вся зафиксированная история человечества занимает последние десять секунд 31 декабря, а все, что произошло с конца средних веков до настоящего момента, занимает меньше чем одну секунду. Но в рамках принятых допущений первый космический год как раз теперь подходит к концу. До сих пор мы занимали ничтожно малый отрезок на шкале космического времени. Однако то, что случится в начале второго космического года на Земле и в ее окрестностях, в очень большой степени зависит от научной мудрости и истинно человеческих качеств населяющих нашу планету людей.

 

Таблица I

Додекабрьские даты

 

Большой Взрыв 1 января
Возникновение галактики Млечного Пути 1 мая
Возникновение Солнечной системы 9 сентября
Образование планеты Земля 14 сентября
Появление жизни на Земле 25 сентября
Образование древнейших из известных на Земле гор 2 октября
Время образования древнейших ископаемых (бактерий и синезеленых водорослей)   9 октября
Возникновение полового размножения (микроорганизмов) 1 ноября
Древнейшие фотосинтезирующие растения 12 ноября
Эукариоты (первые клетки, содержащие ядра) 15 ноября

 

Таблица II

Космический календарь

Декабрь

 

Числа  
1 Образование кислородной атмосферы на Земле
5 Интенсивное извержение вулканов и образование каналов на Марсе
16 Первые черви
17 Конец докембрийского периода. Палеозойская эра и начало кембрийского периода. Возникновение беспозвоночных
18 Первый океанический планктон. Расцвет трилобитов
19 Период ордовика. Первые рыбы, первые позвоночные
20 Силур. Первые споровые растения. Растения начинают завоевывать сушу
21 Начало девонского периода. Первые насекомые. Животные колонизируют сушу
22 Первые амфибии. Первые крылатые насекомые
23 Каменноугольный период. Первые деревья. Первые рептилии
24 Начало пермского периода. Первые динозавры
25 Конец палеозойской эры. Начало мезозойской эры
26 Триасовый период. Первые млекопитающие
27 Юрский период. Первые птицы
28 Меловой период. Первые цветы. Вымирание динозавров
29 Конец мезозойской эры. Кайнозойская эра и начало третичного периода. Первые китообразные. Первые приматы
30   Начало развития лобных долей коры головного мозга у приматов. Первые гоминиды. Расцвет гигантских млекопитающих
31 Конец плиоценового периода. Четвертичный (плейстоцен и голоцен) период. Первые люди

 

Таблица III

Декабря

 

Появление проконсула и рамапитека — возможных предков обезьян и человека 13.30.00
Первые люди 22.30.00
Широкое использование каменных орудий 23.00.00
Использование огня пекинским человеком 23.46.00
Начало последнего периода оледенения 23.56.00
Заселение Австралии 23.58.00
Расцвет пещерной живописи в Европе 23.59.00
Открытие земледелия 23.59.20
Цивилизация неолита — первые города 23.59.35
Первые династии в Шумере, Эбле и Египте, развитие астрономии 23.59.50
Открытие письма; государство Аккад; законы Хаммурапи в Вавилонии; Среднее царство в Египте 23.59.52
Бронзовая металлургия; Микенская культура; Троянская война; Ольмекская культура; изобретение компаса 23.59.53
Железная металлургия; первая Ассирийская империя; Израильское царство; основание Карфагена финикийцами 23 59 54
Династия Цинь в Китае; империя Ашоки в Индии; Афины времен Перикла; рождение Будды 23.59.55
Евклидова геометрия; Архимедова физика; астрономия Птолемея; Римская империя; «рождение Христа» 23.59.56
Введение нуля и десятичного счета в индийской арифметике; упадок Рима; мусульманские завоевания 23.59.57
Цивилизация майя; династия Сун в Китае; Византийская империя; монгольское нашествие; крестовые походы 23.59.58
Эпоха Возрождения в Европе; путешествия и географические открытия, сделанные европейцами и китайцами времен династии Мин; введение экспериментального метода в науку 23.59.59
Широкое развитие науки и техники; появление всемирной культуры; создание средств, способных уничтожить род людской; первые шаги в освоении космоса и поиски внеземного разума   Настоящий момент и в первые секунды Нового года

 

 

II. ГЕНЫ И МОЗГ

 

Где был твой откован мозг?..

У. Блейк. Тигр

Из всех животных у человека самый большой мозг по отношению к размерам его тела.

Аристотель. Части животных

 

Биологическая эволюция сопровождалась все нарастающей сложностью. Сегодня самые сложные организмы на Земле содержат значительно больше информации — как генетической, так и внегенетической, чем самые сложные организмы, скажем, 200 миллионов лет назад (что составляет только 5 процентов истории жизни на планете, пять дней по нашему космическому календарю). Самые простые из организмов Земли сегодня имеют у себя за плечами ровно столько же эволюционного развития, сколько и самые сложные, и вполне может оказаться, что внутренняя биохимия современных бактерий более эффективна, нежели внутренняя биохимия бактерий три миллиарда лет назад. Но количество генетической информации сегодняшней бактерии, возможно, не слишком превышает то, что содержалось в ее древнем предке. Тут важно различие между количеством информации и ее качеством.

Различные биологические формы называются таксонами. Граница, проходящая между крупнейшими таксонами, отделяет растения от животных или организмы со слабо развитым ядром (бактерии, синезеленые водоросли) от организмов с четко выраженным и сложно устроенным ядром (например, простейшие, люди). Однако все организмы на планете Земля, обладают ли они хорошо выраженным ядром или нет, имеют хромосомы, которые заключают в себе генетический материал, передаваемый из поколения в поколение. Во всех организмах молекулы наследственности — это нуклеиновые кислоты. С некоторыми несущественными исключениями, молекулы нуклеиновых кислот, передающие наследственность, — это молекулы, называемые ДНК (дезоксирибонуклеиновая кислота). Более мелкие подразделения различных растений и животных, вплоть до видов и подвидов, тоже можно назвать разными таксонами.

Вид — это группа особей, могущих давать способное к самовоспроизведению потомство путем скрещивания только с особями своей группы, но не вне ее. В результате спаривания собак различных пород рождаются щенки, которые, достигнув взрослого состояния, способны к размножению. Но скрещивание между различными видами, даже видами столь близкими, как ослы и лошади, дает бесплодное потомство (в данном случае мулов). Поэтому ослы и лошади считаются различными видами. Между более отдаленными видами, например между львами и тиграми, иногда происходит скрещивание, дающее жизнеспособное, но бесплодное потомство, а крайне редко случается, что оно даже способно к размножению. Это свидетельствует о том, что определение вида несколько расплывчато. Все люди принадлежат к одному и тому же виду Homo sapiens, что в переводе с латинского звучит оптимистически: Человек разумный. Наши возможные предки Homo erectus (Человек прямоходящий) и Homo habilis (Человек умелый), ныне вымершие, относятся к одному роду (Homo), но к разным его видам, хотя никто, во всяком случае в недавнее время, не пытался экспериментальным путем выяснить, даст ли скрещивание между ними потомство, способное к размножению. В прежние времена было широко распространено мнение, что потомство может быть получено от совершенно различных организмов. Минотавр, которого убил Тезей, был рожден в браке между быком и женщиной. А римский историк Плиний утверждал, что страус, тогда только что открытый в природе, появился в результате скрещивания между жирафой и комаром. (Я полагаю, что комар в этой ситуации должен был быть самцом, а жирафа — самкой.) В действительности же, однако, подобного рода скрещивания не происходили по вполне понятной причине — из-за отсутствия какой-либо мотивации к ним.

На протяжении этой главы мы неоднократно будем возвращаться к графику, изображенному на рис. 1. Сплошная линия на нем указывает время самого первого появления на Земле различных главных таксономических групп. Конечно, в природе существует значительно большее число таких групп, чем указано точками на этом графике. Изображенной на нем кривой соответствует огромное количество точек, которыми следовало бы обозначить десятки миллионов различных таксономических групп, появившихся на нашей планете с того времени, когда на ней возникла жизнь. Главные из них, которые возникли в самое последнее время, как правило, наиболее сложны.

Рис. 1. Эволюция объема информации в генах и в мозге за всю историю жизни на Земле. Сплошная кривая, проходящая через темные точки, показывает количество битов информации, за ключенной в генах у различных организмов, чье приблизительное время появления, согласно имеющимся геологическим данным, также указано на диаграмме. Поскольку количество ДНК, приходящейся на одну клетку, неодинаково в пределах таксона, указано лишь минимальное для данной группы значение. Данные взяты из работы Бриттена и Давидсона (1969). Пунктирная кривая, проходящая через светлые точки, дает приблизительную оценку информации, заключенной в мозге и нервной системе тех же самых организмов. Точки, соответствующие информации, содержащейся в мозге амфибий и еще более простых животных, должны были бы находиться левее диаграммы. Хотя на диаграмме и указано количество битов информации в генетическом материале вирусов, но нет уверенности, что вирусы действительно появились несколько миллиардов лет назад. Возможно, что они появились намного позже и развились из бактерий и других более сложных организмов путем потери ими своих функций. [Существует довольно убедительная точка зрения, что вирусы — это получившие самостоятельность органы бактерий. - Прим. редакции.] Если бы надо было отразить внесоматическую информацию, накопленную людьми (библиотеки и т. д.), то соответствующая точка оказалась бы далеко справа за границей диаграммы.

 

Некоторое представление о сложности организма может быть получено, если просто изучать его поведение, то есть число различных функций, которые он призван выполнять в своей жизнедеятельности. Но о сложности можно судить также по минимуму информации, заключенному в генетическом материале организма. Типичная человеческая хромосома имеет одну очень длинную молекулу ДНК, завитую в спираль, так что место, которое она занимает в пространстве, значительно меньше, чем если бы она была распрямлена. Эта молекула ДНК построена из более мелких строительных блоков, несколько напоминающих ступеньки и боковинки веревочной лестницы. Блоки называются нуклеотидами и существуют в четырех различных вариантах. Язык жизни, наша наследственная информация, определяется последовательностью четырех различных типов нуклеотидов. Можно сказать, что алфавит языка наследственности состоит всего из четырех букв.

Но книга жизни очень богата, типичная молекула ДНК хромосомы человека состоит примерно из пяти миллиардов частей или нуклеотидов. Наследственные программы всех других таксонов на Земле записаны тем же языком, тем же кодом. И этот единый для всех язык наследственности является одним из свидетельств происхождения всех организмов на Земле от единого предка, от общего для всех начала жизни, которое отделено от нас примерно четырьмя миллиардами лет.

Информация, содержавшаяся в любом послании, обычно измеряется в единицах, называемых битами - сокращение от binary digit, что значит «двоичный знак». Простейшие арифметические вычисления используют не десять разрядов (как делаем мы вследствие того, что по случайности эволюции обладаем десятью пальцами), а только два — 0 и 1. Так что на любой достаточно четкий вопрос может быть дан ответ в виде 0 или 1, «да» или «нет». Если бы наследственный код был описан на языке, имеющем не четыре, а две буквы, то число битов в молекуле ДНК равнялось бы удвоенному числу пар нуклеотидов. Но так как существует четыре типа нуклеотидов, число битов информации в ДНК в четыре раза больше числа пар нуклеотидов. Таким образом, если одна хромосома имеет пять миллиардов (5 • 109)) нуклеотидов, она содержит двадцать миллиардов (2 • 1010) битов информации. (Символ 109 указывает, что за единицей следует определенное число нулей — в данном случае девять.)

Как много информации содержится в двадцати миллиардах битов? Чему она будет соответствовать, если записать ее в обычной книге современным человеческим языком? Наши алфавитные языки, как правило, имеют от двадцати до сорока букв плюс одну-две дюжины цифр и знаков препинания; таким образом, для таких языков оказывается достаточно шестидесяти четырех независимых значков. Так как 26 равняется 64 (2 х 2 х 2 х 2 х 2 х 2), то не потребуется более шести битов, чтобы определить каждый значок. Мы можем представить себе ситуацию в виде «игры в двадцать вопросов», в которой каждый ответ соответствует одному биту. Предположим, что значок, который загадан, — это буква Н. Мы можем найти ее следующим образом.

Первый вопрос: Буква ли это (0) или же какой-то другой значок (1)?

Ответ: Буква (0).

Второй вопрос: Находится ли она в первой (0) или во второй (1) половине алфавита?

Ответ: В первой половине (0).

Третий вопрос: Из шестнадцати букв первой половины алфавита находится ли она в числе первых восьми (0) или вторых восьми (1) букв?

Ответ: Среди вторых восьми (1).

Четвертый вопрос: Среди вторых восьми букв находится ли она в первой половине (0) или во второй половине (1)?

Ответ: Во второй половине (1).

Пятый вопрос: Из этих букв принадлежит ли она к числу Л, М (0) или к Н, О (1)?

Ответ: К числу Н, О (1).

Шестой вопрос: Это Н (0) или О (1)?

Ответ: Это Н (0).

