Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Конструктор как конвертер



Набор конструкторов класса, принимающих единственный параметр, например, SmallInt(int) класса SmallInt, определяет множество неявных преобразований в значения типа SmallInt. Так, конструктор SmallInt(int) преобразует значения типа int в значения типа SmallInt.

extern void calc( SmallInt );

int i;

 

// необходимо преобразовать i в значение типа SmallInt

// это достигается применением SmallInt(int)

calc( i );

При вызове calc(i) число i преобразуется в значение типа SmallInt с помощью конструктора SmallInt(int), вызванного компилятором для создания временного объекта нужного типа. Затем копия этого объекта передается в calc(), как если бы вызов функции был записан в форме:

// Псевдокод на C++

// создается временный объект типа SmallInt

{

SmallInt temp = SmallInt( i );

calc( temp );

}

Фигурные скобки в этом примере обозначают время жизни данного объекта: он уничтожается при выходе из функции.

Типом параметра конструктора может быть тип некоторого класса:

class Number {

public:

// создание значения типа Number из значения типа SmallInt

Number( const SmallInt & );

//...

};

В таком случае значение типа SmallInt можно использовать всюду, где допустимо значение типа Number:

extern void func( Number );

SmallInt si(87);

 

int main()

{ // вызывается Number( const SmallInt & )

func( si );

//...

}

Если конструктор используется для выполнения неявного преобразования, то должен ли тип его параметра точно соответствовать типу подлежащего преобразованию значения? Например, будет ли в следующем коде вызван SmallInt(int), определенный в классе SmallInt, для приведения dobj к типу SmallInt?

extern void calc( SmallInt );

double dobj;

 

// вызывается ли SmallInt(int)? Да

// dobj преобразуется приводится от double к int

// стандартным преобразованием

calc( dobj );

Если необходимо, к фактическому аргументу применяется последовательность стандартных преобразований до того, как вызвать конструктор, выполняющий определенное пользователем преобразование. При обращении к функции calc()употребляется стандартное преобразование dobj из типа double в тип int. Затем уже для приведения результата к типу SmallInt вызывается SmallInt(int).

Компилятор неявно использует конструктор с единственным параметром для преобразования его типа в тип класса, к которому принадлежит конструктор. Однако иногда удобнее, чтобы конструктор Number(const SmallInt& ) можно было вызывать только для инициализации объекта типа Number значением типа SmallInt, но ни в коем случае не для выполнения неявных преобразований. Чтобы избежать такого употребления конструктора, объявим его явным (explicit):

class Number {

public:

// никогда не использовать для неявных преобразований

explicit Number( const SmallInt & );

//...

};

Компилятор никогда не применяет явные конструкторы для выполнения неявных преобразований типов:

extern void func( Number );

SmallInt si(87);

 

int main()

{ // ошибка: не существует неявного преобразования из SmallInt в Number

func( si );

//...

}

Однако такой конструктор все же можно использовать для преобразования типов, если оно запрошено явно в форме оператора приведения типа:

SmallInt si(87);

 

int main()

{ // ошибка: не существует неявного преобразования из SmallInt в Number

func( si );

func( Number( si ) ); // правильно: приведение типа

func( static_cast< Number > ( si ) ); // правильно: приведение типа

}

15.10. Выбор преобразования A

Определенное пользователем преобразование реализуется в виде конвертера или конструктора. Как уже было сказано, после преобразования, выполненного конвертером, разрешается использовать стандартное преобразование для приведения возвращенного значения к целевому типу. Трансформации, выполненной конструктором, также может предшествовать стандартное преобразование для приведения типа аргумента к типу формального параметра конструктора.

Последовательность определенных пользователем преобразований – это комбинация определенного пользователем и стандартного преобразования, которая необходима для приведения значения к целевому типу. Такая последовательность имеет вид:

    Последовательность стандартных преобразований ->

           Определенное пользователем преобразование ->

                   Последовательность стандартных преобразований

где определенное пользователем преобразование реализуется конвертером либо конструктором.

Не исключено, что для трансформации исходного значения в целевой тип существует две разных последовательности пользовательских преобразований, и тогда компилятор должен выбрать из них лучшую. Рассмотрим, как это делается.

