Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Вторичные, или приобретенные, иммунодефициты



Хронические инфекции

большая группа инфекц. заболеваний человека и животных, общим признаком к-рых является длительное течение. Встречаются 2 группы Х.и. Первичные X. и. ссамого начала и у всех особей восприимчивого вида (видов) принимают хроническое течение. Острых форм у таких болезней не бывает, но острая фаза возможна. (сифилис, туберкулез, лейшманиозы, амебиаз, трихомониаз, герпес) , вызываемые, как правило, облигатно-патогенными микробами. Длительное течение этой группы X. и., вероятно, является следствием эволюционно установившихся и генетически закрепленных отношений между паразитом и хозяином, обеспечивающих их длительное компромиссное, более или менее равновесное сосуществование. Возникновение таких отношений, по-видимому, обусловлено отбором слабовирулентных и иммуногенных мутантов и рекомбинантов паразита и более устойчивых к действию паразита, но обладающих слабыми элиминирующими св-вами клонов хозяина. Равновесное состояние периодически под влиянием внутренних и внешних факторов сдвигается то в сторону паразита, что проявляется в развитии рецидива болезни, то в сторону хозяина, что ведет к переходу болезни в состояние ремиссии. Вторичные Х.и. (по нашей терминологии, остро-хронические) протекают по 3 вариантам: типично хроническому, типично острому и двухфазному, состоящему из острой и хронической фаз. Острохронические инфекции, вероятно, возникают вследствие врожденной или приобретенной неспособности отдельных особей популяции хозяина удалять микробы, в то время как др особи успешно справляются с этой задачей, а также в результате появления в течении инфекции генотипически или фенотипически устойчивых к этому действию механизмов хозяина генераций паразита По такому типу протекают многие инфекц. болезни человека, особенно вызванные условно-патогенными микробами. Кроме длительного течения, Х.и. характеризуются поражением многих систем и органов, но с относительной компенсацией нарушенных функций; нередко рецидивирующим течением и постепенным утяжелением болезни; длительным снижением трудоспособности; низкой эффективностью терапевтических мероприятий; длительным заразным периодом; сложностью торможения факторов передачи возбудителя. Указанные признаки Х.и. вместе с широким и нарастающим распространением делают их социально значимой группой и выдвигают ее на первый план в современной патологии человека. В микробиол. д-ке первичных Х.и. используют микроскоп., культуральный, серол., аллергический, экспериментальный методы. Д-ка в начальном периоде и в фазе обострения в большинстве случаев дает положительные результаты. методы д-ки острохронических инфекций слабо разработаны, недостаточно чувствительны и специфичны.

Медленные инфекции. При медленных инфекциях взаимодействие вирусов с организмами имеет ряд особенностей. Несмотря на развитие патологического процесса, инкубационный период очень длительный (от 1 до 10 лет) , затем наблюдается летальный исход. Количество медленных инфекций все время возрастает. Сейчас известно более 30. Возбудители медленных инфекций: к возбудителям медленных инфекций относятся обычные вирусы, ретровирусы, вирусы-сателиты , дефектные инфекционные частицы, возникающие естественным или исскуственным мутационным пурем, прионы, вироиды, плазмиды (могут быть и у эукариот) , транспозины (“прыгающие гены” ) , прионы -- самореплицирующиеся белки.

5. Резервуар возбудителя инфекции живые организмы, обеспечивающие существование в природе возбудителя заразной болезни как вида. к нему относят живой организм животного или человека), в котором возбудитель заразной болезни сохраняется как вид. Это обусловлено тем, что при многих зоонозах не все животные — хозяева возбудителей способны сохранять их как вид, и, таким образом, не все животные, будучи источником или переносчиком возбудителей инфекции (см. Переносчики возбудителей инфекции), являются и Р. В

Доза микробов. Инфицирующая доза - минимальное количество микробов, способное вызвать заболевание. Естественно, что в отно­шении человека этот вопрос изучен мало. Все же, по-видимому, очень малые дозы палочек чумы могут вызвать заболевание у человека, в то время как холера возникает при заражении более высокими дозами. Как правило, условно-патогенные микробы вызывают заболевание при попадании в организм в больших дозах.

Инкубационный период - это период времени от момента внедрения возбудителя в макроорганизм и до появления первых клинических симптомов болезни. При каждом инфекционном заболевании продолжительность инкубационного периода различна и колеблется в широких пределах - от нескольких часов (грипп) до нескольких месяцев (гепатит В). Длительность инкубационного периода зависит от вида микроорганизма, инфицирующей дозы, его вирулентности, пути проникновения в организм и от состояния макроорганизма. Инкубационный период связан с адгезией и колонизацией клеток макроорганизма возбудителем в воротах инфекции. Признаков заболевания в данном периоде еще нет, но в организме уже происходят начальные проявления патологического процесса в виде морфологических изменений, обменных и иммунологических сдвигов и др. Если макроорганизм окажется не способен обезвредить возбудителя развивается следующий период заболевания.

Основными источниками инфекции могут быть:больной человек, бактерионоситель , реконвалесцент ;животные.Заражение человека от больного может происходить в течение всего периода болезни либо отдельной стадии инфекционного заболевания, в зависимости от вида инфекции. При бактерионосительстве выделение возбудителя продолжается после клинического выздоровления пациента. Заболевания (холера, брюшной тиф и т.д.), которыми болеет только человек, называютантропозными .
Источником инфекции являются также животные. Человек заражается непосредственно от больного животного при контакте с ним или при употреблении в пищу инфицированных продуктов, через укусы кровососущих переносчиков. Заболевания, которыми болеет человек и животные, называют -зооантропонозные (бруцеллез, чума, лептоспироз ).
Существует несколько путей заражения человека Воздушно-капельный.Фекально-оральный. Заражение человека происходит при употреблении инфицированных продуктов питания или воды.Трансмиссивный . Возбудитель передается членистоногими, через укусы животных, шприцы.Контактный . Инфицирование происходит от больного человека, бактерионосителя , при непосредственном контакте или через инфицированные предметы обихода.Половой путь.От матери к ребенку. Заражение происходит через плаценту или во время родов.Ятрогенный путь. Использование для лечения и диагностики медицинскими работниками нестерильных шприцев, систем для переливания крови или медицинских инструментов и приборов. Место проникновения возбудителя в макроорганизм называют входными воротами инфекции. Заражение человека происходит через поврежденную кожу, слизистые оболочки пищеварительного и дыхательного путей, мочеполовую систему. Заражение через неповрежденную кожу встречается редко ( лептоспироз ).
В зависимости от вида возбудителя и его свойств дальнейшее распространение по организму будет происходить лимфогенным , гематогенным или нейрогенным путем. Некоторые микроорганизмы начинают размножаться на месте внедрения, вызывая очаговую инфекцию. Распространение возбудителя по всему организму вызывает генерализацию инфекционного процесса.