Определение буквы Н, таким образом, равносильно двоичному тексту 001110. Но нам потребовалось не двадцать вопросов, а лишь шесть, и именно в этом смысле было сказано, что всего шести битов достаточно, чтобы определить заданную букву. Поэтому двадцати миллиардам битов соответствует примерно три миллиарда букв (2 • 1010/6 ≈ 3 • 109). Если считать, что в среднем слове примерно шесть букв, то информация, содержащаяся в хромосоме человека, соответствует приблизительно пяти миллионам слов (3 • 109/6 = 5 • 108). Полагая, что на обычной странице примерно три сотни слов печатного текста, мы получаем цифру в два миллиона страниц (5 • 108/3 • 102 ≈ 2 • 106). Если средняя книга содержит пятьсот таких страниц, то информация, заключенная в одной-единственной хромосоме человека, соответствует четырем тысячам таких томов (2 • 106/5 • 102 = 4 • 103). Ясно теперь, что последовательность ступенек лестницы ДНК по объему заключенной в ней информации сравнима с гигантской библиотекой. Точно так же ясно, сколь богатая библиотека необходима, чтобы описать такой тщательно сконструированный и тонко функционирующий объект, каким является человеческое существо. Простые организмы обладают меньшей сложностью и меньшими возможностями и требуют поэтому меньшего объема генетической информации. Каждый из «Викингов» — космических аппаратов, опустившихся на Марс в 1976 году, имел в своих компьютерах заранее запрограммированные инструкции объемом в несколько миллионов битов. Таким образом, «Викинг» обладал несколько большей «генетической информацией», чем бактерия, хотя и значительно меньшей, чем водоросли.

График на рис. 1 показывает также минимальное количество наследственной информации в ДНК различных живых организмов. Видно, что величина эта у млекопитающих меньше, чем у людей: большинство млекопитающих имеют меньше наследственной информации, чем человек. [Вообще говоря, впрямую из графика этого не следует. — Прим. редакции.] Внутри некоторых таксонов, например амфибий, количество наследственной информации сильно изменяется от вида к виду. Есть мнение, что значительная часть этой ДНК может быть излишней или нефункциональной. По этой причине график дает минимальное количество ДНК для каждого таксона.

Из графика видно, что примерно три миллиарда лет назад произошло поразительное увеличение информации в организмах, населявших Землю, а после этого рост наследственной информации шел весьма медленно. Мы видим также, что если для выживания человека необходимы десятки миллиардов (несколько раз по 1010) битов информации, то недостающее количество должно быть поставлено внегенетическими системами: скорость развития систем передачи наследственности столь мала, что не приходится искать источника подобной генетической информации в молекулах ДНК. Сырьем для эволюции служат мутации, наследуемые изменения в отдельных последовательностях нуклеотидов, которые создают наследственные программы в молекулах ДНК. Мутации вызываются радиоактивностью среды, космическими лучами или, как часто случается, возникают случайно — путем спонтанных изменений в нуклеотидах, которые с точки зрения статистики всегда могут иметь место. Иной раз самопроизвольно разрываются химические связи. До определенной степени мутации находятся под контролем самого организма. Различные организмы имеют способность устранять некоторые типы повреждений структуры своих ДНК. Существуют, например, молекулы, которые следят за повреждениями ДНК. Если обнаруживается грубое нарушение в системе ДНК, то оно вырезается с помощью своего рода молекулярных ножниц и ДНК возвращается к норме. Но такие исправления не являются, да и не могут быть совершенными: мутации нужны для эволюции. Однако мутация в молекуле ДНК хромосомы клетки кожи моего указательного пальца не оказывает никакого влияния на мою наследственность. Пальцы не участвуют, во всяком случае впрямую, в размножении вида. Важны мутации в гаметах, половых клетках — сперматозоидах (мужских) и яйцеклетках (женских), благодаря которым происходит половое размножение. Мутации, случайным образом оказавшиеся полезными, представляют собой рабочий материал для биологической эволюции — как, например, мутация меланина у некоторых бабочек, что изменяла их цвет из белого в черный. Такие бабочки обычно жили в Англии на березах, поэтому для них белая окраска — защитная. [Они называются березовыми пяденицами. - Перев.] Изменение цвета отнюдь не давало им преимущества: темные бабочки были отлично видны и поедались птицами, и потому такая мутация эволюцией отбраковывалась. Но когда в ходе индустриальной революции березы стали покрываться сажей, положение изменилось на обратное: только бабочки с меланиновыми мутациями могли выживать. Такая мутация закрепилась, и с течением времени почти все бабочки стали темными. Изменение было наследуемым — оно передавалось будущим поколениям. При этом иногда случаются и обратные мутации, идущие вразрез с меланиновым приспособлением, которые могли бы оказаться полезными, если бы загрязнение природы промышленностью Англии было однажды взято под контроль. Отметим, что во всех этих взаимодействиях между мутацией и естественным отбором ни одна бабочка не предпринимала сознательного усилия приспособиться к окружающей среде. Этот процесс хаотичен и случаен.

Такие крупные и сложные организмы, как люди, в среднем имеют примерно одну мутацию на десять гамет, то есть существует десятипроцентная вероятность, что каждый данный сперматозоид или яйцеклетка будет иметь новое и передающееся по наследству изменение в генетической программе, которая определяет собой облик нового поколения. Эти мутации происходят случайно и почти все без исключения вредны: ведь крайне редко случается, что сложная машина становится лучше после того, как в инструкцию но по ее изготовлению были наобум внесены какие-то изменения.

Большинство этих мутаций рецессивны — они не проявляют себя немедленно. Тем не менее уже существует такой высокий уровень мутаций, что, как считают некоторые биологи, увеличение молекулы ДНK принесло бы с собой неприемлемо высокие темпы мутаций: будь у нас больше генов, слишком многое слишком часто происходило бы с ошибкой. [Темп мутаций до известной степени тоже регулируется естественным отбором, как в нашем примере с «молекулярными ножницами». Но, скорее всего, существует некоторый минимальный темп мутаций, способный, во-первых, обеспечить достаточное количество генетических экспериментов, которыми мог бы оперировать естественный отбор, а во-вторых, создать необходимое равновесие между мутациями, возникающими, скажем, благодаря космическим лучам, и возможностями внутриклеточных механизмов устранять полученные в результате этих мутаций повреждения.] Если это верно, то должен существовать практический верхний предел количества наследственной информации, которую может заключать в себе ДНК больших организмов. Таким образом, большие и сложные организмы, для того чтобы существовать, должны иметь достаточные источники внегенетической информации. Эта информация у всех высших животных, кроме человека, содержится почти исключительно в головном мозге.

Какую информацию содержит мозг? Рассмотрим два крайних противоположных взгляда на работу мозга. Согласно первому мозг (или, во всяком случае, высшие его разделы, кора головного мозга) эквипотенциален: любая часть его может заменить собой любую другую часть, и не существует никакой локализации функций. Согласно другому взгляду мозг представляет собой схему, все блоки которой предельно специализированы: каждая отдельная его функция локализована во вполне определенном месте. Истина, видимо, лежит где-то посередине между этими двумя крайними точками зрения. С одной стороны, любой лишенный мистики подход к работе мозга должен связывать физиологию с анатомией — любая функция мозга должна обеспечиваться соответствующим расположением нейронов или иной формой организации мозга. С другой стороны, можно ожидать, что естественный отбор, чтобы обеспечить точность работы мозга и защитить его от различного рода случайностей, привел к избыточности в его конструкции. Того же следует ожидать и от неисповедимых путей эволюции, которыми, скорее всего, следовал мозг.

Избыточность памяти была ясно продемонстрирована Карлом Лешли, психоневрологом из Гарвардского университета, который хирургическим путем удалял значительную часть коры головного мозга крыс, и при этом не было отмечено никаких изменений в их способности использовать ранее полученный опыт преодоления лабиринтов. Благодаря таким экспериментам становится ясно, что память должна быть локализована во многих различных частях мозга, а теперь мы знаем, что некоторые воспоминания переливаются между правым и левым полушариями мозга через трубу, называемую мозолистым телом (corpus callosum).

Лешли установил также, что не происходит видимых изменений в общем поведении крысы, когда удаляется значительная часть — скажем, десять процентов — ее мозга. Но никто не спросил крысу, каково ее мнение по этому поводу. Чтобы правильно ответить на этот вопрос, потребуется тщательно изучить «социальное», пищевое и защитно-атакующее поведение крысы. Существует много скрытых изменений в поведении, являющихся результатом экстрипации, то есть удаления части мозга, которые могут ускользнуть от не слишком внимательного исследователя, но в то же время иметь для крысы существенное значение. К примеру, кто знает, сохраняется ли у нее после экстрипации прежний интерес к привлекательной крысе противоположного пола и не становится ли она вдруг безразличной к подкрадывающейся кошке? [Попробуйте перечитать этот абзац, заменив слово «крыса» словом «мышь», и вы увидите, что ваше сочувствие к оперированному и неправильно понятому животному вдруг возрастет; это прямой результат влияния, оказываемого мультипликационными фильмами на американцев. (Имеется в виду герой популярных американских мультфильмов Микки Маус, маленький симпатичный мышонок. — Перев.)]

Иногда приводят следующее соображение. Раны или повреждения важных частей коры головного мозга, возникшие, например, при двусторонней префронтальной лоботомии или же в результате несчастного случая, оказывают малое воздействие на поведение человека. Но некоторые формы нашего поведения не очень доступны для наблюдения не только извне, но даже изнутри. Есть типы активности и специфически человеческой способности воспринимать мир, которые в жизни данного человека могут встречаться нечасто, например творческая деятельность. Чтобы образовалось сцепление идей, свойственное любому, даже самому малому творческому акту, нужны значительные ресурсы мозга. А именно эти творческие акты характерны для всей нашей цивилизации и для человека как вида. И тем не менее у многих людей они случаются весьма редко, и отсутствие их не воспринимается как серьезная потеря ни самим больным, у которого поврежден мозг, ни наблюдающим его врачом.

Хотя известная избыточность в работе мозга неизбежна, категорическое мнение, будто мозг являет собой единое целое, почти наверняка ошибочно, и потому большинство современных нейрофизиологов отказываются от подобных представлений. [В специальной литературе такие представления называют холистическими или ноэтическими. — Перев.] С другой стороны, менее сильные утверждения — например, что память есть функция всей коры головного мозга, — не могут быть отвергнуты с такой же легкостью, хотя они, как мы убедимся в дальнейшем, доступны проверке.

Много споров идет по поводу того, что половина или даже еще большая часть мозга человеком не используется. С эволюционной точки зрения такое положение было бы совершенно необычным: как могли бы развиваться эти его части, если они не выполняют никаких функций? Но в действительности само утверждение базируется на слишком малом числе данных. Оно по-прежнему выводится из того факта, что многие повреждения мозга, по большей части его коры, не оказывают видимого воздействия на поведение. При этом не принимается во внимание, во-первых, возможность избыточности в работе мозга и, во-вторых, то обстоятельство, что многое в человеческом поведении трудно уловимо. К примеру, повреждение правого полушария коры головного мозга может вызвать нарушения в мыслительной деятельности и в действиях больного, но лишь в тех их формах, что не связаны со словесными конструкциями. Стало быть, эти нарушения трудно описать как самому больному, так и изучающему его врачу.

Известно одно важное свидетельство в пользу локализации различных функций в мозге. Были обнаружены лежащие под корой головного мозга отдельные его участки, связанные с аппетитом, поддержанием равновесия, терморегуляцией, циркуляцией крови, тонкими движениями и дыханием. Классические исследования высших нервных функций головного мозга были проведены канадским нейрохирургом Уанлдером Пенфилдом. Он воздействовал электрическим током на различные части коры головного мозга, пытаясь облегчить страдания людей, больных эпилепсией. В сознании пациентов возникали обрывки воспоминаний, они ощущали запахи, слышали звуки и видели цветные образы прошлого — и все это было вызвано действием слабого электрического тока на определенную точку их мозга.

Типичный пример: когда Пенфилд пропускал с помощью своего электрода ток через участок коры, видимый в отверстие черепа, пациент мог слышать игру оркестра во всех ее деталях. Если Пенфилд говорил пациенту, который, как правило, во время всей операции находился в абсолютном сознании, что он якобы раздражает током его мозг, в то время как на самом деле он этого не делал, то во всех случаях в сознании пациента не возникало следов каких-либо воспоминаний. Но когда безо всякого предупреждения через электрод подавайся ток, возникали картины прошлого или же продолжались прерванные воспоминания. Пациент сообщая, что к нему приходит ощущение чего-то знакомого или даже в его сознании полностью прокручивались события, бывшие много лет назад. Одновременно пациент вполне сознавая, что находится в операционной и ведет беседу с врачом, и это не вызывало у него никакого внутреннего конфликта. Несмотря на то что некоторые пациенты оценивали эти «обратные кадры» как своего рода легкие сны, в таких ощущениях не было никакой символики, характерной для сновидений. Эксперименты ставились почти исключительно на эпилептиках, но, возможно, хотя никаких доказательств тому нет, что и неэпилептики, оказавшись в сходных обстоятельствах, будут испытывать те же состояния.

