Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Необходимо найти путь от S 0 к Sk .



2. Классическая формулировка задачи на доказательство в математике:

Получить С(х), исходя из Н(х).

Пример.

Показать, что для всех n, n Î N

Сводится к предыдущему, если положить S0 = H(x) и Sk = C(x).

Существенное отличие:

операторы перехода от одного состояния к другому не заданы.

 

25. Самообучающиеся системы.

 

Самообучающиеся интеллектуальные системы основаны на методах автоматической классификации ситуаций из реальной практики, или на методах обучения на примерах. Примеры реальных ситуаций составляют так называемую обучающую выборку, которая формируется в течение определенного исторического периода. Элементы обучающей выборки описываются множеством классификационных признаков.
Стратегия «обучения с учителем» предполагает задание специалистом для каждого примера значений признаков, показывающих его принадлежность к определенному классу ситуаций. При обучении «без учителя» система должна самостоятельно выделять классы ситуаций по степени близости значений классификационных признаков.
В процессе обучения проводится автоматическое построение обобщающих правил или функций, описывающих принадлежность ситуаций к классам, которыми система впоследствии будет пользоваться при интерпретации незнакомых ситуаций. Из обобщающих правил, в свою очередь, автоматически формируется база знаний, которая периодически корректируется по мере накопления информации об анализируемых ситуациях.
Построенные в соответствии с этими принципами самообучающиеся системы имеют следующие недостатки:
• относительно низкую адекватность баз знаний возникающим реальным проблемам из-за неполноты и/или зашумленности обучающей выборки;
• низкую степень объяснимости полученных результатов;
• поверхностное описание проблемной области и узкую направленность применения из-за ограничений в размерности признакового пространства.
Индуктивные системы позволяют обобщать примеры на основе принципа индукции «от частного к общему». Процедура обобщения сводится к классификации примеров по значимым признакам. Алгоритм классификации примеров включает следующие основные шаги.
1. Выбор классификационного признака из множества заданных.
2. Разбиение множества примеров на подмножества по значению выбранного признака.
3. Проверка принадлежности каждого подмножества примеров одному из классов.
4. Проверка окончания процесса классификации. Если какое-то подмножество примеров принадлежит одному подклассу, т.е. у всех примеров этого подмножества совпадает значение классификационного признака, то процесс классификации заканчивается.
5. Для подмножеств примеров с несовпадающими значениями классификационных признаков процесс распознавания продолжается, начиная с первого шага. При этом каждое подмножество примеров становится классифицируемым множеством.
Нейронные сети представляют собой классический пример технологии, основанной на примерах. Нейронные сети — обобщенное название группы математических алгоритмов, обладающих способностью обучаться на примерах, «узнавая» впоследствии черты встреченных образцов и ситуаций. Благодаря этой способности нейронные сети используются при решении задач обработки сигналов и изображений, распознавания образов, а также для прогнозирования [10].
Нейронная сеть — это кибернетическая модель нервной системы, которая представляет собой совокупность большого числа сравнительно простых элементов — нейронов, топология соединения которых зависит от типа сети. Чтобы создать нейронную сеть для решения какой-либо конкретной задачи, следует выбрать способ соединения нейронов друг с другом и подобрать значения параметров межнейронных соединений.
В системах, основанных на прецедентах, БЗ содержит описания конкретных ситуаций (прецеденты). Поиск решения осуществляется на основе аналогий и включает следующие этапы:
• получение информации о текущей проблеме;
• сопоставление полученной информации со значениями признаков прецедентов из базы знаний;
• выбор прецедента из базы знаний, наиболее близкого к рассматриваемой проблеме;
• адаптация выбранного прецедента к текущей проблеме;
• проверка корректности каждого полученного решения;
• занесение детальной информации о полученном решении в БЗ.
Системы, основанные на прецедентах (Case-based reasoning). В этих системах база знаний содержит описания не обобщенных ситуаций, а собственно сами ситуации или прецеденты. Тогда поиск решения проблемы сводится к поиску по аналогии (абдуктивному выводу от частного к частному):
Получение подробной информации о текущей проблеме; Сопоставление полученной информации со значениями признаков прецедентов из базы знаний; Выбор прецедента из базы знаний, наиболее близкого к рассматриваемой проблеме; В случае необходимости выполняется адаптация выбранного прецедента к текущей проблеме; Проверка корректности каждого полученного решения; Занесение детальной информации о полученном решении в базу знаний.
Так же как и для индуктивных систем прецеденты описываются множеством признаков, по которым строятся индексы быстрого поиска. Но в отличие от индуктивных систем допускается нечеткий поиск с получением множества допустимых альтернатив, каждая из которых оценивается некоторым коэффициентом уверенности. Далее наиболее подходящие решения адаптируются по специальным алгоритмам к реальным ситуациям. Обучение системы сводится к запоминанию каждой новой обработанной ситуации с принятыми решениями в базе прецедентов.
Системы, основанные на прецедентах, применяются как системы распространения знаний с расширенными возможностями или как в системах контекстной помощи.
Информационные хранилища (Data Warehouse). В отличие от интеллектуальной базы данных информационное хранилище представляет собой хранилище извлеченной значимой информации из оперативной базы данных, которое предназначено для оперативного анализа данных (реализации OLAP - технологии). Извлечение знаний из баз данных осуществляется регулярно, например, ежедневно.
Типичными задачами оперативного ситуационного анализа являются:
Определение профиля потребителей конкретного товара; Предсказание изменений ситуации на рынке; Анализ зависимостей признаков ситуаций (корреляционный анализ) и др. Для извлечения значимой информации из баз данных используются специальные методы (Data Mining или Knowledge Discovery), основанные или на применении многомерных статистических таблиц, или индуктивных методов построения деревьев решений, или нейронных сетей. Формулирование запроса осуществляется в результате применения интеллектуального интерфейса, позволяющего в диалоге гибко определять значимые признаки анализа. Применение информационных хранилищ на практике все в большей степени демонстрирует необходимость интеграции интеллектуальных и традиционных информационных технологий, комбинированное использование различных методов представления и вывода знаний, усложнение архитектуры информационных систем. Разработкой и распространением информационных хранилищ в настоящее время занимаются такие компьютерные фирмы, как IBM (Intelligent Miner), Silicon Graphics (MineSet), Intersolv (DataDirect, SmartData), Oracle (Express), SAS Institute (SAS/Assist) и др.