7. Виды иммунитета. Неспецифические факторы защиты. Различают видовой и приобретенный иммунитет.
Видовой иммунитет передается но наследству, характерен для данного вида. Например, человек невосприимчив к чуме рогатого скота, к куриной холере, собаки невосприимчивы к туберкулезу. Видовой им­мунитет неспецифичен, то есть одни и те же защитные механизмы дей­ствуют против разных видов микробов. Это наиболее прочный вид иммунитета.
Неспецифические факторы естественной резистентности защищают организм от микробов при первой встрече с ними. Эти же факторы участвуют и в формировании приобретенного иммунитета.
Ареактивность клеток является наиболее стойким фактором есте­ственной защиты. При отсутствии клеток, чувствительных к данному микробу, токсину, вирусу организм полностью защищен от них. Так, например, крысы нечувствительны к дифтерийному токсину.
Кожа и слизистые оболочки представляют собой механический ба­рьер для большинства патогенных микробов. Кроме того, на микробы губительно действуют выделения потовых и сальных желез, содержа­щие молочную и жирные кислоты. Чистая кожа обладает более силь­ными бактерицидными свойствами. Удалению микробов с кожи спо­собствует слущивание эпителия.
В секретах слизистых оболочек содержится лизоцим (lysozyme) -фермент, лизирующий клеточную стенку бактерий, главным образом, грамположительных. Лизоцим содержится в слюне, секрете конъюнк­тивы, а также в крови, в макрофагах, в слизи кишечника. Открыт впер­вые П.Н. Лащенковым в 1909 г. в белке куриного яйца. Эпителий слизистых оболочек дыхательных путей является препят­ствием для проникновения патогенных микробов в организм. Частицы пыли и капли жидкости выбрасываются наружу со слизью, выде­ляющейся из носа. Из бронхов и трахеи попавшие сюда частицы выводятся движением ресничек эпителия, направленным кнаружи. Эта функция мерцательного эпителия обычно нарушена у злостных ку­рильщиков. Немногие частички пыли и микробы, достигшие легочных альвеол, захватываются фагоцитами и обезвреживаются. В зависимости от способа формирования различают виды приоб­ретенного иммунитета (табл. 3).
Активный иммунитет вырабатывается организмом в ответ на ан­тиген. Вследствие перенесенного инфекционного заболевания выра­батывается активный естественный (постинфекционный) иммунитет. В ответ на введение вакцины или анатоксина - активный искусствен­ный (поствакцинальный) иммунитет. Под влиянием антигена в орга­низме происходит активная перестройка иммунной системы. В резуль­тате образуются антитела, которые соединяются с микробами или их токсинами, обезвреживая их или усиливая фагоцитоз. Постинфекци­онный иммунитет может быть пожизненным или длиться годами, как при кори, коклюше, брюшном тифе, дифтерии. Повторные забо­левания возможны, но редко. Непродолжителен иммунитет при грип­пе.
Поствакцинальный иммунитет формируется не сразу, а через не­которое время (дни, недели) после введения вакцины или анатоксина, сохраняется при применении живых вакцин несколько лет, убитых - до одного года.
Пассивно приобретенный иммунитет возникает, если организм по­лучает от другого, иммунного организма, готовые антитела. При вве­дении иммунных сывороток создается искусственный (постсывороточ­ный) иммунитет. Например, при лечении ребенка, больного дифтери­ей, путем введения ему сыворотки крови лошади, иммунизированной дифтерийным токсином. Пассивно приобретенный иммунитет, в отли­чие от активного, создается быстро, но сохраняется недолго.
Пассивный естественный иммунитет создается, когда антитела пе­редаются от матери плоду через плаценту (плацентарный иммунитет) или ребенку с материнским молоком Благодаря этому грудные дети в первые месяцы жизни невосприимчивы к некоторым инфекционным болезням, например, к кори, дифтерии.
При большинстве инфекций по мере развития невосприимчивости организм освобождается от микробов. Но при некоторых заболева­ниях, например, при туберкулезе, сифилисе иммунитет поддерживается сохранившимися в организме возбудителями Такой иммунитет назы­ваютнестерильным .
Местный иммунитет - это особый вид защиты против внедрения в организм возбудителей инфекций, главным образом кишечных и воз­душно-капельных. Большую роль здесь играют неспецифические фак­торы и антитела, так называемые секреторные иммуноглобулины клас­са A (SIgA). Различают виды иммунитета в зависимости от того, против чего он напрвлен. При антибактериальном иммунитете защитные силы орга­низма направлены на уничтожение бактерий, при антитоксическом -антитела-антитоксины нейтрализуют бактериальные экзотоксины. Этот вид иммунитета имеет большое значение при токсинемнческих инфекциях, таких, как дифтерия, столбняк, ботулизм, газовая анаэробная инфекция.Противовирусный иммунитет обеспечивает нейтрализа­цию вирионов или подавление их образования. Противоопухолевый иммунитет направлен против опухолей. Трансплантационный иммуни­тет возникает вследствие несовместимости тканей при транспланта­ции.

8. Под Естественной резистентностью или устойчивостью принято понимать способность животного организма противостоять неблагоприятному воздействию факторов внешней среды. Состояние естественной резистентности определяют неспецифические защитные факторы организма животных, связанные с их видовыми, индивидуальными и конституциональными особенностями. Следует подчеркнуть, что в реакциях ЕР принимают участие активированные макрофаги, естественные киллеры, естественные антитела и ряд гуморальных факторов (лизоцим, пропердин, лактоферрин) В настоящее время мы располагаем многими новыми факторами, позволяющими значительно шире, чем во времена И.И. Мечникова, рассматривать роль и значение фагоцитирующих клеток не только в противомикробной резистентности, но также в процессах воспаления, специфического иммунитета и аллергии, при отторжении трансплантантов, гиперчувствительности замедленного типа, в противоопухолевом иммунитете и других. Гуморальные факторы ЕР. Естественную резистентность млекопитающих к патогенным микроорганизмам и чужеродным агентам определяют неспецифические клеточные и гуморальные факторы. К этим факторам относят защитные свойства кожи и слизистых оболочек, бактерицидную активность сыворотки крови, слезной жидкости, слюны, молока и других жидкостей организма, которые обеспечиваются наличием в них неспецифических гуморальных факторов – лизоцим, комплемент, пропердин, интерферон, бета – лизин, естественные антитела и другие Лизоцим – фермент, обладающий свойством лизировать целый ряд, в основном грамположительных, микроорганизмов. Основными продуцентами лизоцима являются гранулоциты и моноциты крови, макрофаги костного мозга и селезёнки. Много его в слёзной жидкости, секретах слизистой ротовой полости и верхних дыхательных путей, то есть в тех органах, которые являются первым барьером на пути проникновения микробов в организм животного. Комплемент – сложный комплекс белков сыворотки крови глобулиновой природы. В его составе 9 компонентов разных по своему химическому составу, физиологическим и биологическим свойствам. Активным является весь комплемент в целом, а не отдельные его компоненты. Наиболее высокое содержание комплемента выявлено в сыворотке крови морских свинок. Он способствует лизису сенсибилизированных бактерий в присутствии бактериолизинов, лизису сенсибилизированных эритроцитов и опсонизации бактерий к фагоцитозу. В отсутствие комплемента активность некоторых антител полностью утрачивается, поэтому содержание и активность комплемента служит характеристикой состояния естественной резистентности. Пропердин – играет важную роль в ЕР животных и человека. Содержится в нормальной сыворотке крови, обладает бактерицидным действием и способен убивать большинство грамположительных и грамотрицательных бактерий.Точнее следует говорить о действии не самого, а системы пропердина, поскольку активность его проявляется лишь в присутствии других факторов сыворотки – комплемента, а также ионов магния

10. Антигены (греч. anti- против + gennao создавать, производить) — биоорганические вещества, которые обладают признаками генетической чужеродности (антигенности) и при введении в организм вызывают развитие иммунного ответа.Антигенность присуща не только белкам, но и многим сложным полисахаридам, липополисахаридам, полипептидам, а также некоторым искусственным высокополимерным соединениям. А. могут находиться в микробах (микробные антигены) и в тканях (тканевые антигены) животных и растений. Иммунный ответ на введение А. может проявляться в виде стимуляции выработки антител, клеточных реакций замедленной гиперчувствительности, трансплантационного иммунитета или возникновения толерантности Чужеродность — неотделимое от антигена понятие. Без чужеродности нет антигена применительно к данному организму. например, альбумин кролика не является антигеном для этого животного, но генетически чужероден для морской свинки. Антигенность — мера антигенного качества, например большая или меньшая способность вызывать образование антител. Так, на бычий сывороточный гамма-глобулин у кролика вырабатывается большее количество антител, чем на бычий сывороточный альбумин.Иммуногенность — способность создавать иммунитет. Это понятие относится главным образом к микробным А., обеспечивающим создание иммунитета (невосприимчивость) к инфекциям. Специфичность — антигенные особенности, отличающие А. друг от друга. Существуют вещества, имеющие свой специфический облик, но не вызывающие иммунных реакций (в частности, выработку антител) при введении в организм. Однако с готовыми антителами они взаимодействуют. Такие вещества получили название гаптенов, или неполноценных антигенов. Гаптены имеют признаки чужеродности, но не обладают определенными качествами, необходимыми для проявления полноценных антигенных свойств. Гаптены приобретают свойства полноценных А после соединения с крупномолекулярными веществами°— белками, полисахаридами или искусственными высокомолекулярными полиэлектролитами. Полноценные антигены вызывают в организме синтез антител или сенсибилизацию лимфоцитов и вступают с ними в реакцию как in vivo, так и in vitro. Для полноценных антигенов характерна строгая специфичность, т. е. вызывают в организме выработку только специфических антител, вступающих в реакцию только с данным антигеном. К таким антигенам относят белки животного, растительного и бактериального происхождения.