В одном из экспериментов, когда электрическим путем стимулировали затылочную часть коры головного мозга, которая связана со зрением, пациент видел порхающую бабочку с такой убеждающей ясностью, что протянул руку с операционного стола, чтобы поймать ее. В аналогичном эксперименте, проводимом с обезьяной, животное внимательно всматривалось в нечто прямо перед собой, делало быстрое хватательное движение правой рукой, а затем в очевидном замешательстве исследовало свою пустую ладонь.

Безболезненная электростимуляция коры головного мозга, по крайней мере, у многих людей вызывала целые каскады воспоминаний о некоторых конкретных событиях. Но удаление участка мозга, примыкающего к электроду, не стирало памяти. Трудно удержаться от вывода, что, во всяком случае, у людей воспоминания находятся где-то в коре головного мозга, ожидая, когда мозг оживит их, послав электрические импульсы, которые, конечно, в этом случае приходят не извне, от экспериментатора, а вырабатываются внутри самого мозга. [Есть существенная разница между экспериментальным раздражением определенных зон мозга электрическим током и удалением или разрушением тех же зон. Раздражение может передаваться на другие зоны и включать, подобно рубильнику, сложные системы, функция которых значительно шире функции раздражаемого участка мозга. А повреждение той же самой зоны часто оказывается недостаточным для того, чтобы нарушить функцию всей этой многокомпонентной системы. — Прим. редакции.]

Если считать память функцией коры головного мозга как целого — наподобие своего рода динамической реверберации или стоячей электрической волны, — а не чем-то статически расположенным в различных отсеках мозга, то становится понятным, почему после серьезных поражений мозга память все-таки сохраняется. Известные науке факты, однако, говорят об обратном. В экспериментах, которые провел американский нейрофизиолог Ральф Джерард в Мичиганском университете, хомячки были обучены выбираться из простого лабиринта, а затем их охлаждали почти до точки замерзания, ввергая тем самым в искусственную спячку. Температура была столь низкой, что приостанавливалась любая электрическая активность мозга, которую удавалось зафиксировать. Если бы динамический подход к памяти был правильным, то хранящийся в памяти опыт успешного преодоления лабиринта в эксперименте стирался бы. Однако после отогревания хомячки помнили все. Похоже, что память локализована в определенных участках мозга и ее «выживание» после массивных поражений мозга является результатом хранения в различных участках мозга избыточного количества статических следов памяти.

Пенфилд, расширив исследования своих предшественников, обнаружил также примечательную локализацию функций в двигательной части коры. Определенные части поверхности нашего мозга посылают сигналы строго определенным частям тела или же принимают сигналы от них. На рис. 2 и 3 дана карта чувствительных и двигательных участков коры, разработанная Пенфилдом. На ней в чрезвычайно наглядном виде отражена относительная важность различных частей нашего тела. Необычайно большая часть мозга, отданная пальцам руки и особенно большому пальцу, а также рту и органам речи, в точности соответствует тем особенностям нашей физиологии, что выделили нас из всего животного мира. Человеческая культура, способность людей к обучению никогда не могли бы развиться без участия речи, а наша нынешняя техника и все, что создано человечеством, никогда не появились бы на свет, не будь у нас такой руки. В определенном смысле карта двигательной части коры головного мозга человека представляет собой точный портрет всего человечества.

Однако сегодня появились и новые свидетельства в пользу локализации различных функций в мозге. Изящные опыты, проведенные Дэвидом Хюбелом в Гарвардской медицинской школе, показали, что в мозге существуют особые нейрональные сети, которые избирательно реагируют на воспринимаемые глазом линии, различно ориентированные в пространстве. Одни нейроны отзываются на горизонтальные линии, другие воспринимают вертикальные и диагональные линии, и стимулом для каждого из них являются только такие линии, которые ориентированы в пространстве соответствующим данному нейрону образом. Значит, хотя бы минимальные проявления абстрактной мысли можно проследить в мозге до уровня отдельных клеток.

Существование специфических участков мозга, связанных с конкретными познавательными, чувствительными или двигательными функциями, предполагает, что не должно быть жесткой зависимости между массой мозга и умственными способностями. Очевидно, что некоторые части мозга более важны, чем другие. Среди обладателей особенно большого но массе мозга были Оливер Кромвель, Иван Тургенев и лорд Байрон. Но, с другой стороны, мозг Альберта Эйнштейна не отличался особой величиной. Анатоль Франс, один из самых блестящих умов, обладая мозгом вдвое меньшим, чем у Байрона. У новорожденного человеческого детеныша исключительно велико отношение массы мозга к массе тела (около 12 процентов), и его мозг, особенно кора больших полушарий, продолжает быстро расти в течение первых трех лет жизни — периода наиболее быстрого обучения. К шести годам масса мозга достигает 90 процентов от ее величины во взрослом состоянии. В среднем масса мозга современного человека составляет примерно 1 375 граммов. Так как плотность мозга, как и всех других тканей тела, примерно равна плотности воды (один грамм на кубический сантиметр), то объем такого усредненного мозга — 1 375 кубических сантиметров, что немного менее полутора литров.

Но мозг современной женщины примерно на 150 кубических сантиметров меньше. Однако если учитывать культурные показатели и способность к воспитанию детей, то нет никаких явных свидетельств о различии умственных способностей между полами.

Рис. 2 и 3. Чувствительный (сенсорный) и двигательный (моторный) гомункулюс (по Пенфилду). Приводятся две карты специализации функции в коре головного мозга. Пропорции человеческого тела на рисунках нарушены, чтобы иметь возможность показать, сколько внимания уделяет кора головного мозга каждой отдельной части тела: чем большей она показана на рисунке, тем больше и оказываемое ей внимание. Слева показана соматическая сенсорная, или чувствительная, область, которая получает нервные импульсы от изображенных на рисунке частей тела, справа — соответствующая карта, показывающая передачу импульсов от мозга к телу

1 — чувствительный (сенсорный) гомункулюс; 2 — двигательный (моторный) гомункулюс; 3 — внутренние органы; 4 — гортань; 5 — язык; 6 — зубы, десны и челюсти; 7 — нижняя губа; S — губы; 9 — верхняя губа; 10 — лицо; 11 — нос; 12 — глаз; 13 — большой палец; 14 — указательный палец; 15 — средний палец; 16 — безымянный палец; 17 — мизинец; 18 — кисть; 19 — запястье; 20 — предплечье; 21 — локоть; 22 — рука; 23 — плечо; 24 — голова; 25 — шея; 26 — туловище; 27 — бедро; 28 — голень; 29 — ступня; 30 — половые органы; 31 — пальцы ног; 32 — лодыжка; 33 — колено: 34 — бровь; 35 — веко и глазное яблоко; 36 — челюсть; 37 — жевание; 38 — слюноотделение; 39 — речь; 40 — глотание

 

 

Поэтому разница в массе мозга в 150 граммов у людей несущественна. Сравнимые отклонения в массах мозга имеют место у взрослых людей различных рас (у людей желтой расы объем мозга несколько больше, чем у людей белой расы), и, поскольку при прочих равных условиях не обнаруживается никакой разницы в интеллекте, мы вновь приходим к прежнему выводу. А расхождение в размерах мозга у лорда Байрона (2200 граммов) и Анатоля Франса (1100 граммов) позволяет предположить, что разница даже в пределах многих сотен граммов может быть функционально незначимой.

С другой стороны, у больных микроцефалией, которые рождаются с маленьким мозгом, познавательные способности весьма ограниченны. Обычно масса их мозга колеблется между 450 и 900 граммами. В норме новорожденный имеет массу мозга 350 граммов, а годовалый ребенок — 500 граммов. По-видимому, мозг может быть меньше среднего до определенного предела, за которым дальнейшее уменьшение его размеров связано с резким нарушением его функций по сравнению с нормальным мозгом взрослого человека.

Более того, существует статистическая зависимость между массой или размером мозга и умственными способностями человека. Соотношение, как ясно показывает параллель Байрон — Франс, отнюдь не точное. Об умственных способностях в каждом отдельном случае нельзя судить по размерам мозга. Однако, как показал американский биолог-эволюционист Лейг ван Вейлен в Чикагском университете, имеющиеся в распоряжении ученых данные позволяют установить достаточно четкую корреляцию, которая существует в среднем между размером мозга и умственными способностями. Значит ли это, что размер мозга в определенном смысле определяет уровень интеллекта? А не может ли быть так, что, к примеру, недостаточное питание, особенно в период внутриутробного развития и в младенчестве, приводит одновременно и к малому размеру мозга, и к низким умственным способностям и при этом первое не служит причиной второго? Ван Вейлен указывает, что корреляция между умственными способностями и размером мозга просматривается много четче, чем между умственными способностями и ростом или массой тела, про которые точно известно, что они (прежде всего масса, конечно) впрямую зависят от питания. В то же время не вызывает сомнения, что плохое, неполноценное питание может отрицательно сказаться на развитии интеллекта.

Исследуя открывшуюся перед ними благодаря трудам нейробиологов новую интеллектуальную территорию, физики посчитали полезным произвести грубые оценки. Это приблизительные расчеты, но они очерчивают круг проблем и намечают путь к дальнейшим исследованиям. При этом, конечно, они не претендуют на точность. Что касается связи между размерами мозга и умственными способностями, то совершенно очевидно, что составить перепись функций каждого кубического сантиметра мозга современная наука еще не может. Но неужели не существует хотя бы грубого и приблизительного способа связать между собой массу мозга и интеллект?

Разница в массе мозга мужчины и женщины представляет интерес именно в этом контексте, потому что женщины, как правило, миниатюрнее и имеют меньшую массу тела, чем мужчины. Если тело, которым ему надлежит управлять, меньше по размерам, то не должен ли и мозг быть меньше? Отсюда следует, что для сравнения уровней интеллекта лучше брать не абсолютную величину массы мозга, а отношение массы мозга к общей массе тела.

На диаграмме, изображенной на рис. 4, даны массы мозга и массы тела различных животных. Ясно видно отличие рыб и рептилий от птиц и млекопитающих. Данной массе тела у млекопитающих соответствует существенно большая масса мозга. Мозг млекопитающих в 10-100 раз более массивен, чем мозг современных рептилий сравнимого размера. Различия между млекопитающими и динозаврами еще больше — они поистине ошеломляюще велики и наблюдаются во всех без исключения случаях. Поскольку сами мы млекопитающие, у нас, возможно, есть некоторые предрассудки относительно сравнительной величины интеллекта млекопитающих и рептилий, но я думаю, что известные науке данные абсолютно убедительно свидетельствуют, что млекопитающие действительно всегда намного умнее, чем рептилии. (На диаграмме показано также одно интригующее исключение: маленький страусоподобный динозавр из позднемелового периода, у которого отношение массы мозга к массе тела соответствует той части диаграммы, где помещены большие птицы и наименее разумные млекопитающие. Интересно было бы узнать побольше об этих существах, изучением которых занимался Дейл Рассел, руководитель отдела палеонтологии Национального музея Канады.) На диаграмме, изображенной на рис. 4, видно также, что приматы, которые включают в себя и человека, отличаются, хотя и с меньшим постоянством, от остальных млекопитающих: мозг приматов от 2 до 20 раз массивнее, чем мозг других млекопитающих, имеющих ту же массу тела.

 

Рис. 4. Диаграмма, показывающая разброс величин «отношения массы мозга к массе тела» для приматов, млекопитающих, птиц, рыб, рептилий и динозавров

 

Если взглянуть на эту диаграмму более внимательно, выделив на ней некоторое число животных, мы получим новую диаграмму, изображенную на рис. 5. Из всех организмов, показанных на ней, зверь, имеющий наибольшую массу мозга на единицу тела, — это существо, называемое Homo sapiens. Следующим за ним идут дельфины. [Если брать в качестве критерия отношение массы мозга к массе тела, то акулы должны быть самыми умными изо всех рыб, что согласуется с занимаемой ими экологической нишей — хищники и должны быть сообразительнее, чем те, кто питается планктоном. Удивительно, насколько сходна эволюция акул с эволюцией высших наземных позвоночных и в том, что у них увеличено отношение массы мозга к массе тела, и в том, что у них развиты координирующие центры во всех трех главных частях мозга.] И я снова не считаю шовинистическим вывод, сделанный на основании очевидных фактов, что люди и дельфины принадлежат к самым разумным организмам на Земле.

Важность отношения массы мозга к массе тела осознавалась еще Аристотелем. В наше время более других для разработки этой идеи сделал Гарри Джерисон, нейропсихиатр из Калифорнийского университета в Лос-Анджелесе. Джерисон указывает, что существует несколько исключений к установленной ранее корреляции: например, мозг европейской землеройки имеет массу 100 миллиграммов, а тело ее — 1, 7 грамма, и отношение этих величин близко к его значению у человека. Но мы не имеем права распространять обнаруженные закономерности на самых мелких из животных, поскольку простейшие «домашние» заботы, возложенные на мозг, требуют некоторой минимальной массы его вещества.