26.Архитектура СОЗ.

Архитектура экспертной системы включает в себя два основных компонента: базу знаний (хранилище единиц знаний) и программный инструмент

доступа и обработки знаний, состоящий из механизмов вывода заключений (решения),

приобретения знаний, объяснения получаемых результатов и интеллектуального интерфейса (рис.1.4). Причем центральным компонентом экспертной системы является база знаний, которая выступает по отношению к другим компонентам как содержательная подсистема, составляющая основную ценность. «Know-how» базы знаний хорошей экспертной системы оценивается в сотни тысяч долларов, в то время как программный инструментарий – в тысячи или десятки тысяч долларов.

Рис. 1.4. Архитектура экспертной системы

База знаний – это совокупность единиц знаний, которые представляют собой формализованное с помощью некоторого метода представления знаний отражение объектов проблемной области и их взаимосвязей, действий над объектами и, возможно, неопределенностей, с которыми эти действия осуществляются.

В качестве методов представления знаний чаще всего используются либо правила,

либо объекты (фреймы), либо их комбинация. Так, правила представляют собой конструкции:

Если < условие >

То <заключение> CF (Фактор определенности) <значение>

В качестве факторов определенности (CF), как правило, выступают либо условные

вероятности байесовского подхода (от 0 до 1), либо коэффициенты уверенности нечеткой

логики (от 0 до 100). Примеры правил имеют следующий вид:

Правило 1: Если Коэффициент рентабельности > 0.2

То Рентабельность = «удовл.» CF 100

Правило 2: Если Задолженность = «нет» и

Рентабельность = «удовл.»