 Конъюгированные антигены- белки, которые приобрели новую антигенную специфичность благодаря присоединению к ним с помощью химической связи новой химической группировки.

Неполноценные антигены (гаптены)представляют собой сложные углеводы, липиды и другие вещества, не способные вызывать образование антител, но вступающие с ними в специфическую реакцию. Гаптены приобретают свойства полноценных антигенов лишь при условии введения их в организм в комплексе с белком.
Типичными представителями гаптенов являются липиды, полисахариды, нуклеиновые кислоты, а также простые вещества: краски, амины, йод, бром и др. аутоантигены Вызывают аутоиммунные реакции. То есть это антигены собственного организма. Они могут быть первичными, отделенными от иммунной системы гистогематическими барьерами и вызывающими иммунный ответ после их повреждения, и вторичными, вызывающими на себя иммунный ответ только после изменения своих свойств в результате тех или иных патологических процессов. К первичным аутоантигенам относят хрусталик глаза, ткань головного мозга, коллоид щитовидной железы, тестикулярную ткань.

2. Изоантигены. Это различные антигены, различающиеся между особями одного биологического вида. Так, к изоантигенам относят группы крови (система АВО) человека.
3. Ксеноантигены. К ним относятся антигены, различающиеся между представителями различных биологических видов, например антигены, различающиеся между человеком и лошадью. атологические антигены Некоторые воздействия могут вызывать изменения клеточных молекул (в первую очередь белков), придавая им антигенные свойства. Например, под действием излучения или высокой температуры в организме образуются так называемые лучевые или ожоговые Аг, Нормальный набор клеточных Аг может изменяться в результате злокачественного перерождения, что приводит к появлению аномальных Аг. Такие опухолевые Аг (или онкоантигены) — важные маркёры злокачественного роста; их выявление — один из важных методов диагностики опухолей.

 

11.

Антиген – это биополимер органической природы, генетически чужеродный для макроорганизма, который при попадании в последний распознаётся его иммунной системой и вызывает иммунные реакции, направленные на его устранение.

Антигены обладают рядом характерных свойств: антигенностью, специфичностью и иммуногенностью.

Антигенность. Под антигенностью понимают потенциаль­ную способность молекулы антигена акти­вировать компоненты иммунной системы и специфически взаимодействовать с фактора­ми иммунитета (антитела, клон эффекторных лимфоцитов). Иными словами, антиген дол­жен выступать специфическим раздражителем по отношению к иммунокомпетентным клет­кам. При этом взаимодействие компоненты иммунной системы происходит не со всей молекулой одновременно, а только с ее не­большим участком, который получил название «антигенная детерминанта», или «эпитоп».

Чужеродность является обязательным усло­вием для реализации антигенности. По этому критерию система приобретенного иммунитета дифференцирует потенциально опасные объ­екты биологического мира, синтезированные с чужеродной генетической матрицы. Понятие «чужеродность» относительное, так как имму-нокомпетентные клетки не способны напря­мую анализировать чужеродный генетический код. Они воспринимают лишь опосредованную информацию, которая, как в зеркале, отражена в молекулярной структуре вещества.

Иммуногенность — потенциальная способ­ность антигена вызывать по отношению к себе в макроорганизме специфическую за­щитную реакцию. Степень иммуногенности зависит от ряда факторов, которые можно объединить в три группы: 1. Молекулярные особенности антигена; 2. Клиренс антигена в организме; 3. Реактивность макроорганизма.

К первой группе факторов отнесены природа, химический состав, молекулярный вес, струк­тура и некоторые другие характеристики.

Иммуногенность в значительной степени за­висит от природы антигена. Важна также оптическая изомерия аминокислот, составляющих молекулу белка. Большое значение имеет размер и молекулярная масса антигена. На степень иммуногенности также оказыва­ет влияние пространственная структура анти­гена. Оказалась также существенной стерическая стабильность молекулы антигена. Еще одним важным условием иммуно­генности является растворимость антигена.

Вторая группа факторов связана с динамикой поступления антигена в организм и его выведе­ния. Так, хорошо известна зависимость иммуногенности антигена от способа его введения. На иммунный ответ влияет количество пос­тупающего антигена: чем его больше, тем более выражен иммунный ответ.

Третья группа объединяет факторы, опреде­ляющие зависимость иммуногенности от со­стояния макроорганизма. В этой связи на пер­вый план выступают наследственные факторы.

Специфичностью называют способность ан­тигена индуцировать иммунный ответ к строго определенному эпитопу. Это свойство обуслов­лено особенностями формирования иммунно­го ответа — необходима комплементарность рецепторного аппарата иммунокомпетентных клеток к конкретной антигенной детерминанте. Поэтому специфичность антигена во многом определяется свойствами составляющих его эпитопов. Однако при этом следует учитывать условность границ эпитопов, их структурное разнообразие и гетерогенность клонов антигенреактивных лимфоцитовой специфичности. В результате этого организм на антигенное раз­дражение всегда отвечает поликлональными им­мунным ответом.

Антиге­ны бактериальной клетки. В структуре бактериальной клетки разли­чают жгутиковые, соматические, капсульные и некоторые другие антигены. Жгутиковые, или Н-антигены, локализуют­ся в локомоторном аппарате бактерий — их жгутиках. Они представляют собой эпитопы сократительного белка флагеллина. При на­гревании флагеллин денатурирует, и Н-антиген теряет свою специфичность. Фенол не действует на этот антиген.

Соматический, или О-антиген, связан с клеточной стенкой бактерий. Его основу со­ставляют ЛПС. О-антиген проявляет термос­табильные свойства — он не разрушается при длительном кипячении. Однако соматичес­кий антиген подвержен действию альдегидов (например, формалина) и спиртов, которые нарушают его структуру.

Капсулъные , или К-антигены, располагаются на поверхности клеточной стенки. Встречаются у бактерий, образующих капсулу. Как правило, К-антигены состоят из кислых полисахаридов (уроновые кислоты). В то же время у бациллы сибирской язвы этот антиген построен из по­липептидных цепей. По чувствительности к нагреванию различают три типа К-антигена: А, В, и L. Наибольшая термостабильность ха­рактерна для типа А, он не денатурирует даже при длительном кипячении. Тип В выдержи­вает непродолжительное нагревание (около 1 часа) до 60 "С. Тип L быстро разрушается при этой температуре. Поэтому частичное удале­ние К-антигена возможно путем длительного кипячения бактериальной культуры.

На поверхности возбудителя брюшного ти­фа и других энтеробактерий, которые облада­ют высокой вирулентностью, можно обнару­жить особый вариант капсульного антигена. Он получил название антигена вирулентнос­ти, или Vi -антигена. Обнаружение этого ан­тигена или специфичных к нему антител име­ет большое диагностическое значение.

Антигенными свойствами обладают также бактериальные белковые токсины, ферменты и некоторые другие белки, которые секретируются бактериями в окружающую среду (на­пример, туберкулин). При взаимодействии со специфическими антителами токсины, фер­менты и другие биологически активные моле­кулы бактериального происхождения теряют свою активность. Столбнячный, дифтерий­ный и ботулинический токсины относятся к числу сильных полноценных антигенов, поэ­тому их используют для получения анатокси­нов для вакцинации людей.

В антигенном составе некоторых бактерий выделяется группа антигенов с сильно выра­женной иммуногенностью, чья биологическая активность играет ключевую роль в формиро­вании патогенности возбудителя. Связывание таких антигенов специфическими антителами практически полностью инактивирует виру­лентные свойства микроорганизма и обеспечи­вает иммунитет к нему. Описываемые антиге­ны получили название протективных. Впервые протективный антиген был обнаружен в гнойном отделяемом карбункула, вызванного ба­циллой сибирской язвы. Это вещество являет­ся субъединицей белкового токсина, которая ответственна за активацию других, собственно вирулентных субъединиц — так называемого отечного и летального факторов.