Рис. 5. Более подробное рассмотрение некоторых точек диаграммы, приведенной на рис. 4. Птицеящер — это страусоподобный динозавр, о котором говорится в этой книге.

 

Масса мозга взрослого кашалота, близкого родственника дельфина, равняется почти 9000 граммам, что в шесть с половиной раз больше, чем и среднем у человека. Здесь необычно абсолютное значение массы мозга, а не отношения массы мозга к массе тела. Масса мозга самых больших динозавров составляла около одного процента от массы мозга кашалота. Зачем кашалоту такой огромный мозг? Применимы ли к кашалоту такие понятия, как мысли, озарения, искусство, наука, литература?

Критерий отношения массы мозга к массе тела представляет собой очень удобное средство для сравнения разумности совершенно различных животных. Это то, что физик назвал бы приемлемым первым приближением. (Отметим на будущее, что австралопитеки, которые были или предками человека, или по крайней мере его близкими побочными родственниками, также имели большое отношение массы мозга к массе пела, что было рассчитано но остаткам их черепов.) Не является ли наша общая неосознанная тяга к младенцам и другим маленьким млекопитающим, которые обладают относительно большой головой по сравнению со взрослыми животными того же вида, следствием нашего бессознательного понимания важности отношения массы мозга к массе тела?

Данные, приведенные до сих пор, показывают, что превращение рептилий в млекопитающих, начавшееся более двух сотен миллионов лет назад, сопровождалось большим увеличением относительного размера мозга и ростом разумности, а эволюция человека от предковых приматов несколько миллионов лет назад сопровождалась еще более впечатляющим развитием мозга.

Человеческий мозг (исключая мозжечок, который, как представляется, не принимает участия в познавательных функциях) содержит около десяти миллиардов переключающихся элементов, называемых нейронами. (Мозжечок, который расположен под корой больших полушарий головного мозга, ближе к задней части головы, содержит еще приблизительно десять миллиардов нейронов.) Электрический ток, генерируемый нейронами (или нервными клетками) и проходящий через них, позволил итальянскому анатому Луиджи Гальвани открыть электричество. Гальвани обнаружил, что электрические импульсы, подводимые к лапке лягушки, всякий раз заставляют ее дергаться; и стала популярной мысль, что присущие животным (анимальные) движения в конечном итоге возникают благодаря электричеству. Это в лучшем случае лишь частичная правда: электрические импульсы, передающиеся по нервным волокнам, в действительности вызывают движения с помощью нейрохимических посредников, но сами эти импульсы генерируются в мозге. Тем не менее современная наука об электричестве, а также вся электрическая и электронная промышленность берут свое начало от экспериментов, проведенных в XVIII веке, в которых лягушачья лапа дергалась из-за подведенного к ней электрического тока.

Спустя всего несколько десятилетий после Гальвани несколько хорошо образованных англичан, застрявших в Альпах из-за непогоды, устроили соревнование, кто из них напишет лучшее литературное произведение, полное ужасов. Одна из них, Мэри Шелли, создала знаменитую историю о чудовище доктора Франкенштейна, которое пробуждалось к жизни, когда через него пропускали сильный электрический ток. С тех пор электрические устройства стали главной опорой фильмов ужасов и романов насилия. Идея, лежащая в их основе, принадлежит Гальвани. Она ошибочна, но термин проник во многие западные языки — например, можно сказать, что я был «гальванизирован» к написанию этой книги.

Многие нейробиологи считают, что мозг выполняет свои функции благодаря нейронам, хотя есть свидетельства, что некоторые специфические воспоминания и другие познавательные функции могут содержаться в определенных молекулах мозга — таких, как РНК или небольшие белковые молекулы. На каждый нейрон в мозге приходится около десяти глиальных (от греческого слова, означающего «липкий») клеток, которые для нейронной архитектуры служат строительными лесами. Средний нейрон человеческого мозга имеет от 1000 до 10000 синапсов или контактов с соседними нейронами. (Есть основания считать, что число синапсов многих нейронов спинного мозга достигает 10 000, а у так называемых клеток Пуркпнье в мозжечке — и того более. Число контактов нейронов коры головного мозга, вероятно, менее 10 000.) Если каждый синапс дает один ответ типа «да — нет» на элементарный вопрос, как это имеет место в переключающихся элементах электронных вычислительных машин, то максимальное число таких «да — нет» ответов, или битов информации, которое может содержаться в мозге, составляет около 1010 • 103 =1013, или 10 триллионов, битов (или 100 триллионов = 1014 битов, если считать, что каждый нейрон имеет 104 синапсов). Часть этих синапсов должна содержать ту же информацию, что уже хранится в других синапсах, часть должна быть связанной с двигательной или другими непознавательными функциями, а некоторые могут оставаться просто чистыми, являя собой своего рода склад, ожидающий новую информацию, чтобы заполниться ею.

Если бы у каждого человеческого мозга был всего один синапс — что соответствует монументальной глупости, — то наш разум мог бы находиться всего линь в двух состояниях. Если бы мы имели всего 2 синапса, то ему были бы доступны 22 = 4 состояния, при 3 синапсах — 23 = 8 состояний и в общем виде при n синапсах — 2n состояния. Но человеческий мозг содержит около 1013 синапсов. Таким образом, число различных состояний, в которых он может находиться, представляет собой число 2, возведенное в эту степень, то есть помноженное само на себя десять триллионов раз. Это невообразимо большое число, намного превышающее, например, число всех элементарных частиц (электронов и протонов) во Вселенной, которое меньше чем число 2, возведенное всего в степень 103. Благодаря столь гигантскому числу возможных функционально различных конфигураций человеческого мозга никакие два человека, даже близнецы, выращенные вместе, не могут быть совершенно одинаковыми. Эти чудовищные числа могут также в какой-то мере объяснить непредсказуемость человеческого поведения в те моменты, когда мы удивляем даже самих себя тем, что делаем. Более того, в свете этих цифр удивительным становится, как вообще существуют хоть какие-нибудь закономерности в человеческом поведении. Но далеко не все возможные состояния мозга обязательно осуществляются, колоссальное число конфигураций никогда не наблюдалось никем из людей за всю историю человечества. С этой точки зрения каждое человеческое существо поистине редко и отлично от других, а отсюда как очевидное этическое следствие вытекает священная неприкосновенность каждого человека.

В последние годы стало ясно, что в мозге существуют электрические микросети. Нейроны, входящие в эти микросети, способны давать значительно более широкий круг ответов, нежели простые «да» или «нет», в отличие от переключающихся элементов в электронных вычислительных машинах. Размеры этих микросетей очень малы (обычно около 1/10 000 сантиметра), и, таким образом, информация передается по ним чрезвычайно быстро. Они реагируют на напряжение, равное приблизительно 1/100 того, что необходимо для возбуждения обычных нейронов, и потому способны на более тонкие и точные ответы. По мере увеличения сложности животных число таких микросетей растет и достигает своего пика — абсолютного и относительного — у человека. Они возникают на самых последних этапах внутриутробного развития человеческого детеныша. Существование таких микросетей говорит о том, что разум может быть результатом не только большой величины отношения массы мозга к массе тела, но также и избытка специализированных переключающихся элементов и мозге. Эти микросети делают возможное число его состояний еще большим, чем следует из проведенных только что расчетов, и, таким образом, дополнительно увеличивают удивительную уникальность каждого человеческого мозга.

Мы можем подойти к вопросу об информации, содержащейся в человеческом мозге, другим путем — с помощью интроспекции, то есть самонаблюдения. Попытайтесь представить себе какой-нибудь зрительный образ из детства. Вглядитесь в него внимательно своим мысленным взором. Вообразите, что он состоит из маленьких точек наподобие фотографии в газетах. Каждая точка обладает определенным цветом и яркостью. Теперь вы можете задаться вопросами: сколько битов информации необходимо, чтобы описать цвет и яркость каждой точки, сколько точек нужно, чтобы создать картину, вызванную вами в памяти, и сколько времени требуется, чтобы вспомнить все детали картины, возникшей перед вашим мысленным взором. Предаваясь воспоминаниям, вы в каждый данный момент сосредоточиваете свое внимание на очень маленькой детали картины, ваше поле зрения весьма сужено. Когда же вы соберете вместе все эти данные, то получите скорость переработки информации мозгом в битах за секунду. Произведя соответствующие вычисления, я получаю, что предельная скорость переработки информации мозгом равняется примерно 5 000 битов в секунду. [На плоскости в одну сторону горизонта — 180 градусов. Диаметр Луны таков, что она видна под углом 0, 5 градуса. Я могу различать кое-какие ее детали, скажем, до двенадцати отдельных элементов. Отсюда следует, что разрешающая способность моего глаза составляет около 0, 5 / 12 = 0, 04 градуса. Все, что меньше этого, мой глаз уже не различает. Мой внутренний взор, так же как мой реальный глаз, имеет размеры примерно 2x2 градуса. Значит, в каждый момент я могу видеть крохотную квадратную картинку, содержащую (2 / 0, 04)2 = 2 500 элементов, похожих на отдельные точки фотографии, переданной по линиям связи. Чтобы определить все возможные оттенки серого цвета, а также всех иных цветов таких точек, требуется около 20 битов на каждый элемент картинки. Таким образом, для полного описания моей маленькой картинки понадобится 2 500 х 20, то есть около 50 000 битов в секунду. Для сравнения: фотокамеры совершающего посадку аппарата «Викинг», которые также обладают разрешающей способностью 0, 04 градуса, имеют лишь 6 битов на каждый элемент картинки, чтобы описывать яркость, и могут передавать эту информацию по радиоканалам прямо на Землю со скоростью 500 битов в секунду. Нейроны мозга генерируют примерно 25 ватт энергии, чего едва достаточно, чтобы питать маленькую лампу накаливания. «Викинг» передает всю информацию и осуществляет иные свои функции, тратя на это около 50 ватт.]

Чаще всего такие зрительные воспоминания концентрируются на очертаниях фигур и резких переходах от яркого к темному, а не на конфигурациях частей, имеющих нейтральную яркость. Лягушка, например, хорошо видит лишь контрастные по яркости предметы. Есть, однако, серьезные свидетельства тому, что достаточно обычны детальные воспоминания о внутренних частях предметов, а вовсе не об их очертаниях. Самый яркий пример тому, вероятно, — эксперименты с людьми по реконструкции объемного образа, когда необходимо мысленно соединить память о том, что видел один глаз, с тем, что в данный момент видит другой. Слияние образов при таком — он называется анаглифическим — способе их рассмотрения требует, чтобы в память вошло 10 000 элементов предъявленной картины.

Но я вовсе не вспоминаю зрительные образы все время, пока я бодрствую, равно как не подвергаю постоянно людей и окружающие предметы внимательному изучению. Я занят всем этим лишь небольшой процент времени. Другие мои информационные каналы — слуховой, осязательный, обонятельный и вкусовой — работают со значительно меньшей скоростью передачи информации. Я полагаю, что средняя скорость переработки информации мозгом составляет приблизительно 5 000 / 50 = 100 битов в секунду. За шестьдесят с лишним лет это дает 2 • 1011, или 200 миллиардов, битов зрительной и всякой иной информации, запасенной для воспоминаний, — в предположении, что я обладаю идеальной памятью. Это меньше, но не намного, чем число синапсов или нейронных соединений (поскольку мозгу приходится заниматься не только воспоминаниями), из чего следует, что нейроны и в самом деле являются главными переключающимися элементами при выполнении мозгом его функций.

Замечательную серию экспериментов по выявлению изменений, происходящих в мозге при обучении, провели американский психолог Марк Розенцвейг и его коллеги в Калифорнийском университете в Беркли. Они содержали две популяции лабораторных крыс в различных условиях: одну в убогой, однообразной, бедной обстановке, другую, наоборот, в богатой, разнообразной, обогащенной среде. У животных второй группы обнаружилось разительное увеличение массы и толщины коры больших полушарий мозга, а также изменение химии мозга. Эти изменения произошли как у взрослых, так и у молодых крыс. Подобные эксперименты показывают, что обучение сопровождается физиологическими изменениями мозга. Они демонстрируют также, как пластичность мозга может задаваться его анатомическими механизмами. Поскольку чем больше кора больших полушарий мозга, тем легче осуществить дальнейшее обучение, становится ясным, насколько важна богатая окружающая среда в раннем детстве. Отсюда должно следовать, что обучение соответствует возникновению новых синапсов или же активации ранее бездействовавших. Некоторые предварительные свидетельства в пользу этой точки зрения были получены американским нейроанатомом Вильямом Гринау и его сотрудниками в Иллинойском университете. Они обнаружили, что, после того как в течение нескольких недель крыс обучали выполнять новые задачи в лабораторных условиях, в коре их больших полушарий возникали новые ответвления нейронов, образующие синапсы. У других крыс, которые содержались в тех же условиях, но не получали аналогичного обучения, подобных нейроанатомических новшеств не наблюдалось. Образование новых синапсов требует синтеза белковых молекул и молекул РНК. Есть немало фактов, указывающих на то, что эти молекулы образуются в мозге во время обучения, а некоторые исследователи предполагают, что результат обучения содержится в молекулах белков и РНК мозга. Но, видимо, правильнее будет сказать, что новая информация содержится в самих нейронах, которые, в свою очередь, построены из молекул белков и РНК.