То Финансовое_сост. = «удовл.» CF 80

Правило 3: Если Финансовое_сост. = «удовл.» и Репутация=«удовл.»

То Надежность предприятия = «удовл.» CF 90

Фреймы представляют собой совокупность атрибутов, описывающих свойства и

отношения с другими фреймами. В отличие от записей баз данных каждый фрейм имеет

уникальное имя. Часть атрибутов отражают типизированные отношения, такие как «род –

вид» (super-class – sub-class), «целое – часть» и др. Вместо конкретных значений атрибутов объектов могут задаваться значения по умолчанию (указатель наследования атрибутов устанавливается в S), присущие целым классам объектов, или присоединенные процедуры (process). Пример фреймов представлен на рис. 1.5.

Интеллектуальный интерфейс. Обмен данными между конечным пользователем и

ЭС выполняет программа интеллектуального интерфейса, которая воспринимает сообщения пользователя и преобразует их в форму представления базы знаний и, наоборот, переводит внутреннее представление результата обработки в формат пользователя и выдает сообщение на требуемый носитель. Важнейшим требованием к организации диалога пользователя с ЭС является естественность, которая не означает буквально формулировании потребностей пользователя предложениями естественного языка, хотя это и не исключается в ряде случаев. Важно, чтобы последовательность решения задачи была гибкой, соответствовала представлениям пользователя и велась в профессиональных терминах.

 

Рис. 1.5. Фреймовое представление знаний

Механизм вывода. Этот программный инструмент получает от интеллектуального

интерфейса преобразованный во внутреннее представление запрос, формирует из базы

знаний конкретный алгоритм решения задачи, выполняет алгоритм, а полученный результат предоставляется интеллектуальному интерфейсу для выдачи ответа на запрос пользователя.

В основе использования любого механизма вывода лежит процесс нахождения в

соответствии с поставленной целью и описанием конкретной ситуации (исходных данных) относящихся к решению единиц знаний (правил, объектов, прецедентов и т.д.) и связыванию их при необходимости в цепочку рассуждений, приводящую к определенному результату. Для представления знаний в форме правил это может быть прямая (рис. 1.6)

или обратная (рис. 1.7) цепочка рассуждений.

Для фреймового (объектно-ориентированного) представления знаний характерно

применение механизма наследования атрибутов, когда значения атрибутов передаются по

иерархии от вышестоящих классов к нижестоящим (например, на рис.1.5. код отрасли, отраслевой коэффициент рентабельности). Также при заполнении атрибутов фрейма необходимыми данными запускаются на выполнение присоединенные процедуры.

Рис. 1.6. Прямая цепочка рассуждений

Рис. 1.7. Обратная цепочка рассуждений

Механизм объяснения. В процессе или по результатам решения задачи пользователь может запросить объяснение или обоснование хода решения. С этой целью ЭС должна предоставить соответствующий механизм объяснения. Объяснительные способности

ЭС определяются возможностью механизма вывода запоминать путь решения задачи. Тогда на вопросы пользователя «Как?» и «Почему?» получено решение или запрошены те

или иные данные система всегда может выдать цепочку рассуждений до требуемой контрольной точки, сопровождая выдачу объяснения заранее подготовленными комментариями. В случае отсутствия решения задач объяснение должно выдаваться пользователю автоматически. Полезно иметь возможность и гипотетического объяснения решения задачи, когда система отвечает на вопросы, что будет в том или ином случае.