 

12. Природа иммуноглобулинов. В ответ на введение антигена иммунная систе­ма вырабатывает антитела — белки, способные специфически со­единяться с антигеном, вызвавшим их образование, и таким образом участвовать в иммунологических реакциях. Относятся ан­титела к γ-глобулинам, т. е. наименее подвижной в электричес­ком поле фракции белков сыворотки крови. В организме γ-глобулины вырабатываются особыми клетками — плазмоцитами. γ-глобулины, несущие функции антител, получили название иммуноглобули­нов и обозначаются символом Ig. Следовательно, антитела — это иммуноглобулины, вырабатываемые в ответ на введение анти­гена и способные специфически взаимодействовать с этим же антигеном.

Функции. Первичная функция состоит во взаимодсйствии их активных центров с комплементарными им де­терминантами антигенов. Вторичная функция состоит в их способности:

• связывать антиген с целью его нейтрализации и элиминации из организма, т. е. принимать участие в формировании защи­ты от антигена;

• участвовать в распознавании «чужого» антигена;

• обеспечивать кооперацию иммунокомпетентных клеток (мак­рофагов, Т- и В-лимфоцитов);

• участвовать в различных формах иммунного ответа (фагоци­тоз, киллерная функция, ГНТ, ГЗТ, иммунологическая то­лерантность, иммунологическая память).

Структура антител. Белки иммуноглобулинов по химическому составу относятся к гликопротеидам, так как состоят из проте­ина и Сахаров; построены из 18 аминокислот. Имеют видовые отличия, связанные главным образом с набором аминокислот. Их молекулы имеют цилиндрическую форму, они видны в электронном микроскопе. До 80 % иммуноглобулинов имеют константу седиментации 7S; устойчивы к слабым кисло­там, щелочам, нагреванию до 60 °С. Выделить иммуноглобули­ны из сыворотки крови можно физическими и химическими ме­тодами (электрофорез, изоэлектрическое осаждение спиртом и кислотами, высаливание, аффинная хроматография и др.). Эти методы используют в производстве при приготовлении иммуно­биологических препаратов.

Иммуноглобулины по структуре, антигенным и иммунобио­логическим свойствам разделяются на пять классов: IgM, IgG, IgA, IgE, IgD. Иммуноглобулины М, G, А имеют под­классы. Например, IgG имеет четыре подкласса (IgG,, IgG2, IgG3, IgG4). Все классы и подклассы различаются по аминокис­лотной последовательности.

Молекулы иммуноглобулинов всех пяти классов состоят из полипептидных цепей: двух одинаковых тяжелых цепей Н и двух одинаковых легких цепей — L, соединенных между собой дисульфидными мостиками. Соответственно каждому классу иммуноглобулинов, т.е. М, G, A, E, D, разли­чают пять типов тяжелых цепей: μ (мю), γ (гамма), α (альфа), ε (эпсилон) и Δ (дельта), различающихся по антигенности. Легкие цепи всех пяти классов являются общими и бывают двух типов: κ (каппа) и λ (ламбда); L-цепи иммуноглобулинов различных классов могут вступать в соединение (рекомбинироваться) как с гомологичны­ми, так и с гетерологичными Н-цепями. Однако в одной и той же молекуле могут быть только идентичные L-цепи (κ или λ). Как в Н-, так и в L-цепях имеется вариабельная — V область, в которой последовательность амино­кислот непостоянна, и константная — С область с постоянным набором аминокислот. В легких и тяжелых цепях различают NH2- и СООН-концевые группы.

При обработке γ -глобулина меркаптоэтанолом разрушаются дисульфидные связи и молекула иммуноглобулина распадается на отдельные цепи полипептидов. При воздействии протеолитическим ферментом папаином иммуноглобулин расщепляется на три фрагмента: два не кристаллизующихся, содержащих детерминантные группы к антигену и названных Fab-фрагментами I и II и один кристаллизующий Fc-фрагмент. FabI- и FabII-фрагменты сходны по свойствам и аминокислотному составу и отличаются от Fc-фрагмента; Fab-и Fc-фрагменты являются компактными образованиями, соеди­ненными между собой гибкими участками Н-цепи, благодаря чему молекулы иммуноглобулина имеют гибкую структуру.

Как Н-цепи, так и L-цепи имеют отдельные, линейно свя­занные компактные участки, названные доменами; в Н-цепи их по 4, а в L-цепи — по 2.

Активные центры, или детерминанты, которые формиру­ются в V-областях, занимают примерно 2 % поверхности мо­лекулы иммуноглобулина. В каждой молекуле имеются две де­терминанты, относящиеся к гипервариабельным участкам Н-и L-цепей, т. е. каждая молекула иммуноглобулина может свя­зать две молекулы антигена. Поэтому антитела являются двух­валентными.

Типовой структурой молекулы иммуноглобулина является IgG. Остальные классы иммуноглобулинов отличаются от IgG дополнительными элементами организации их молеку­лы.

В ответ на введение любого антигена могут вырабатываться антитела всех пяти классов. Обычно вначале вырабатывается IgM, затем IgG, остальные — несколько позже.

В образовании антител различают четыре фазы:

1. Фаза покоя (лаг-фаза, фаза индукции) – с момента поступления антигена в организм до появления антител. Продолжительность этой фазы – от нескольких дней до 1 мес., в зависимости от свойств антигена, его дозы, способа введения в организм, возраста животного и др. В этот период происходит пролиферация и дифференцировка лимфоидных клеток в направлении синтеза иммуноглобулина класса М.

2. Фаза нарастания титров антител (лог-фаза, продуктивная фаза) – от появления антител до момента достижения их максимального количества. Длительность этой фазы – 2–15 дней. В этой фазе антитела освобождаются из плазмоцитов и поступают в кровяное русло. Уменьшается число клеток, синтезирующих IgM, начинает нарастать продукция IgG. Впоследствии появляются IgA, а также JgE, JgD.

3. Фаза стабилизации, в которой уровень антител (или их титр) остается неизменным обычно в течение нескольких дней или недель. Ее длительность зависит от вида животного, характера антигенов и класса продуцируемых антител (иммуноглобулины имеют разный период полураспада).

4. Фаза снижения продукции антител. Продолжительность этой фазы различна и зависит от сохранения антигена в тканях, который является индуктором образования антител. Этому способствует, например, введение антигена с адъювантом, который создает депо, из которого АГ медленно поступает в организм, обеспечивая длительную антигенную стимуляцию. Снижение титра антител в результате начинается спустя несколько недель или месяцев. Способность к длительному образованию антител и в высоких титрах можно поддерживать путем повторных введений антигена на протяжении длительного времени.

При повторном попадании антигена через несколько недель или месяцев динамика иммунного ответа изменяется (информация об антигене хранится в генетическом аппарате лимфоцитов иммунной памяти). Латентный период и период нарастания титра антител становятся короче. Титры антител достигают максимума быстрее и сохраняются на высоком уровне дольше, повышается аффинитет антител. При вторичном ответе сразу синтезируются антитела класса G.

 

13. Иммуноглобулины по структуре, антигенным и иммунобио­логическим свойствам разделяются на пять классов: IgM, IgG, IgA, IgE, IgD.

Иммуноглобулин класса G. Изотип G состав­ляет основную массу Ig сыворотки крови. На его долю приходится 70—80 % всех сывороточ­ных Ig, при этом 50 % содержится в тканевой жидкости. Среднее содержание IgG в сыворот­ке крови здорового взрослого человека 12 г/л. Период полураспада IgG — 21 день.

IgG — мономер, имеет 2 антигенсвязывающих центра (может одновременно свя­зать 2 молекулы антигена, следовательно, его валентность равна 2), молекулярную массу около 160 кДа и константу седиментации 7S. Различают подтипы Gl, G2, G3 и G4. Синтезируется зрелыми В-лимфоцитами и плазматическими клетками. Хорошо опре­деляется в сыворотке крови на пике первич­ного и при вторичном иммунном ответе.

Обладает высокой аффинностью. IgGl и IgG3 связывают комплемент, причем G3 ак­тивнее, чем Gl. IgG4, подобно IgE, обладает цитофильностью (тропностью, или сродс­твом, к тучным клеткам и базофилам) и участ­вует в развитии аллергической реакции I типа. В иммунодиагностических реакциях IgG может проявлять себя как не­полное антитело.