Насколько плотно упакована хранящаяся в мозге информация? Обычно плотность информации при работе современной электронной вычислительной машины составляет около одного миллиона битов на кубический сантиметр. Эта величина получена путем деления всего количества информации, имеющейся в компьютере, на его объем. Человеческий мозг содержит, как уже говорилось, около 103 битов в объеме немного большем, чем 103 кубических сантиметров. Отсюда получается величина 1013 / 103 == 1010, то есть около десяти миллиардов битов на кубический сантиметр. Таким образом, наш мозг имеет в десять тысяч раз более плотную упаковку информации, нежели компьютер, хотя компьютер намного больше его. Другими словами, современная электронная вычислительная машина, способная обрабатывать объем информации, доступный человеческому мозгу, должна быть в десять тысяч раз больше его по размерам. С другой стороны, нынешние компьютеры могут обрабатывать информацию со скоростью от 1 016 до 1 017 битов в секунду, что в десять миллиардов раз быстрее, чем в мозге. При такой небольшой общей информационной емкости и столь невысокой скорости обработки данных мозг должен быть чрезвычайно удачно устроен и заполнен, чтобы решать так много таких важных задач настолько лучше, чем самый лучший из известных нам компьютеров.

Когда объем мозга животных удваивается, число нейронов в нем не увеличивается в два раза. Оно возрастает, но медленнее. Человеческий мозг объемом около 1 375 кубических сантиметров, как уже говорилось, содержит, без учета мозжечка, около десяти миллиардов нейронов и примерно десять триллионов битов. В лаборатории Национального института умственного здоровья около Бетесды, штат Мэриленд, я держал недавно в руках мозг кролика. Он был объемом примерно в тридцать кубических сантиметров, то есть размером с редиску, вмещал несколько сот миллионов нейронов, имевших дело с несколькими сотнями миллиардов битов информации, управляющей поведением живого существа, включая такие его действия, как поедание салата, подергивание носом и «заигрывание» с особой противоположного пола.

Поскольку среди млекопитающих, рептилий или амфибий встречаются животные с самыми различными размерами мозга, мы лишены возможности дать надежную оценку числа нейронов в мозге типичного представителя каждого таксона. Но в наших силах определить усредненные величины, что я и сделал в схеме на рис. 5. Приблизительный подсчет, приведенный там, показывает, что человек обладает примерно в сто раз большим числом битов информации в мозге, чем кролик. Я не знаю, можно ли сказать, что человек в сто раз разумнее кролика, но я и не уверен, что это утверждение такое уж смехотворное.

Мы в состоянии теперь сравнить постепенное увеличение количества информации, содержащейся в генетическом материале, и количества информации, содержащейся в мозге организмов, за все время эволюционного развития. Две кривые пересеклись в точке, соответствующей времени в несколько сот миллионов лет назад и информационной емкости в несколько миллиардов битов. Где-то во влажных джунглях каменноугольного периода появилось животное, которое впервые за все время существования мира имело больше информации в мозге, чем в генах. Это была примитивная рептилия, которую, появись она в наше ученое время, мы не нашли бы чрезмерно разумной. Но ее мозг был знаменательным поворотным пунктом в истории жизни. Два последующих скачка в эволюции мозга, сопровождавших возникновение млекопитающих и появление человекоподобных приматов, были еще более важными этапами в развитии разума. Основную часть истории жизни со времени каменноугольного периода можно назвать постепенным (и, конечно, неполным) торжеством мозга над генами.

III. МОЗГ И КОЛЕСНИЦА

 

Когда все трое встретимся мы вновь?..

У. Шекспир. Макбет

 

Головной мозг современных рыб представлен главным образом средним мозгом с крохотным передним мозгом, у современных амфибий и рептилий это выглядит совсем иначе (рис. 6). И том не менее ископаемые останки самых ранних из известных позвоночных показывают, что основное разделение современного мозга на задний, средний и передний уже существовало. Пятьсот миллионов лет назад в первозданном морс плавали рыбоподобные существа, называемые остракодермами и плакодермами, чей головной мозг уже имел явные признаки того же деления, что и наш. Но относительные размеры и значение этих компонентов и даже выполняемые ими функции были, конечно, весьма отличны от сегодняшних. Самое привлекательное здесь - это, пожалуй, история последовательного разрастания и специализация трех наслоений мозга, надстраивающихся над спинным, промежуточным и средним мозгом. После каждого следующего эволюционного шага старые части мозга по-прежнему продолжают существовать и функционировать. Но к ним добавляется новое наслоение с новыми функциями.

Главным представителем этой точки зрения сегодня является Поль Мак-Лин, руководитель лаборатории эволюции мозга и поведения Национального института умственного здоровья. Одна из особенностей его работы состоит в том, что она проводится на многих различных животных, от ящериц до саймири (беличьих обезьян). Другая заключается в том, что Мак-Лин и его коллеги тщательно изучали «социальное» и всякое иное поведение этих животных, чтобы понять, какая из частей мозга управляет тем или иным видом поведения.

 

Рис. 6. Схематическое изображение мозга рыбы, амфибии, рептилии, птицы и млекопитающего в их сравнении друг с другом (мозжечок и продолговатый мозг являются частями заднего мозга): 1 — обонятельные луковицы; 2 — передний мозг; 3 — средний мозг, 4 — мозжечок; 5 продолговатый мозг

 

У беличьих обезьян с характерными «готическими» отметками на лице существует своего рода ритуал встречи с себе подобными. Самцы обнажают зубы, трясут прутья решетки своих клеток, издают клич высокого тона, который, вероятно, для их сородичей является сигналом устрашения, и поднимают ноги, чтобы продемонстрировать свою мужскую силу. Такое поведение в любом современном людском собрании граничило бы с непристойностью, но в стае беличьих обезьян оно совершенно нормально и служит для поддержания иерархического подчинения.

Мак-Лин обнаружил, что повреждение одного маленького участка мозга беличьей обезьяны лишает ее возможности вести себя подобным образом, но в то же время никак не влияет на другие формы поведения, например половое или оборонительное. Этот участок находится в древнейшей части переднего мозга, то есть в том отделе, который присущ не только людям и другим приматам, но также и тем млекопитающим и рептилиям, которые были нашими предками. Похоже, что у млекопитающих-неприматов и у рептилий сходное ритуализированное поведение управляется тем же участком мозга, но повреждение его может приводить к распаду других автоматизированных форм поведения — таких, например, как ходьба или бег.

У приматов часто может быть обнаружена связь между половым поведением и положением на иерархической лестнице. Среди японских макак «социальный» ранг поддерживается и усиливается путем ежедневных наскакиваний: самцы низшей касты принимают позы подставления, характерные для самок в период половой охоты, а самцы высшего ранга походя и чисто ритуально наскакивают на них. Эти наскакивания имеют весьма малое половое значение, они служат в качестве легко понимаемого символа власти и подчинения, устанавливая своего рода «кто есть кто» в сложном «общественном» устройстве обезьяньего стада.

В одном из экспериментов по изучению поведения беличьих обезьян ученые наблюдали за Каспаром, самцом-доминантом, намного более активным, чем все другие в стае. Ему принадлежали две трети всех зарегистрированных случаев демонстрации полового поведения, однако все они были направлены на взрослых самцов. Каспар за все время эксперимента ни разу не спаривался ни с одной самкой. Тот факт, что он активно стремился к доминированию, но весьма вяло — к половым контактам, позволяет полагать, что хотя обе эти функции базируются на одних и тех же системах организма, но они совершенно различны. Исследователи, изучавшие эту стаю, пришли к заключению: «Половое поведение следует рассматривать как наиболее эффективный социальный сигнал в групповой иерархии. Оно ритуализованно и, как представляется, имеет смысл „Я — хозяин''. Скорее всего, оно произошло из сексуальной активности, но используется для социального общения и отделено от функций размножения. Другими словами, это ритуал, возникший из полового поведения, но служащий социальным целям, а не целям размножения».

Существование поведенческих, равно как нейро-анатомических, связей между половым поведением, агрессивностью и доминированием подтверждается многими исследованиями. Ритуалы брачных игр кошачьих и многих других животных в начальной стадии едва отличимы от драки. Известно, что домашние кошки иногда громко и притворно мурлычут, в то время как их лапы дерут обивку мебели или царапают хозяина.

Из опытов, аналогичных тем, что проводились с беличьими обезьянами, Мак-Лин вывел весьма привлекательную модель структуры и эволюции мозга, которую он назвал триединым мозгом «Мы должны, — говорит он, — посмотреть на себя и на мир глазами трех совершенно различных личностей», две из которых не вооружены речью. Человеческий мозг, считает Мак-Лин, «равнозначен трем взаимосвязанным биологическим компьютерам», из которых каждый имеет «свой собственный разум, свое собственное чувство времени и пространства, собственную память, двигательную и другие функции». Каждый мозг соответствует одному крупному эволюционному шагу. Все три мозга различаются нейроанатомически и функционально, и в каждом из них совершенно различно распределение таких нейрохимических агентов, как дофамин и холинэстераза.

В наиболее древней части человеческого мозга находится спинной мозг, продолговатый мозг и варолиев мост (которые вместе образуют задний мозг) и, наконец, средний мозг. Комбинацию из спинного мозга, заднего и среднего мозга Мак-Лин называет «нейрошасси». Оно включает в себя все необходимые механизмы для воспроизводства и самоподдержания организма, включая регуляцию сердечной деятельности, кровообращения и дыхания. У рыб и амфибий эти отделы, по существу, и составляют весь мозг. Но рептилии или высшие животные, у которых удален передний мозг, по словам Мак-Лина, «также лишены движения и цели, как экипаж, покинутый водителем».

Мне думается, что большой судорожный эпилептический припадок, grand mal, если продолжить это сравнение, можно представить себе как заболевание, при котором все «водители» сбежали из-за электрического шторма в мозге, и в распоряжении несчастной жертвы мгновенно не осталось ничего, кроме самого нейрошасси. Это страшное ухудшение состояния здоровья временно отбрасывает больного на несколько сот миллионов лет назад. Недаром древние греки, назвав болезнь именем, которое мы до сих пор употребляем, считали эпилепсию наказанием, наложенным богами. Очевидно, они сумели распознать истинный характер этого заболевания.

Мак-Лин различает три типа «водителей» нейрошасси. Владения самого древнего из них расположены вокруг среднего мозга (и состоят главным образом из того, что нейроанатомы называют olfactostriatum, corpus striatum, globus pallidus). Этот «водитель» общий у нас со всеми другими млекопитающими, а также рептилиями. По всей вероятности, он возник несколько сот миллионов лет назад. Мак-Лин называет его комплексом рептилий или, проще, Р-комплексом. Вокруг Р-комплекса расположена лимбическая система. Она общая у нас со всеми другими млекопитающими, но в своей законченной форме уже отличается от той, что есть у рептилий. Она возникла, скорее всего, более ста пятидесяти миллионов лет назад. И наконец, новая кора, неокортекс, вне сомнения, самое последнее эволюционное приобретение мозга, окружающее все остальные его части.

Как и у других высших млекопитающих и приматов, у человека эта новая кора относительно велика. Чем выше на эволюционной лестнице стоит млекопитающее, тем большую часть его мозга составляет неокортекс. Более всего развит он у нас (а также у дельфинов и китов). Появилась новая кора десятки миллионов лет назад, в эпоху возникновения человека. Схематически мозг представлен на рис. 7. А на рис 8. дано сравнение лимбической системы и новой коры головного мозга трех современных млекопитающих. Примечательно, что концепция триединого мозга хорошо согласуется с выводом о том, что появление млекопитающих и приматов (особенно человека) сопровождалось крупными сдвигами в эволюции мозга. В предыдущей главе эти сдвиги охарактеризованы количественно сопоставлением массы мозга с массой тела.

 

Рис. 7. Чрезвычайно схематическое изображение рептильного комплекса, лимбической системы и новой коры головного мозга человека (по Мак-Лину)

 

Очень трудно основывать прогрессивное развитие на видоизменении жизненно важных структур, поскольку любой шаг тут грозит оказаться смертельным. Но капитальных изменений можно добиться, надстраивая новые системы поверх старых. Здесь уместно вспомнить и идею рекапитуляции, выдвинутую в XIX веке немецким анатомом Эрнстом Геккелем, которая прошла через несколько циклов научного признания и отрицания. Геккель утверждал, что во время внутриутробного развития животные повторяют — рекапитулируют — последовательность своих предков, сменявших друг друга при эволюционном развитии данного вида. И в самом деле, человеческий зародыш проходит стадии, весьма сильно напоминающие рыб, рептилий и млекопитающих-неприматов, прежде чем приобрести явно человеческий облик. В той стадии, когда он похож на рыбу, человеческий эмбрион имеет даже жаберные щели, которые для него совершенно бесполезны, поскольку плод питается через пуповину. Но они необходимы для эмбриологии: раз жаберные щели были жизненно важными органами для наших далеких предков, то, очевидно, и нам необходимо их иметь, когда мы проходим соответствующую стадию внутриутробного развития. Мозг человеческого зародыша также развивается «изнутри кнаружи» и, грубо говоря, проходит через следующую последовательность: нейрошасси, Р-комплекс, лимбическая система, новые области коры (см. рис. 19, где показано внутриутробное развитие человеческого мозга).