Однако не всегда пользователя может интересовать полный вывод решения, содержащий множество ненужных деталей. В этом случае система должна уметь выбирать

из цепочки только ключевые моменты с учетом их важности и уровня знаний пользователя. Для этого в базе знаний необходимо поддерживать модель знаний и намерений пользователя. Если же пользователь продолжает не понимать полученный ответ, то система должна быть способна в диалоге на основе поддерживаемой модели проблемных знаний обучать пользователя тем или иным фрагментам знаний, т.е. раскрывать более подробно отдельные понятия и зависимости, если даже эти детали непосредственно в выводе не использовались.

Механизм приобретения знаний. База знаний отражает знания экспертов (специалистов) в данной проблемной области о действиях в различных ситуациях или процессах

решения характерных задач. Выявлением подобных знаний и последующим их представлением в базе знаний занимаются специалисты, называемые инженерами знаний. Для ввода знаний в базу и их последующего обновления ЭС должна обладать механизмом

приобретения знаний. В простейшем случае это интеллектуальный редактор, который позволяет вводить единицы знаний в базу и проводить их синтаксический и семантический контроль, например, на непротиворечивость. В более сложных случаях механизм приобретения знаний позволяет извлекать знания в результате использования специальных сценариев интервьюирования экспертов, или из вводимых примеров реальных ситуаций, как в случае индуктивного вывода, или из текстов, или из опыта работы самой интеллектуальной системы.

 

27. Архитектуры взаимодействия агентов. Примеры архитектур МАС

Агент - это аппаратная или программная сущность, способная действовать в интересах достижения целей, поставленных пользователем.

Многоагентные системы. Для таких динамических систем характерно распределенное решение задач несколькими программными агентами, каждый их которых обладает собственной базой знаний и механизмом вывода [30,32]. Программные агенты, как правило, выполняют поручения людей, субъектов решения задачи, и в этом смысле их

заменяют. При этом они реагируют на события во внешней среде (реактивные агенты),

обрабатывают ситуации, принимают решения, передают результаты решения задач пользователям и во внешнюю среду. Наиболее интеллектуальные (когнитивные) агенты способны обучаться и изменять правила своего поведения.

При совместном решении задач несколькими программными агентами образуются

многоагентные системы (МАС), с централизованным или децентрализованным управлением. В первом случае МАС должна иметь, по крайней мере, один агент, который выполняет роль координатора (диспетчера), планирующего и контролирующего реализацию процессов. Во втором случае все агенты самостоятельны в своем поведении. Интеграция работы программных агентов и соответствующих источников знаний осуществляется на динамической основе путем обмена между ними получаемыми результатами, например, через «доску объявлений» (рис. 1.9).

 

Многоагентная система состоит из распределенного в сети множества интеллектуальных агентов, которые перемещаются по сети для поиска релевантных знаний, процедур и кооперируются для достижения поставленных перед ними пользователем или другой МАС целей

В MAC задачи распределены между агентами, каждый из которых рассматривается как член группы или организации.

Распределение задач предполагает назначение ролей каждому из членов группы, определение меры его ответственности и требований к опыту.

Три базовых класса архитектур MAC :

-  базирующиеся на принципах и методах работы со знаниями (deliberative agent architectures);

- основанные на поведенческих моделях типа «стимул-реакция» (reactive agent architectures);

-  гибридные архитектуры (hybrid architectures).

Архитектуру или агентов, которые используют только точное представление картины мира в символьной форме, а решения при этом (например, о действиях) принимаются на основе формальных рассуждений и использования методов сравнения по образцу, принято определять как делиберативные (когнитивные, интеллектуальные).

Реактивными называются агенты и архитектуры, где нет эксплицитно представленной модели мира, а функционирование отдельных агентов и всей системы осуществляется по правилам типа ситуация—действие.

Под ситуацией понимается потенциально сложная комбинация внутренних и внешних состояний.


Поделиться:



Последнее изменение этой страницы: 2019-04-19; Просмотров: 369; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.028 с.)
Главная | Случайная страница | Обратная связь