Легко проходит через плацентарный барь­ер и обеспечивает гуморальный иммунитет новорожденного в первые 3—4 месяца жизни. Способен также выделяться в секрет слизис­тых, в том числе в молоко путем диффузии.

IgG обеспечивает нейтрализацию, опсонизацию и маркирование антигена, осуществля­ет запуск комплемент-опосредованного цито­лиза и антителозависимой клеточно-опосредованной цитотоксичности.

Иммуноглобулин класса М. Наиболее круп­ная молекула из всех Ig. Это пентамер, кото­рый имеет 10 антигенсвязывающих центров, т. е. его валентность равна 10. Молекулярная масса его около 900 кДа, константа седи­ментации 19S. Различают подтипы Ml и М2. Тяжелые цепи молекулы IgM в отличие от других изотипов построены из 5 доменов. Период полураспада IgM — 5 дней.

На его долю приходится около 5—10 % всех сывороточных Ig. Среднее содержание IgM в сыворотке крови здорового взрослого человека составляет около 1 г/л. Этот уровень у человека достигается уже к 2—4-летнему возрасту.

IgM филогенетически — наиболее древний иммуноглобулин. Синтезируется предшест­венниками и зрелыми В-лимфоцитами. Образуется в начале первичного иммунного ответа, также первым начинает синтезиро­ваться в организме новорожденного — опре­деляется уже на 20-й неделе внутриутробного развития.

Обладает высокой авидностью, наиболее эффективный активатор комплемента по клас­сическому пути. Участвует в формировании сывороточного и секреторного гуморального иммунитета. Являясь полимерной молекулой, содержащей J-цепь, может образовывать сек­реторную форму и выделяться в секрет сли­зистых, в том числе в молоко. Большая часть нормальных антител и изоагглютининов относится к IgM.

Не проходит через плаценту. Обнаружение специфических антител изотипа М в сыво­ротке крови новорожденного указывает на бывшую внутриутробную инфекцию или де­фект плаценты.

IgM обеспечивает нейтрализацию, опсонизацию и маркирование антигена, осуществля­ет запуск комплемент-опосредованного цито­лиза и антителозависимой клеточно-опосредованной цитотоксичности.

Иммуноглобулин класса А. Существует в сы­вороточной и секреторной формах. Около 60 % всех IgA содержится в секретах слизистых.

Сывороточный IgA : На его долю прихо­дится около 10—15% всех сывороточных Ig. В сыворотке крови здорового взрослого чело­века содержится около 2,5 г/л IgA, максимум достигается к 10-летнему возрасту. Период полураспада IgA — 6 дней.

IgA — мономер, имеет 2 антигенсвязывающих центра (т. е. 2-валентный), молекуляр­ную массу около 170 кДа и константу седи­ментации 7S. Различают подтипы А1 и А2. Синтезируется зрелыми В-лимфоцитами и плазматическими клетками. Хорошо опре­деляется в сыворотке крови на пике первич­ного и при вторичном иммунном ответе.

Обладает высокой аффинностью. Может быть неполным антителом. Не связывает комплемент. Не проходит через плацентар­ный барьер.

IgA обеспечивает нейтрализацию, опсони-зацию и маркирование антигена, осуществля­ет запуск антителозависимой клеточно-опос-редованной цитотоксичности.

Секреторный IgA : В отличие от сывороточ­ного, секреторный sIgA существует в полимерной форме в виде ди- или тримера (4- или 6-валентный) и содержит J- и S-пeптиды. Молекулярная масса 350 кДа и выше, константа седиментации 13S и выше.

Синтезируется зрелыми В-лимфоцитами и их по­томками — плазматическими клетками со­ответствующей специализации только в пре­делах слизистых и выделяется в их секреты. Объем продукции может достигать 5 г в сутки. Пул slgA считается самым многочисленным в организме — его количество превышает суммарное содержание IgM и IgG. В сыворотке крови не обнаруживается.

Секреторная форма IgA — основной фак­тор специфического гуморального местного иммунитета слизистых оболочек желудочно-кишечного тракта, мочеполовой системы и респираторного тракта. Благодаря S-цепи он устойчив к действию протеаз. slgA не активи­рует комплемент, но эффективно связывается с антигенами и нейтрализует их. Он препятс­твует адгезии микробов на эпителиальных клетках и генерализации инфекции в преде­лах слизистых.

Иммуноглобулин класса Е. Называют так­же реагином. Содержание в сыворотке крови крайне невысоко — примерно 0,00025 г/л. Обнаружение требует применения специаль­ных высокочувствительных методов диагнос­тики. Молекулярная масса — около 190 кДа, константа седиментации — примерно 8S, мо­номер. На его долю приходится около 0,002 % всех циркулирующих Ig. Этот уровень дости­гается к 10—15 годам жизни.

Синтезируется зрелыми В-лимфоцитами и плазматическими клетками преиму­щественно в лимфоидной ткани бронхолегочного дерева и ЖКТ.

Не связывает комплемент. Не проходит че­рез плацентарный барьер. Обладает выражен­ной цитофильностью — тропностью к тучным клеткам и базофилам. Участвует в развитии гиперчувствительности немедленного типа — реакция I типа.

Иммуноглобулин класса D . Сведений об Ig данного изотипа не так много. Практически полностью содержится в сыворотке крови в концентрации около 0,03 г/л (около 0,2 % от общего числа циркулирующих Ig). IgD имеет молекулярную массу 160 кДа и константу се­диментации 7S, мономер.

Не связывает комплемент. Не проходит че­рез плацентарный барьер. Является рецепто­ром предшественников В-лимфоцитов.

 

14. см 12

 

15. Иммунодефициты — это нарушения нор­мального иммунного статуса, обусловлен­ные дефектом одного или нескольких механизмов иммунного ответа.

Различают первичные, или врожденные (генетические), и вторичные, или приобре­тенные, иммунодефициты.

Первичные, или врожденные, иммунодефициты.

В качестве первичных иммунодефицитов выделяют такие состояния, при которых нарушение иммунных гуморальных и кле­точных механизмов связано с генетическим блоком, т. е. генетически обусловлено неспо­собностью организма реализовывать то или иное звено иммунологической реактивности. Расстройства иммунной системы могут затра­гивать как основные специфические звенья в функционировании иммунной системы, так и факторы, определяющие неспецифическую резистентность. Возможны комбинирован­ные и селективные варианты иммунных рас­стройств. В зависимости от уровня и характера нарушений различают гуморальные, клеточ­ные и комбинированные иммунодефициты.

Врожденные иммунодефицитные синдро­мы и заболевания представляют собой до­вольно редкое явление. Причинами врожден­ных иммунодефицитов могут быть удвоение хромосом, точечные мутации, дефект фер­ментов обмена нуклеиновых кислот, генети­чески обусловленные нарушения мембран, повреждения генома в эмбриональном пе­риоде и др. Как правило, первичные имму­нодефицита проявляются на ранних этапах постнатального периода и наследуются по аутосомно-рецессивному типу. Проявляться первичные иммунодефициты могут в виде недостаточности фагоцитоза, системы комп­лемента, гуморального иммунитета (В-системы), клеточного иммунитета (Т-системы) или же в виде комбинированной иммунологичес­кой недостаточности.

















Иммунологический паралич вызывается также введением животным больших доз растворимых белков. Это явление было описано в 1962 году и получило название феномена Дрессера. Состояние паралича длится до тех пор, пока антиген персистирует ( присутствует) в организме и зависит от дозы антигена. Его можно продлить повторными инъекциями антигена.

Практикуется создание иммунологического паралича к аллотрансплантатам у взрослых организмов при помощи «антигенной перегрузки». Было показано, что аллотрансплантация больших лоскутов кожи обеспечивает большую продолжительность их приживания, чем при пересадке малых лоскутов. Так, например, лоскут кожи размером 2-6 см2 отторгается на 14-й день, а лоскут размером 30-60 см2 отторгается в 50% случаев через 30 и более суток после пересадки.

 

21.

Трансплантационный иммунитет – это реактивность иммунокомпетентных клеток, направленных против чужеродных антигенов, находящихся на поверхности мембран клеток трансплантата, опухолевых клеток, а также нормальных собственных клеток, адсорбировавших вирусные и бактериальные антигены. Трансплантационный иммунитет обеспечивает элиминацию в организме чужеродных в генетическом отношении клеточных элементов, а также собственных клеток, синтезирующих чужеродные вещества или адсорбировавшие чужеродные антигены из жидкой среды.