 

Рис. 8. Схематическое изображение вида сверху и вида сбоку головного мозга кролика, кошки и обезьяны. Темным показаны области лимбической системы, особенно хорошо различимые на видах сбоку. Светлые участки с бороздами — новая кора, хорошо представленная на видах сверху.

 

Причины рекапитуляции могут быть следующими. Естественный отбор имеет дело только с индивидуумами, а не с видами и тем более не с яйцами или зародышами. [Однако «творческая роль» естественного отбора проявляется в преобразовании популяций, в результате которого и рождается новый вид. — Перев.] Таким образом, эволюционные изменения возникают лишь после появления живого существа на свет. Зародыш может обладать такими чертами, которые не имеют ни малейшего приспособительного значения после рождения, как, например, те же жаберные щели у млекопитающих, но, коль скоро они не создают никаких серьезных проблем для зародыша и исчезают до рождения, черты эти могут сохраниться. Наши жаберные щели — это напоминание не о древней рыбе, а о зародыше древней рыбы. Многие новые системы органов развиваются не путем добавления и сохранения, но путем изменения старых систем, как, например, плавники превратились в ноги, а ноги — в ласты или крылья, лапы — в ладони и ступни, сальные железы — в молочные, жаберные дуги — в слуховые кости, кожные чешуи — в акульи зубы. Таким образом, эволюционное развитие путем добавления и сохранения функций ранее существовавших структур может происходить благодаря одной из двух причин: или старая функция так же нужна, как и новая, или нет возможности отказаться от старой системы, поскольку она связана с выживанием.

В природе есть много других примеров этого вида эволюционного развития. Возьмем наудачу лишь один из них — рассмотрим, почему растение зеленое. В процессе фотосинтеза растения используют энергию красной и фиолетовой частей спектра солнечного света и с ее помощью разлагают воду, образуя углеводороды и удовлетворяя другие свои нужды. Но Солнце посылает значительно больше света в желтой и зеленой частях спектра, нежели в красной или фиолетовой. Растения, обладающие всего лишь одним фотосинтезирующим пигментом хлорофиллом, не используют самую насыщенную часть солнечного спектра. Многие растения с опозданием «заметили» этот факт и осуществили соответствующее изменение: в них развились другие пигменты (например, каротиноиды и фикобилины), которые отражают красный свет и поглощают желтый и зеленый. Прекрасно. Но отказались ли эти растения от хлорофилла? Нет, не отказались. На рис. 9 изображена фотосинтезирующая фабрика красной водоросли. Ее волокна содержат хлорофилл, а маленькие шарики, прикрепленные к этим волокнам, содержат фикобилин, который, собственно, и делает красную водоросль красной. Эти растения по-прежнему передают энергию, полученную ими от зеленой и желтой части солнечного спектра, хлорофиллу, который, как и раньше, служит посредником между светом и химическими реакциями в процессе фотосинтеза, хотя энергия света была первоначально поглощена не им. Природа не может выбросить хлорофилл и заменить его другим, лучшим пигментом, поскольку хлорофилл слишком глубоко вплетен в ткань жизни. Растения, имеющие дополнительные пигменты, безусловно, отличаются от других. Они более эффективны, но и в них в самом центре процесса фотосинтеза продолжает трудиться хлорофилл, пусть и с меньшей ответственностью, чем раньше. Я думаю, что эволюция мозга протекала аналогичным образом. Глубинные, древние образования все еще остаются в строю.

 

Рис. 9. Полученная с помощью электронного микроскопа фотография маленького растения, называемою красной водорослью. Его научное название - Porphyridium cruentum. Хлоропласт, фотосинтезирующая фабрика этого организма, занимает почти всю клетку. Фотография сделана с увеличением в 23 000 раз доктором Элизабет Гантт в лаборатории радиационной биологии Смитсонианского института.

Р-комплекс

Если верна точка зрения, изложенная выше, следует ожидать, что Р-комплекс в человеческом мозге все еще в некотором смысле выполняет функции динозавра, а лимбическая кора занята перевариванием «мыслей» пум и ленивцев. Вне сомнения, каждый новый шаг на пути эволюции мозга сопровождается изменениями в физиологии ранее существовавших его частей. На Р-комплексе должны были сказываться изменения в среднем мозге и так далее. Более того, мы знаем, что управление многими функциями организма распределено по различным участкам мозга. Но в то же время было бы странно, если бы те части мозга, что расположены ниже новой коры, не продолжали работать, по сути, так же, как у наших отдаленных предков.

Мак-Лин показал, что Р-комплекс играет важную роль в агрессивном ритуальном и территориальном поведении, а также в установлении социальной иерархии. Поразительно, как много из нашего действительного поведения — в отличие от того, что мы говорим и думаем о нем, — может быть описано в терминах, применяемых обычно по отношению к рептилиям. Например, убийцу мы обычно называем хладнокровным. Макиавелли советовал следовать своему принципу «сознательно растить в себе зверя».

Эти идеи частично предвосхитила Сюзанна Лангер, американский философ, которая писала: «Человеческая жизнь насквозь пронизана ритуалами, как и жизнь животных. Она представляет собой сложные переплетения разумного и обрядового, знания и религии, прозы и поэзии, фактов и вымысла... Ритуал, как и искусство, — это, по существу, конечное выражение символического преобразования опыта. Он рождается в коре больших полушарий, а не в «старом мозге», но он рождается благодаря элементарным потребностям, поскольку орган этот достиг человеческого уровня». За исключением того факта, что Р-комплекс является «старым мозгом», слова эти абсолютно справедливы.

Новая кора занимает у человека около 85 процентов головного мозга, что, конечно, указывает на ее важность по сравнению со стволом мозга, Р-комплексом и лимбической системой. Нейроанатомия, историческая наука и самонаблюдения дают многочисленные свидетельства тому, что люди вполне способны противостоять искушению подчиняться любому импульсу, идущему от рептилианской части нашего мозга. Например, «Билль о правах» американской конституции никоим образом не мог бы быть создан или записан Р-комплексом. Именно наша пластичность, наше долгое детство дают людям больше, чем кому-либо еще на Земле, возможность не следовать рабски тому эталону поведения, что запрограммирован в нас генетически. Но если триединый мозг может служить точной моделью поведения людей, то нет никакого резона игнорировать комплекс рептилии, присущий человеческой природе, в частности наше ритуальное и иерархическое поведение. Наоборот, эта модель может помочь нам понять, что на самом деле представляет собой человеческое существо. [Вопрос о природе (сущности) человека может быть правильно понят лишь с учетом всего, что знает современная наука о человеке и как о живом существе, и как о субъекте общественно-исторической деятельности. Это один из основных вопросов философии. См.: Маркс К. и Энгельс Ф. Соч., т. 3; Проблема человека в современной философии. Сб. М., 1969; Мысливченко А. Г. Человек как предмет философского познания. М., 1972; Соотношение биологического и социального в человеке. Сб. М., 1975; Дубинин II. П. Что такое человек. М., 1983; Фролов И. Т. На пути к единой науке о человеке. — Природа, 1985, № 8; Послесловие Д. А. Поспелова к данной книге. — Перев.] (Например, я думаю, что ритуальные аспекты многих психических заболеваний, скажем гебефренической шизофрении, могут явиться результатом повышенной активности некоего центра в Р-комплексе или же неспособности некоторого участка новой коры подавить или вообще выключить Р-комплекс. И не является ли часто наблюдаемое ритуализированное поведение маленьких детей следствием незавершенности развития новых областей коры их головного мозга? )

Всему этому удивительно соответствуют слова Гильберта К. Честертона: «Вы можете избавить вещи от действия чуждых или случайных законов, но не от законов их собственного естества... Не пытайтесь... побуждать треугольники вырваться из темницы, образованной тремя их сторонами. Если треугольник вырвется из трех своих сторон, жизнь его придет к прискорбному концу». Но не все треугольники являются равносторонними. Указать каждому компоненту триединого мозга его истинную роль вполне в нашей власти. [Изложенная здесь концепция триединого мозга занимает в современной нейробиологии довольно скромное место и разделяется далеко не всеми учеными. Вместе с тем идея иерархической организации мозга имеет надежную научную основу. — Прим. редакции.]

Лимбическая система

Выяснилось, что лимбическая система генерирует сильные или особо яркие эмоции. Отсюда сразу же следует еще один вывод относительно комплекса рептилии: для него характерны не бурные страсти и саднящие душу противоречия, а послушное и бесстрастное осуществление любого поведения, диктуемого генами или мозгом.

Электрические разряды внутри лимбической системы иногда вызывают симптомы, сходные с теми, что бывают при психозах или при приеме психоделических или галлюцинногенных средств. И в самом деле, мишени, на которые действуют многие психотропные средства, находятся именно в лимбической системе. Вероятно, она управляет весельем и страхом, а также множеством тонких эмоций, про которые принято думать, что они являются чисто человеческими.

«Главная железа», гипофиз, который оказывает влияние на другие железы и управляет эндокринной системой человека, расположена в самой глубине лимбической системы. Известно, что нарушения в работе эндокринной системы приводят к резким изменениям настроения, а это дает некоторый намек на те связи, что существуют между деятельностью лимбической системы и психологическим состоянием человека. В состав лимбической системы входит образование миндалевидной формы, называемое миндалиной и принимающее существенное участие в механизмах страха и агрессивности. Мирные и спокойные домашние животные становятся почти неправдоподобно буйными или же испытывают непреодолимый страх при электрическом раздражении их миндалин. В одном из таких экспериментов кошка в ужасе съеживалась перед обычной маленькой белой мышкой. Напротив, обычно свирепые животные, такие, как рысь, становятся покорными и позволяют гладить и ласкать себя, если только у них удалена миндалина. Нарушения в работе лимбической системы могут вызвать ничем не объяснимые приступы ярости, страха или чувствительности. Тот же результат может давать и естественное перевозбуждение — те, кто страдает от подобного рода заболеваний, порой испытывают настолько не соответствующие обстоятельствам эмоции, что их считают ненормальными.

По крайней мере, некоторую роль в механизме воздействия на эмоции таких лимбических эндокринных систем, как гипофиз, миндалина и гипоталамус, играют выделяемые ими гормоны — особые белковые вещества, которые влияют на деятельность других частей мозга. Самым известным из них является, вероятно, адренокортикотропный гормон гипофиза (АКТГ), способный воздействовать на столь несхожие между собой функции мозга, как удержание зрительных образов, тревожность и объем внимания. Есть данные о том, что в третьем желудочке мозга, который соединяет таламус и гипоталамус, то есть в области, тоже входящей в лимбическую систему, обнаружены некоторые относительно небольшие белки, выделяемые гипоталамусом. Схема на рис. 10 может помочь представить себе анатомию тех структур мозга, о которых шла речь в предыдущих абзацах.

 

Рис. 10. Схематическое изображение продольного разреза человеческого мозга, в котором большую часть занимает неокортекс, а меньшую — лимбическая система и ствол мозга, или задний мозг. Р-комплекс не показан.

 

Имеются основания думать, что начала альтруистического поведения также таятся в лимбической системе. Действительно, за редкими исключениями (главным образом к ним относятся общественные насекомые) млекопитающие и птицы являются единственными организмами, которые уделяют существенное внимание заботе о подрастающем поколении. Эта развившаяся в процессе эволюции способность обеспечивает долгий период пластичности и благодаря этому позволяет воспользоваться огромными возможностями по переработке информации, которой обладает мозг млекопитающих и приматов. Очевидно, любовь — это изобретение млекопитающих. [Это правило, касающееся различий в родительской заботе у млекопитающих и рептилий, не обходится без исключений. Заботливая мамаша нильская крокодилиха прячет в пасти своих только что вылупившихся крошек и переносит их в относительно безопасное место реки, а вот лев в Серенгети, как только достигает доминирующего положения, сразу же уничтожает всю наличную молодь. Но в целом млекопитающие проявляют куда большую заботу о своих детях, нежели рептилии. Не исключено, что это различие было еще более ярко выражено сто миллионов лет назад.]

Многое в поведении животных доказывает справедливость той точки зрения, что сильные эмоции развивались главным образом у млекопитающих и, хотя и в меньшей степени, у птиц. Я думаю, не вызывает сомнения привязанность домашних животных к людям. Хорошо известно, что многие млекопитающие-матери горюют, когда у них отнимают их детенышей. Интересно, насколько далеко заходят такого рода эмоции? Не бывает ли у лошадей порой проблесков патриотического пыла? Не испытывают ли собаки по отношению к людям нечто похожее на религиозный экстаз? Какие другие сильные и слабые чувства знают животные, ничего нам о них не сообщая?