В классе разрешается определять много конвертеров. Например, в нашем классе Number их два: operator int() и operator float(), причем оба способны преобразовать объект типа Number в значение типа float. Естественно, можно воспользоваться конвертером Token:: operator float() для прямой трансформации. Но и Token:: operator int() тоже подходит, так как результат его применения имеет тип int и, следовательно, может быть преобразован в тип float с помощью стандартного преобразования. Является ли трансформация неоднозначной, если имеется несколько таких последовательностей? Или какую-то из них можно предпочесть остальным?

class Number {

public:

operator float();

operator int();

//...

};

Number num;

float ff = num; // какой конвертер? operator float()

В таких случаях выбор наилучшей последовательности определенных пользователем преобразований основан на анализе последовательности преобразований, которая применяется после конвертера. В предыдущем примере можно применить такие две последовательности:

1. operator float() -> точное соответствие

2. operator int() -> стандартное преобразование

Как было сказано в разделе 9.3, точное соответствие лучше стандартного преобразования. Поэтому первая последовательность лучше второй, а значит, выбирается конвертер Token:: operator float().

Может случиться так, что для преобразования значения в целевой тип применимы два разных конструктора. В этом случае анализируется последовательность стандартных преобразований, предшествующая вызову конструктора:

class SmallInt {

public:

SmallInt( int ival ): value( ival ) { }

SmallInt( double dval )

     : value( static_cast< int > ( dval ) );

{ }

};

 

extern void manip( const SmallInt & );

 

int main() {

double dobj;

manip( dobj ); // правильно: SmallInt( double )

}

Здесь в классе SmallInt определено два конструктора – SmallInt(int) и SmallInt(double), которые можно использовать для изменения значения типа double в объект типа SmallInt: SmallInt(double) трансформирует double в SmallInt напрямую, а SmallInt(int) работает с результатом стандартного преобразования double в int. Таким образом, имеются две последовательности определенных пользователем преобразований:

1. точное соответствие -> SmallInt( double )

2. стандартное преобразование -> SmallInt( int )

Поскольку точное соответствие лучше стандартного преобразования, то выбирается конструктор SmallInt(double).

Не всегда удается решить, какая последовательность лучше. Может случиться, что все они одинаково хороши, и тогда мы говорим, что преобразование неоднозначно. В таком случае компилятор не применяет никаких неявных трансформаций. Например, если в классе Number есть два конвертера:

class Number {

public:

operator float();

operator int();

//...

};

то невозможно неявно преобразовать объект типа Number в тип long. Следующая инструкция вызывает ошибку компиляции, так как выбор последовательности определенных пользователем преобразований неоднозначен:

// ошибка: можно применить как float(), так и int()

long lval = num;

Для трансформации num в значение типа long применимы две такие последовательности:

1. operator float() -> стандартное преобразование

2. operator int() -> стандартное преобразование

Поскольку в обоих случаях за использованием конвертера следует применение стандартного преобразования, то обе последовательности одинаково хороши и компилятор не может выбрать ни одну из них.

С помощью явного приведения типов программист способен задать нужное изменение:

// правильно: явное приведение типа

long lval = static_cast< int > ( num );

Вследствие такого указания выбирается конвертер Token:: operator int(), за которым следует стандартное преобразование в long.

Неоднозначность при выборе последовательности трансформаций может возникнуть и тогда, когда два класса определяют преобразования друг в друга. Например:

class SmallInt {

public:

SmallInt( const Number & );

//...

};

 

class Number {

public:

operator SmallInt();

//...

};

 

extern void compute( SmallInt );

extern Number num;

 

compute( num ); // ошибка: возможно два преобразования

Аргумент num преобразуется в тип SmallInt двумя разными способами: с помощью конструктора SmallInt:: SmallInt(const Number& ) либо с помощью конвертера Number:: operator SmallInt(). Поскольку оба изменения одинаково хороши, вызов считается ошибкой.

Для разрешения неоднозначности программист может явно вызвать конвертер класса Number:

// правильно: явный вызов устраняет неоднозначность

compute( num.operator SmallInt() );

Однако для разрешения неоднозначности не следует использовать явное приведение типов, поскольку при отборе преобразований, подходящих для приведения типов, рассматриваются как конвертер, так и конструктор:

compute( SmallInt( num ) ); // ошибка: по-прежнему неоднозначно

Как видите, наличие большого числа подобных конвертеров и конструкторов небезопасно, поэтому их. следует применять с осторожностью. Ограничить использование конструкторов при выполнении неявных преобразований (а значит, уменьшить вероятность неожиданных эффектов) можно путем объявления их явными.


Поделиться:



Последнее изменение этой страницы: 2019-04-09; Просмотров: 268; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.043 с.)
Главная | Случайная страница | Обратная связь