При трансплантации организм реципиента распознает чужеродные структуры и осуществляет против них иммунологические реакции, которые ведут к отторжению трансплантата. В последнем распознаются молекулы, именуемые трансплантационными антигенами или антигенами гистосовместимости.

Трансплантат – живой материал (клетки, ткани, органы), используемый для пересадки в пределах собственного организма или взятый для пересадки другому организму.

Процесс пересадки называется трансплантацией.

Аутотрансплатат – когда производится пересадка тканей с одного места на другое (кожи, например) в пределах одного индивидуума.

Чистолинейные животные очень полезны для изучения вопросов, связанных с пересадкой тканей. Они гомозиготны по всем основным признакам. Для их создания пользуются длительным внутрисемейным скрещиванием. Число поколений имбридинга является важным показателем чистоты линий и носит название «инбредный возраст» линии. (Чистой линии мышей считаются мыши после 20-го поколения внутрисемейных скрещиваний).

При пересадке генетически чужеродной – аллогенной или ксеногенной ткани, развивается реакция со стороны организма хозяина, направленная на отторжение трансплантата.

Особенно демонстративно феномен воспроизводится на кожном трансплантате у млекопитающих.

Хронические инфекции

большая группа инфекц. заболеваний человека и животных, общим признаком к-рых является длительное течение. Встречаются 2 группы Х.и. Первичные X. и. ссамого начала и у всех особей восприимчивого вида (видов) принимают хроническое течение. Острых форм у таких болезней не бывает, но острая фаза возможна. (сифилис, туберкулез, лейшманиозы, амебиаз, трихомониаз, герпес) , вызываемые, как правило, облигатно-патогенными микробами. Длительное течение этой группы X. и., вероятно, является следствием эволюционно установившихся и генетически закрепленных отношений между паразитом и хозяином, обеспечивающих их длительное компромиссное, более или менее равновесное сосуществование. Возникновение таких отношений, по-видимому, обусловлено отбором слабовирулентных и иммуногенных мутантов и рекомбинантов паразита и более устойчивых к действию паразита, но обладающих слабыми элиминирующими св-вами клонов хозяина. Равновесное состояние периодически под влиянием внутренних и внешних факторов сдвигается то в сторону паразита, что проявляется в развитии рецидива болезни, то в сторону хозяина, что ведет к переходу болезни в состояние ремиссии. Вторичные Х.и. (по нашей терминологии, остро-хронические) протекают по 3 вариантам: типично хроническому, типично острому и двухфазному, состоящему из острой и хронической фаз. Острохронические инфекции, вероятно, возникают вследствие врожденной или приобретенной неспособности отдельных особей популяции хозяина удалять микробы, в то время как др особи успешно справляются с этой задачей, а также в результате появления в течении инфекции генотипически или фенотипически устойчивых к этому действию механизмов хозяина генераций паразита По такому типу протекают многие инфекц. болезни человека, особенно вызванные условно-патогенными микробами. Кроме длительного течения, Х.и. характеризуются поражением многих систем и органов, но с относительной компенсацией нарушенных функций; нередко рецидивирующим течением и постепенным утяжелением болезни; длительным снижением трудоспособности; низкой эффективностью терапевтических мероприятий; длительным заразным периодом; сложностью торможения факторов передачи возбудителя. Указанные признаки Х.и. вместе с широким и нарастающим распространением делают их социально значимой группой и выдвигают ее на первый план в современной патологии человека. В микробиол. д-ке первичных Х.и. используют микроскоп., культуральный, серол., аллергический, экспериментальный методы. Д-ка в начальном периоде и в фазе обострения в большинстве случаев дает положительные результаты. методы д-ки острохронических инфекций слабо разработаны, недостаточно чувствительны и специфичны.

Медленные инфекции. При медленных инфекциях взаимодействие вирусов с организмами имеет ряд особенностей. Несмотря на развитие патологического процесса, инкубационный период очень длительный (от 1 до 10 лет) , затем наблюдается летальный исход. Количество медленных инфекций все время возрастает. Сейчас известно более 30. Возбудители медленных инфекций: к возбудителям медленных инфекций относятся обычные вирусы, ретровирусы, вирусы-сателиты , дефектные инфекционные частицы, возникающие естественным или исскуственным мутационным пурем, прионы, вироиды, плазмиды (могут быть и у эукариот) , транспозины (“прыгающие гены” ) , прионы -- самореплицирующиеся белки.

5. Резервуар возбудителя инфекции живые организмы, обеспечивающие существование в природе возбудителя заразной болезни как вида. к нему относят живой организм животного или человека), в котором возбудитель заразной болезни сохраняется как вид. Это обусловлено тем, что при многих зоонозах не все животные — хозяева возбудителей способны сохранять их как вид, и, таким образом, не все животные, будучи источником или переносчиком возбудителей инфекции (см. Переносчики возбудителей инфекции), являются и Р. В

Доза микробов. Инфицирующая доза - минимальное количество микробов, способное вызвать заболевание. Естественно, что в отно­шении человека этот вопрос изучен мало. Все же, по-видимому, очень малые дозы палочек чумы могут вызвать заболевание у человека, в то время как холера возникает при заражении более высокими дозами. Как правило, условно-патогенные микробы вызывают заболевание при попадании в организм в больших дозах.

Инкубационный период - это период времени от момента внедрения возбудителя в макроорганизм и до появления первых клинических симптомов болезни. При каждом инфекционном заболевании продолжительность инкубационного периода различна и колеблется в широких пределах - от нескольких часов (грипп) до нескольких месяцев (гепатит В). Длительность инкубационного периода зависит от вида микроорганизма, инфицирующей дозы, его вирулентности, пути проникновения в организм и от состояния макроорганизма. Инкубационный период связан с адгезией и колонизацией клеток макроорганизма возбудителем в воротах инфекции. Признаков заболевания в данном периоде еще нет, но в организме уже происходят начальные проявления патологического процесса в виде морфологических изменений, обменных и иммунологических сдвигов и др. Если макроорганизм окажется не способен обезвредить возбудителя развивается следующий период заболевания.

Основными источниками инфекции могут быть:больной человек, бактерионоситель , реконвалесцент ;животные.Заражение человека от больного может происходить в течение всего периода болезни либо отдельной стадии инфекционного заболевания, в зависимости от вида инфекции. При бактерионосительстве выделение возбудителя продолжается после клинического выздоровления пациента. Заболевания (холера, брюшной тиф и т.д.), которыми болеет только человек, называютантропозными .
Источником инфекции являются также животные. Человек заражается непосредственно от больного животного при контакте с ним или при употреблении в пищу инфицированных продуктов, через укусы кровососущих переносчиков. Заболевания, которыми болеет человек и животные, называют -зооантропонозные (бруцеллез, чума, лептоспироз ).
Существует несколько путей заражения человека Воздушно-капельный.Фекально-оральный. Заражение человека происходит при употреблении инфицированных продуктов питания или воды.Трансмиссивный . Возбудитель передается членистоногими, через укусы животных, шприцы.Контактный . Инфицирование происходит от больного человека, бактерионосителя , при непосредственном контакте или через инфицированные предметы обихода.Половой путь.От матери к ребенку. Заражение происходит через плаценту или во время родов.Ятрогенный путь. Использование для лечения и диагностики медицинскими работниками нестерильных шприцев, систем для переливания крови или медицинских инструментов и приборов. Место проникновения возбудителя в макроорганизм называют входными воротами инфекции. Заражение человека происходит через поврежденную кожу, слизистые оболочки пищеварительного и дыхательного путей, мочеполовую систему. Заражение через неповрежденную кожу встречается редко ( лептоспироз ).
В зависимости от вида возбудителя и его свойств дальнейшее распространение по организму будет происходить лимфогенным , гематогенным или нейрогенным путем. Некоторые микроорганизмы начинают размножаться на месте внедрения, вызывая очаговую инфекцию. Распространение возбудителя по всему организму вызывает генерализацию инфекционного процесса.