Наиболее старая часть лимбической системы — обонятельная кора — ответственна за различение запахов, эмоциональное воздействие которых испытало на себе большинство людей. Способность удерживать события в памяти и вспоминать во многом связана с гиппокампом, структурой, расположенной внутри лимбической системы. Это очевидным образом следует из того, что при повреждении гиппокампа возникают серьезные нарушения памяти. Знаменита история больного Г.М., в течение долгих лет страдавшего эпилептическими припадками, вследствие чего ему была сделана операция, во время которой были удалены участки мозга, с обеих сторон примыкающие к гиппокампу. В результате снизилась частота и сила припадков, но больной потерял память. Он сохранил способность к восприятию, мог усваивать новые двигательные навыки, но забывал все, что происходило более часа назад. Сам он характеризовал свое состояние так: «Каждый день проходит сам по себе — какую бы радость или печаль он мне ни принес». Он описывал свою жизнь как непрерывное продление того чувства дезориентированности в мире, какое многие из нас испытывают, пробуждаясь ото сна, когда очень трудно бывает вспомнить, что произошло только что. Весьма любопытно, что, несмотря на грубые нарушения психики, его IQ (коэффициент интеллектуальности) после операции повысился. Он мог отчетливо различать запахи, но затруднялся указать источник каждого из них. Он проявлял так же ясно выраженное безразличие в вопросах пола.

В другом случае молодой американский летчик был ранен на шуточной дуэли с другим военнослужащим — острие рапиры прошло через его правую ноздрю, задев ту небольшую часть лимбической системы, что расположена чуть выше носа. В результате память его пострадала, хотя и не так серьезно, как у больного Г.М. При этом многие из его интеллектуальных способностей и способностей к восприятию остались прежними. Повреждение его памяти было особенно заметно на словесном материале. Вдобавок несчастный случай сделал его импотентом и нечувствительным к боли. Однажды он расхаживал босиком по нагретой солнцем металлической палубе прогулочного судна, не сознавая, что ступни ног его сильно обгорели, пока другие пассажиры не стали жаловаться на неприятный запах горелого мяса. Сам же он ни боли, ни запаха не чувствовал.

Подобные случаи с очевидностью свидетельствуют, что столь сложная форма деятельности, как половое поведение, управляется у млекопитающих одновременно всеми тремя частями триединого мозга — Р-комплексом, лимбической системой и новой корой. (Участие Р-комплекса и лимбической системы в половой деятельности мы уже отмечали ранее. Свидетельства участия в ней новой коры легко могут быть получены путем самонаблюдения.)

Одна часть лимбической системы отдана устной речи и восприятию вкуса, другая — сексуальным функциям. Связь между половым поведением и запахом очень древняя, особое развитие она получила у насекомых — обстоятельство, проливающее свет как на плюсы, так и на минусы устройства жизни, свойственного нашим отдаленным предкам, при котором они во всем полагались на свое умение различать запахи.

Однажды я наблюдал эксперимент, в котором голова мухи с помощью очень тонкой проволочки была соединена с осциллографом, и на его экране можно было видеть все электрические импульсы, генерируемые обонятельной системой мухи. Чтобы получить доступ к механизмам обоняния, голова мухи была только что отделена от туловища и потому все еще в известном смысле функционировала. [Головы и туловища членистоногих некоторое время могут отлично обходиться друг без друга. Самка богомола в ответ на серьезное ухаживание часто в буквальном смысле лишает своего поклонника головы. В человеческом обществе такое поведение считалось бы асоциальным, но у насекомых оно в порядке вещей. Удаление мозга снимает сексуальные запреты и побуждает то, что осталось от самца, к спариванию. После этого самка завершает торжество трапезой в одиночку.] Экспериментаторы предъявляли мухе различные пахучие вещества, в том числе неприятные и раздражающие газы, например аммиак, но заметного эффекта не было — на экране осциллографа каждый раз наблюдалась абсолютно горизонтальная линия. Затем перед отделенной от тела мухи головой расположили крохотное количество аттрактанта, выделяемого самкой этого вида, и тотчас же на экране осциллографа появился вертикальный импульс необычайной величины. Муха почти совсем не умела различать запахи, кроме одного лишь запаха аттрактанта. Но уж зато эти молекулы она умела унюхивать исключительно хорошо.

Обонятельная специализация такого рода вообще обычна для насекомых. Шелкопряд способен уловить запах аттрактанта самки даже в том случае, когда его усиков достигают всего лишь около сорока молекул этого вещества в секунду. Самке шелкопряда достаточно ежесекундно выделять всего лишь одну стотысячную миллиграмма аттрактанта, чтобы привлечь всех самцов, находящихся вокруг нее в объеме, равном кубической миле. Не будь этого, не было бы шелкопрядов.

Возможно, наиболее любопытный пример использования запаха для выбора брачного партнера и продолжения рода дают нам южноафриканские жуки. На зиму они зарываются в землю, а весной, когда земля оттаивает, выбираются на поверхность, но обессилевшие самцы раскапывают себя на несколько недель раньше, чем самки. В том же районе Южной Африки произрастает вид орхидеи, которая испускает аромат, идентичный запаху аттрактанта самки жука. Очевидно, и орхидеи и жуки выработали в процессе эволюции, по существу, одно и то же вещество. И тут обнаруживается, что самцы жуков чрезвычайно «близоруки», а вдобавок орхидеи располагают свои лепестки таким образом, что подслеповатым жукам кажется, будто они видят самку. Жуки-самцы в течение нескольких недель предаются разнузданному «наслаждению» среди орхидей, а тут вдруг из-под земли появляются самки. Между тем орхидеи уже благополучно опылены жуками. В результате выживают и жуки, и орхидеи. (Кстати сказать, в интересах орхидей не быть слишком уж привлекательными: ведь если жуки не смогут размножаться, то орхидеям не поздоровится.) Таким образом, мы обнаружили одно ограничение чисто обонятельного полового раздражителя. Другое заключается в том, что, поскольку все самки жука выделяют один и тог же половой аттрактант, самцу нелегко выбрать себе даму сердца. Получается, что самцы изо всех сил стараются привлечь самку или, если речь идет о жуках-рогачах, бьются жвало к жвалу с соперниками, зная, что в качестве приза получат самку, а половой аттрактант, испускаемый самками, служит главным образом для того, чтобы снизить степень полового отбора среди насекомых.

Иные способы найти себе брачного партнера возникли у рептилий, птиц и млекопитающих. Но связь полового поведения и запаха все еще ясно видна нейроанатомически у высших животных и анекдотически — у людей. Я думаю иногда: не служат ли деодоранты, особенно «женские», благородному делу снижения сексуального возбуждения, чтобы дать нашим мыслям возможность хоть изредка сосредоточиться на чем-нибудь ином.

Новая кора

Повреждения переднего мозга даже рыбу лишают инициативы и осторожности. У высших животных эти качества, значительно более развитые, локализованы в новой коре — местонахождении многих познавательных функций, характерных для человека. Обычно ее делят на четыре главные части, или доли: лобная, теменная, височная и затылочная. Раньше нейрофизиологи считали, что высшие разделы мозга связаны лишь между собой, но теперь установлено, что они имеют много связей и с подкорковыми отделами мозга. Однако ни в коем случае нельзя считать доказанным, что те части, на которые условно подразделена новая кора, представляют собой функциональные единицы. Каждая из них, вне сомнения, имеет много разных функций, а некоторые функции могут выполняться всеми долями или несколькими из них. В частности, лобные доли, помимо прочего, ответственны, видимо, за планирование действий и управление ими, теменные доли — за пространственное восприятие и обмен информацией между мозгом и остальной частью тела, височные доли — за множество сложных задач восприятия и, наконец, затылочные доли — за зрение, которое является главным органом чувств у человека и других приматов.

В течение многих десятилетий среди нейрофизиологов преобладала точка зрения, что лобные доли, расположенные сразу же за лобными костями, — то место мозга, где осуществляется предвидение и планирование будущего, то есть две функции, наиболее характерные для человеческого поведения. Но последние исследования показали, что положение не столь просто. Большое число случаев поражения лобных долей, происшедших главным образом в результате огнестрельных ранений головы, были изучены американским нейрофизиологом Гансом-Лукасом Теубером в Массачусетском технологическом институте. Он обнаружил, что многие поражения лобных долей мозга не оказывают почти никакого видимого воздействия на поведение человека. Однако при грубом их разрушении «пациент не полностью лишен способности предвидеть ход событий, но не может представить себя в качестве их потенциального участника». Теубер подчеркивает тот факт, что лобные доли заняты предвидением не только двигательной, но и познавательной деятельности, в частности оценкой тех последствий, к которым приведут произвольные движения. Лобные доли также осуществляют связь между зрением и прямохождением.

Таким образом, лобные доли могут участвовать в осуществлении функций, присущих лишь человеку, двумя различными путями. Если они управляют предвидением будущего, то обязаны быть также местонахождением забот и вместилищем тревог. Вот почему отсечение лобных долей уменьшает тревожность. Но в то же время такое отсечение — префронтальная лоботомия — весьма уменьшает и способность пациента оставаться человеком. Цена, которую мы платим за предвидение будущего, — это тревога о нем. Возможно, не такая уж радость предсказывать несчастье; Поллианна была намного счастливее Кассандры. [Поллианна — героиня одноименной повести Э. Портер, ее имя стало нарицательным, оно служит синонимом неисправимой оптимистки, глядящей на жизнь сквозь розовые очки. Кассандра — но греческой мифологии, дочь царя Трои Приама, прорицательница. Это она предостерегала царевича Париса от похищения Елены, жены царя Спарты Менелая, но по наущению Аполлона ее предостережениям не вняли, из-за чего и началась Троянская война. — Перев.]

Но кассандрический компонент нашего естества необходим для выживания. Соображения, касающиеся позиции, занимаемой человеком относительно будущего, легли в основу этики, магии, науки и законности. Выгода от предвидения катастрофы заключается в возможности предпринять шага к тому, чтобы попытаться избежать ее, жертвуя сиюминутным выигрышем в пользу завтрашнего блага. В результате подобного предвидения общество обеспечивает себе материальную безопасность и тем получает возможность создавать для своих членов свободное время, необходимое для социального и технического развития.

Другая функция, которую, как полагают, осуществляют лобные доли мозга, — это обеспечение возможности ходить на двух ногах. Наша вертикальная походка была бы невозможна без лобных долей. Как будет более подробно показано дальше, умение стоять на двух ногах освободило наши руки для выполнения сложных действий, что, в свою очередь, привело к развитию истинно человеческих культурных и физиологических черт. В самом прямом смысле этих слов цивилизация есть продукт деятельности лобных долей.

Зрительная информация от глаз поступает в мозг человека, в основном в затылочную его долю, находящуюся в задней части головы, слуховое восприятие — в верхнюю часть височной доли, расположенной за висками. Есть отдельные свидетельства, что эти части новой коры значительно хуже развиты у слепоглухонемых. Поражения затылочной доли в результате огнестрельного ранения, например, часто являются причиной нарушения ноля зрения. Больной может быть во всех остальных отношениях совершенно нормальным, но ему доступно лишь периферическое зрение, прямо перед собою он видит лишь неясно очерченное размытое пятно. В других случаях бывает более странное нарушение зрительного восприятия, в том числе геометрически правильные «плавающие» нарушения поля зрения, своего рода «зрительные припадки», когда, например, предмет, находящийся на полу справа и внизу от пациента, в какие-то моменты воспринимается им как плавающий в воздухе слева и вверху от него, вдобавок повернутым на 180 градусов. Если систематически изучать различные нарушения зрения, случающиеся при различных поражениях затылочных долей, то становится возможным определить, какая часть затылочной доли коры головного мозга ответственна за какую из зрительных функций. У детей, чей мозг способен к самопочинке или к передаче нарушенных функций соседним участкам, вероятность постоянного нарушения зрения значительно меньше, чем у взрослых.

Способность связывать между собой звуковые и зрительные сигналы локализована в височной доле. Повреждения ее приводят к афазии, то есть невозможности различать устную речь. Примечательно и важно, что больные, у которых поврежден мозг, могут совершенно свободно владеть устной речью, а в то же время полностью утратить способность к письму, или же наоборот. Они могут уметь писать, но не читать, уметь читать цифры, но не буквы, называть предметы, но не цвета. В неокортексе существует удивительное разделение функций, противоречащее привычному представлению, будто чтение и письмо, узнавание слов и узнавание цифр — это очень близкие вещи. Есть также, пока еще, правда, не подтвержденные, сообщения о том, что встречается повреждение мозга, в результате которого больной перестает понимать или страдательный залог, или предложные обороты, или притяжательные конструкции. (Может быть, однажды обнаружат и местонахождение сослагательного наклонения. Не окажется ли тогда, что у людей, говорящих на романских языках, этот крохотный участок мозга необычайно увеличен, а у тех, чей родной язык английский, наоборот, весьма недоразвит? ) Как это ни удивительно, похоже, ч го различные абстрактные понятия, включая грамматические «части речи», впаяны в свои особые участки мозга.

Известен случай, когда поражение височной доли коры головного мозга вызвало совсем уж удивительное нарушение зрительного восприятия, при котором больной не мог различать лица, даже лица членов своей семьи. Когда ему показали изображение человеческого лица, он сказал, что это, возможно, яблоко. На просьбу подтвердить чем-либо свое предположение, он отождествил рот с надрезом на яблоке, нос — с черенком, согнутым вдоль поверхности яблока, а глаза — с двумя отверстиями, проделанными червяком-вредителем. Но тот же самый пациент мог в совершенстве распознавать изображения домов и других неодушевленных предметов. Различного рода эксперименты показывают, что повреждения правой затылочной доли коры головного мозга ведут к тому, что больной не может вызвать в памяти несловесные образы, а повреждения левой затылочной доли ведут к потере языковой памяти.

Наши способности читать и составлять карты, ориентироваться в трехмерном пространстве и пользоваться подходящими к случаю символами (вероятно, все эти способности либо участвуют в создании языка, либо используют его) сильно страдают при повреждении теменной доли, расположенной вблизи макушки. Один солдат, который во время войны получил тяжелое проникающее ранение теменной доли, в течение целого года не мог попасть ногами в тапочки или же найти свою кровать в госпитальной палате. Впоследствии тем не менее он почти полностью выздоровел.

Повреждения извилины неокортекса, расположенной в теменной части мозга, вызывают алексию, то есть неспособность распознавать печатный текст. Обнаружилось, что теменная доля коры участвует в построении всех знаковых языков, и потому ее повреждение приводит к резкому снижению умственных способностей, что проявляется в каждодневном поведении.

Среди всех абстракций, доступных новой коре, высшая — это пользование знаковыми языками, особенно чтение, письмо и математика. Они требуют согласованной деятельности височной, теменной и лобной долей, а может быть, также и затылочной. Однако не все знаковые языки являются неокортикальными; например, пчелы, не обладающие даже намеком на эту часть мозга, выработали богатый язык танца (впервые изученный австрийским энтомологом Карлом фон Фришем), с помощью которого они обмениваются информацией о том, в каком направлении и на каком расстоянии находится пища. Это своеобразный язык жестов, имитирующий движения, которые пчелы на самом деле выполняют, когда находят пищу, — мы бы на их месте сделали несколько шагов в направлении к холодильнику, похлопали себя по животу, прищелкивая при этом языком. Однако словарь этого языка крайне ограничен, он включает в себя, быть может, всего несколько десятков слов. То обучение, которому подвергаются наши малыши во время долгого периода детства, почти целиком — неокортикальная функция.

Хотя большая часть обонятельной информации перерабатывается в лимбической системе, кое-какая работа с ней происходит и в неокортексе. Похожая ситуация складывается и с памятью. Кроме обонятельной коры, важной частью лимбической системы является, как уже говорилось, гиппокамп. После того как у животного удалена обонятельная кора, оно может все-таки улавливать запах, хотя и значительно хуже, чем раньше. Это еще одна демонстрация избыточности функций мозга. Есть данные, позволяющие полагать, что у современного человека механизм кратковременной памяти на запах находится в гиппокампе. Первоначальной функцией гиппокампа могла быть исключительно кратковременная память на запах, полезная, например, для выслеживания жертвы или нахождения существ противоположного пола. Но двустороннее повреждение гиппокампа приводит, как в случае с больным Г. М., к серьезным нарушениям всех видов кратковременной памяти. Такие больные в буквальном смысле не могут вспомнить, что случилось секунду назад. Очевидно, как гиппокамп, так и лобные доли участвуют в организации кратковременной памяти человека.

Один из интересных выводов, следующих из этого утверждения, заключается в том, что механизмы кратковременной и долговременной памяти расположены в различных частях мозга. Классический условный рефлекс — способность павловских собак выделять слюну в тот момент, когда звонит звонок, — вероятно, базируется в лимбической системе. Это долговременная память, но очень ограниченного типа. Сложная человеческая долговременная память связана с новой корой, которая дает человеку возможность продумывать наперед свои действия. По мере того как мы стареем, мы все чаще забываем, что было сказано нам мгновение назад, а в то же время сохраняем в памяти яркие и точные образы событий, происходивших в нашем детстве. При этом, однако, и наша кратковременная и наша долговременная память остается в полном порядке — мы испытываем лишь сложности в переписывании нового материала из первой во вторую. Пенфилд полагает, что причина тут кроется в недостаточном кровоснабжении гиппокампа в старости — из-за атеросклероза или иных физических недомоганий. Таким образом, старики — а также и не такие уж старики — могут испытывать серьезные трудности, связанные с доступом к кратковременной памяти, обладая в других случаях живым и острым умом. [И в самом деле, есть немало медицинских данных, указывающих на связь между кровоснабжением и интеллектуальными способностями. Давно было известно, что пациенты, на несколько минут лишенные кислорода, испытывали иногда постоянные и серьезные умственные расстройства. Операции по удалению закупорки сонной артерии часто приносили неожиданную пользу: согласно одному исследованию, через шесть недель после такой операции коэффициент интеллектуальности пациента повысился в среднем на восемнадцать единиц, что представляет собой существенное улучшение. Обсуждался также вопрос о том, что умственное развитие младенцев улучшается при гипербарической оксигенизации, то есть когда их помещают в барокамеры с повышенным давлением кислорода.] Здесь видно отчетливое различие между кратковременной и долговременной памятью, объясняющееся их локализацией в различных частях мозга. Официантки в закусочных могут запоминать огромное количество информации, которую они с большой точностью передают на кухню. Но час спустя вся она полностью стирается, поскольку была заложена в кратковременную память и не было предпринято никаких усилий, чтобы переписать ее в долговременную.

Механизм извлечения из памяти может быть сложным. Обычно мы знаем, что в нашей долговременной памяти находится нечто — слово, имя, лицо или опыт, но не можем вызвать их оттуда, как бы ни пытались. Но стоит подумать о чем-либо другом, но близком, и память сама отдает нам то, что скрывала. (Человеческое зрение устроено в какой-то мере сходным образом. Когда мы смотрим на плохо различимый объект — скажем, на звезду — прямо, то работает так называемая центральная ямка глаза, то есть тот участок сетчатки, где острота зрения максимальна и также максимальна плотность светочувствительности клеток, называемых колбочками. Но когда мы переводим взгляд немного в сторону, глядя на предмет, как говорится, искоса, мы тем самым включаем в игру другие клетки, называемые палочками, которые способны улавливать слабый свет и, стало быть, могут увидеть плохо различимую звезду.) Интересно было бы узнать, отчего «думание вбок» облегчает вспоминание. Быть может, тут все дело просто в том, что таким образом к нужным следам в памяти удается добраться другим нейронным путем — правда, эта гипотеза предполагает, что деятельность нашего мозга организована не слишком удачно.

Каждому из нас случалось однажды проснуться с ощущением, что утром обязательно вспомнишь вот этот яркий, леденящий, многое объясняющий или еще чем-нибудь замечательный сон, однако на следующий день в памяти не остается ни малейшего следа от содержания этого сновидения или, в лучшем случае, сохраняется лишь смутное воспоминание о тех эмоциях, что он вызвал. С другой стороны, если сон этот показался мне достаточно важной причиной, чтобы разбудить среди ночи жену и рассказать ей о нем, то утром я безо всякой ее помощи легко восстанавливаю в памяти его содержание. Точно так же, если я дал себе труд записать свой сон, то, проснувшись, совершенно свободно вспоминаю его, не обращаясь к своим ночным заметкам. То же происходит, если нужно запомнить номер телефона. Если мне сообщают его и я просто думаю об этом номере, скорее всего я его забуду или перепутаю цифры. Если же я повторю номер телефона вслух или запишу его, то потом легко могу вспомнить. Это, безусловно, означает, что в нашем мозге есть участок, который запоминает звуки и образы, а не мысли. Мне думается, память такого рода возникла еще до того, как у нас в голове появилось слишком много мыслей, — в те времена, когда важным было запомнить шипение нападающей рептилии или тень падающего камнем сокола, а не наши собственные случайные философские размышления.

 

Оприроде человека

Несмотря на всю привлекательность идеи локализации функций, которая составляет суть триединой модели мозга, я еще раз подчеркиваю, что было бы нелепым упрощенчеством утверждать, будто различные функции в мозге совершенно разделены. Ритуальное и эмоциональное поведение людей, вне всякого сомнения, находится под сильным влиянием абстрактного мышления, свойственного новым областям коры. На этом, как показал анализ, основаны чисто религиозные верования, а также сугубо логические (философские) обоснования общественной иерархии — вроде утверждений, будто монархи — это помазанники Божьи (Т. Гоббс). Точно так же животные, в том числе не являющиеся даже приматами, имеют некоторые задатки аналитического мышления. Во всяком случае, у меня сложилось такое впечатление в отношении дельфинов, о чем я писал в своей книге «Космическая связь».

С этими оговорками можно тем не менее в первом приближении считать, что ритуальный и иерархический аспекты нашей жизни находятся под сильным влиянием Р-комплекса и общи для нас и наших предков-рептилий; что альтруистический, эмоциональный и религиозный аспекты нашей жизни в значительной мере управляются лимбической системой и общи для нас и наших предков — млекопитающих-неприматов (а возможно, и птиц); что разум — это функция новых областей коры головного мозга, неокортекса, которая в какой-то мере общая у нас и у высших приматов, а также у таких китообразных, как дельфины и кашалоты. Ритуалы, эмоции и рассуждения — все это важные признаки человеческого в человеке, но еще более важно то, что только человек умеет мыслить абстрактно. Мы любознательны, постоянно делаем что-то для удовлетворения каких-либо своих насущных потребностей, но опять-таки к самым человеческим формам деятельности относятся занятия наукой, техникой, музыкой и живописью. Круг специфически человеческих занятий гораздо шире того, который мы по привычке обозначаем словом «гуманитарные», сужая тем самым взгляд на то, что является истинно человеческим. Если этого не учитывать, то человеческое можно найти у китов и слонов.

Модель триединого мозга основана на данных сравнительной нейроанатомии и изучении поведения. Но людям не чуждо и стремление честно заглянуть внутрь самих себя, а потому, если модель триединого мозга верна, мы можем надеяться найти некоторые намеки на ее правильность в истории человеческого самопознания. Самая известная из гипотез, которая в чем-то напоминает идею триединого мозга, — это придуманное Зигмундом Фрейдом разделение человеческой психики на Ид, Эго и Суперэго. Те аспекты Р-комплекса, что связаны с агрессивностью и сексуальностью, вполне удовлетворительно соответствуют данному Фрейдом определению Ид (по-латыни значит «оно», то есть обозначает животный аспект нашей натуры), но, насколько я знаю, в своем описании Ид Фрейд не говорил о ритуальном и социально-иерархическом аспектах Р-комплекса. Он считал эмоции функцией Эго, в частности «океанического опыта» — фрейдистского эквивалента религиозному прозрению. Однако Супер-эго первоначально был описан не как вместилище абстрактного мышления, а как хранилище структур, связанных с понятиями «социум» и «семья», что в модели триединого мозга скорее уже относится к Р-комплексу. Таким образом, психоаналитическая идея о делении человеческой психики на три части находится лишь в слабом соответствии с моделью триединого мозга.

Быть может, более подходящая метафора — фрейдистское деление психики на сознательное, подсознательное (которое скрыто, но может выйти наружу) и бессознательное (которое подавляется или недоступно). Когда Фрейд говорил, что «склонность человека к неврозам является обратной стороной его склонности к культурному развитию», он имел в виду сложности в отношениях, которые существуют между тремя компонентами человеческой души. Он называл бессознательные функции «первичными процессами».

Но самую точную по совпадению внутреннего мира метафору человека мы обнаруживаем в Платоновой диалоге «Федр». Там Сократ уподобляет душу колеснице, влекомой двумя лошадьми, черной и белой, которые тянут ее в противоположных направлениях и плохо подчиняются вознице. Колесница очень напоминает нейрошасси Мак-Лина, две лошади — Р-комплекс и лимбическую кору, а возничий, едва способный управлять накренившейся колесницей и лошадьми, — неокортекс. Еще одна метафора Фрейда описывает Эго как наездника на непокорной лошади. Обе метафоры, и Фрейда и Платона, подчеркивают определенную самостоятельность частей души, а также напряженность их отношений между собой. Все это характерно для человека, и мы к этому еще вернемся. Вследствие того, что между тремя его компонентами существуют нейроанатомические связи, сам триединый мозг, подобно колеснице из платоновского «Федра», нужно считать метафорой. Но эта метафора может оказаться глубокой и полезной.

 


Поделиться:



Последнее изменение этой страницы: 2019-04-09; Просмотров: 251; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.305 с.)
Главная | Случайная страница | Обратная связь