7. Виды иммунитета. Неспецифические факторы защиты. Различают видовой и приобретенный иммунитет.
Видовой иммунитет передается но наследству, характерен для данного вида. Например, человек невосприимчив к чуме рогатого скота, к куриной холере, собаки невосприимчивы к туберкулезу. Видовой им­мунитет неспецифичен, то есть одни и те же защитные механизмы дей­ствуют против разных видов микробов. Это наиболее прочный вид иммунитета.
Неспецифические факторы естественной резистентности защищают организм от микробов при первой встрече с ними. Эти же факторы участвуют и в формировании приобретенного иммунитета.
Ареактивность клеток является наиболее стойким фактором есте­ственной защиты. При отсутствии клеток, чувствительных к данному микробу, токсину, вирусу организм полностью защищен от них. Так, например, крысы нечувствительны к дифтерийному токсину.
Кожа и слизистые оболочки представляют собой механический ба­рьер для большинства патогенных микробов. Кроме того, на микробы губительно действуют выделения потовых и сальных желез, содержа­щие молочную и жирные кислоты. Чистая кожа обладает более силь­ными бактерицидными свойствами. Удалению микробов с кожи спо­собствует слущивание эпителия.
В секретах слизистых оболочек содержится лизоцим (lysozyme) -фермент, лизирующий клеточную стенку бактерий, главным образом, грамположительных. Лизоцим содержится в слюне, секрете конъюнк­тивы, а также в крови, в макрофагах, в слизи кишечника. Открыт впер­вые П.Н. Лащенковым в 1909 г. в белке куриного яйца. Эпителий слизистых оболочек дыхательных путей является препят­ствием для проникновения патогенных микробов в организм. Частицы пыли и капли жидкости выбрасываются наружу со слизью, выде­ляющейся из носа. Из бронхов и трахеи попавшие сюда частицы выводятся движением ресничек эпителия, направленным кнаружи. Эта функция мерцательного эпителия обычно нарушена у злостных ку­рильщиков. Немногие частички пыли и микробы, достигшие легочных альвеол, захватываются фагоцитами и обезвреживаются. В зависимости от способа формирования различают виды приоб­ретенного иммунитета (табл. 3).
Активный иммунитет вырабатывается организмом в ответ на ан­тиген. Вследствие перенесенного инфекционного заболевания выра­батывается активный естественный (постинфекционный) иммунитет. В ответ на введение вакцины или анатоксина - активный искусствен­ный (поствакцинальный) иммунитет. Под влиянием антигена в орга­низме происходит активная перестройка иммунной системы. В резуль­тате образуются антитела, которые соединяются с микробами или их токсинами, обезвреживая их или усиливая фагоцитоз. Постинфекци­онный иммунитет может быть пожизненным или длиться годами, как при кори, коклюше, брюшном тифе, дифтерии. Повторные забо­левания возможны, но редко. Непродолжителен иммунитет при грип­пе.
Поствакцинальный иммунитет формируется не сразу, а через не­которое время (дни, недели) после введения вакцины или анатоксина, сохраняется при применении живых вакцин несколько лет, убитых - до одного года.
Пассивно приобретенный иммунитет возникает, если организм по­лучает от другого, иммунного организма, готовые антитела. При вве­дении иммунных сывороток создается искусственный (постсывороточ­ный) иммунитет. Например, при лечении ребенка, больного дифтери­ей, путем введения ему сыворотки крови лошади, иммунизированной дифтерийным токсином. Пассивно приобретенный иммунитет, в отли­чие от активного, создается быстро, но сохраняется недолго.
Пассивный естественный иммунитет создается, когда антитела пе­редаются от матери плоду через плаценту (плацентарный иммунитет) или ребенку с материнским молоком Благодаря этому грудные дети в первые месяцы жизни невосприимчивы к некоторым инфекционным болезням, например, к кори, дифтерии.
При большинстве инфекций по мере развития невосприимчивости организм освобождается от микробов. Но при некоторых заболева­ниях, например, при туберкулезе, сифилисе иммунитет поддерживается сохранившимися в организме возбудителями Такой иммунитет назы­ваютнестерильным .
Местный иммунитет - это особый вид защиты против внедрения в организм возбудителей инфекций, главным образом кишечных и воз­душно-капельных. Большую роль здесь играют неспецифические фак­торы и антитела, так называемые секреторные иммуноглобулины клас­са A (SIgA). Различают виды иммунитета в зависимости от того, против чего он напрвлен. При антибактериальном иммунитете защитные силы орга­низма направлены на уничтожение бактерий, при антитоксическом -антитела-антитоксины нейтрализуют бактериальные экзотоксины. Этот вид иммунитета имеет большое значение при токсинемнческих инфекциях, таких, как дифтерия, столбняк, ботулизм, газовая анаэробная инфекция.Противовирусный иммунитет обеспечивает нейтрализа­цию вирионов или подавление их образования. Противоопухолевый иммунитет направлен против опухолей. Трансплантационный иммуни­тет возникает вследствие несовместимости тканей при транспланта­ции.

8. Под Естественной резистентностью или устойчивостью принято понимать способность животного организма противостоять неблагоприятному воздействию факторов внешней среды. Состояние естественной резистентности определяют неспецифические защитные факторы организма животных, связанные с их видовыми, индивидуальными и конституциональными особенностями. Следует подчеркнуть, что в реакциях ЕР принимают участие активированные макрофаги, естественные киллеры, естественные антитела и ряд гуморальных факторов (лизоцим, пропердин, лактоферрин) В настоящее время мы располагаем многими новыми факторами, позволяющими значительно шире, чем во времена И.И. Мечникова, рассматривать роль и значение фагоцитирующих клеток не только в противомикробной резистентности, но также в процессах воспаления, специфического иммунитета и аллергии, при отторжении трансплантантов, гиперчувствительности замедленного типа, в противоопухолевом иммунитете и других. Гуморальные факторы ЕР. Естественную резистентность млекопитающих к патогенным микроорганизмам и чужеродным агентам определяют неспецифические клеточные и гуморальные факторы. К этим факторам относят защитные свойства кожи и слизистых оболочек, бактерицидную активность сыворотки крови, слезной жидкости, слюны, молока и других жидкостей организма, которые обеспечиваются наличием в них неспецифических гуморальных факторов – лизоцим, комплемент, пропердин, интерферон, бета – лизин, естественные антитела и другие Лизоцим – фермент, обладающий свойством лизировать целый ряд, в основном грамположительных, микроорганизмов. Основными продуцентами лизоцима являются гранулоциты и моноциты крови, макрофаги костного мозга и селезёнки. Много его в слёзной жидкости, секретах слизистой ротовой полости и верхних дыхательных путей, то есть в тех органах, которые являются первым барьером на пути проникновения микробов в организм животного. Комплемент – сложный комплекс белков сыворотки крови глобулиновой природы. В его составе 9 компонентов разных по своему химическому составу, физиологическим и биологическим свойствам. Активным является весь комплемент в целом, а не отдельные его компоненты. Наиболее высокое содержание комплемента выявлено в сыворотке крови морских свинок. Он способствует лизису сенсибилизированных бактерий в присутствии бактериолизинов, лизису сенсибилизированных эритроцитов и опсонизации бактерий к фагоцитозу. В отсутствие комплемента активность некоторых антител полностью утрачивается, поэтому содержание и активность комплемента служит характеристикой состояния естественной резистентности. Пропердин – играет важную роль в ЕР животных и человека. Содержится в нормальной сыворотке крови, обладает бактерицидным действием и способен убивать большинство грамположительных и грамотрицательных бактерий.Точнее следует говорить о действии не самого, а системы пропердина, поскольку активность его проявляется лишь в присутствии других факторов сыворотки – комплемента, а также ионов магния

10. Антигены (греч. anti- против + gennao создавать, производить) — биоорганические вещества, которые обладают признаками генетической чужеродности (антигенности) и при введении в организм вызывают развитие иммунного ответа.Антигенность присуща не только белкам, но и многим сложным полисахаридам, липополисахаридам, полипептидам, а также некоторым искусственным высокополимерным соединениям. А. могут находиться в микробах (микробные антигены) и в тканях (тканевые антигены) животных и растений. Иммунный ответ на введение А. может проявляться в виде стимуляции выработки антител, клеточных реакций замедленной гиперчувствительности, трансплантационного иммунитета или возникновения толерантности Чужеродность — неотделимое от антигена понятие. Без чужеродности нет антигена применительно к данному организму. например, альбумин кролика не является антигеном для этого животного, но генетически чужероден для морской свинки. Антигенность — мера антигенного качества, например большая или меньшая способность вызывать образование антител. Так, на бычий сывороточный гамма-глобулин у кролика вырабатывается большее количество антител, чем на бычий сывороточный альбумин.Иммуногенность — способность создавать иммунитет. Это понятие относится главным образом к микробным А., обеспечивающим создание иммунитета (невосприимчивость) к инфекциям. Специфичность — антигенные особенности, отличающие А. друг от друга. Существуют вещества, имеющие свой специфический облик, но не вызывающие иммунных реакций (в частности, выработку антител) при введении в организм. Однако с готовыми антителами они взаимодействуют. Такие вещества получили название гаптенов, или неполноценных антигенов. Гаптены имеют признаки чужеродности, но не обладают определенными качествами, необходимыми для проявления полноценных антигенных свойств. Гаптены приобретают свойства полноценных А после соединения с крупномолекулярными веществами°— белками, полисахаридами или искусственными высокомолекулярными полиэлектролитами. Полноценные антигены вызывают в организме синтез антител или сенсибилизацию лимфоцитов и вступают с ними в реакцию как in vivo, так и in vitro. Для полноценных антигенов характерна строгая специфичность, т. е. вызывают в организме выработку только специфических антител, вступающих в реакцию только с данным антигеном. К таким антигенам относят белки животного, растительного и бактериального происхождения.

 Конъюгированные антигены- белки, которые приобрели новую антигенную специфичность благодаря присоединению к ним с помощью химической связи новой химической группировки.

Неполноценные антигены (гаптены)представляют собой сложные углеводы, липиды и другие вещества, не способные вызывать образование антител, но вступающие с ними в специфическую реакцию. Гаптены приобретают свойства полноценных антигенов лишь при условии введения их в организм в комплексе с белком.
Типичными представителями гаптенов являются липиды, полисахариды, нуклеиновые кислоты, а также простые вещества: краски, амины, йод, бром и др. аутоантигены Вызывают аутоиммунные реакции. То есть это антигены собственного организма. Они могут быть первичными, отделенными от иммунной системы гистогематическими барьерами и вызывающими иммунный ответ после их повреждения, и вторичными, вызывающими на себя иммунный ответ только после изменения своих свойств в результате тех или иных патологических процессов. К первичным аутоантигенам относят хрусталик глаза, ткань головного мозга, коллоид щитовидной железы, тестикулярную ткань.

2. Изоантигены. Это различные антигены, различающиеся между особями одного биологического вида. Так, к изоантигенам относят группы крови (система АВО) человека.
3. Ксеноантигены. К ним относятся антигены, различающиеся между представителями различных биологических видов, например антигены, различающиеся между человеком и лошадью. атологические антигены Некоторые воздействия могут вызывать изменения клеточных молекул (в первую очередь белков), придавая им антигенные свойства. Например, под действием излучения или высокой температуры в организме образуются так называемые лучевые или ожоговые Аг, Нормальный набор клеточных Аг может изменяться в результате злокачественного перерождения, что приводит к появлению аномальных Аг. Такие опухолевые Аг (или онкоантигены) — важные маркёры злокачественного роста; их выявление — один из важных методов диагностики опухолей.

 

11.

Антиген – это биополимер органической природы, генетически чужеродный для макроорганизма, который при попадании в последний распознаётся его иммунной системой и вызывает иммунные реакции, направленные на его устранение.

Антигены обладают рядом характерных свойств: антигенностью, специфичностью и иммуногенностью.

Антигенность. Под антигенностью понимают потенциаль­ную способность молекулы антигена акти­вировать компоненты иммунной системы и специфически взаимодействовать с фактора­ми иммунитета (антитела, клон эффекторных лимфоцитов). Иными словами, антиген дол­жен выступать специфическим раздражителем по отношению к иммунокомпетентным клет­кам. При этом взаимодействие компоненты иммунной системы происходит не со всей молекулой одновременно, а только с ее не­большим участком, который получил название «антигенная детерминанта», или «эпитоп».

Чужеродность является обязательным усло­вием для реализации антигенности. По этому критерию система приобретенного иммунитета дифференцирует потенциально опасные объ­екты биологического мира, синтезированные с чужеродной генетической матрицы. Понятие «чужеродность» относительное, так как имму-нокомпетентные клетки не способны напря­мую анализировать чужеродный генетический код. Они воспринимают лишь опосредованную информацию, которая, как в зеркале, отражена в молекулярной структуре вещества.

Иммуногенность — потенциальная способ­ность антигена вызывать по отношению к себе в макроорганизме специфическую за­щитную реакцию. Степень иммуногенности зависит от ряда факторов, которые можно объединить в три группы: 1. Молекулярные особенности антигена; 2. Клиренс антигена в организме; 3. Реактивность макроорганизма.

К первой группе факторов отнесены природа, химический состав, молекулярный вес, струк­тура и некоторые другие характеристики.

Иммуногенность в значительной степени за­висит от природы антигена. Важна также оптическая изомерия аминокислот, составляющих молекулу белка. Большое значение имеет размер и молекулярная масса антигена. На степень иммуногенности также оказыва­ет влияние пространственная структура анти­гена. Оказалась также существенной стерическая стабильность молекулы антигена. Еще одним важным условием иммуно­генности является растворимость антигена.

Вторая группа факторов связана с динамикой поступления антигена в организм и его выведе­ния. Так, хорошо известна зависимость иммуногенности антигена от способа его введения. На иммунный ответ влияет количество пос­тупающего антигена: чем его больше, тем более выражен иммунный ответ.

Третья группа объединяет факторы, опреде­ляющие зависимость иммуногенности от со­стояния макроорганизма. В этой связи на пер­вый план выступают наследственные факторы.

Специфичностью называют способность ан­тигена индуцировать иммунный ответ к строго определенному эпитопу. Это свойство обуслов­лено особенностями формирования иммунно­го ответа — необходима комплементарность рецепторного аппарата иммунокомпетентных клеток к конкретной антигенной детерминанте. Поэтому специфичность антигена во многом определяется свойствами составляющих его эпитопов. Однако при этом следует учитывать условность границ эпитопов, их структурное разнообразие и гетерогенность клонов антигенреактивных лимфоцитовой специфичности. В результате этого организм на антигенное раз­дражение всегда отвечает поликлональными им­мунным ответом.

Антиге­ны бактериальной клетки. В структуре бактериальной клетки разли­чают жгутиковые, соматические, капсульные и некоторые другие антигены. Жгутиковые, или Н-антигены, локализуют­ся в локомоторном аппарате бактерий — их жгутиках. Они представляют собой эпитопы сократительного белка флагеллина. При на­гревании флагеллин денатурирует, и Н-антиген теряет свою специфичность. Фенол не действует на этот антиген.

Соматический, или О-антиген, связан с клеточной стенкой бактерий. Его основу со­ставляют ЛПС. О-антиген проявляет термос­табильные свойства — он не разрушается при длительном кипячении. Однако соматичес­кий антиген подвержен действию альдегидов (например, формалина) и спиртов, которые нарушают его структуру.

Капсулъные , или К-антигены, располагаются на поверхности клеточной стенки. Встречаются у бактерий, образующих капсулу. Как правило, К-антигены состоят из кислых полисахаридов (уроновые кислоты). В то же время у бациллы сибирской язвы этот антиген построен из по­липептидных цепей. По чувствительности к нагреванию различают три типа К-антигена: А, В, и L. Наибольшая термостабильность ха­рактерна для типа А, он не денатурирует даже при длительном кипячении. Тип В выдержи­вает непродолжительное нагревание (около 1 часа) до 60 "С. Тип L быстро разрушается при этой температуре. Поэтому частичное удале­ние К-антигена возможно путем длительного кипячения бактериальной культуры.

На поверхности возбудителя брюшного ти­фа и других энтеробактерий, которые облада­ют высокой вирулентностью, можно обнару­жить особый вариант капсульного антигена. Он получил название антигена вирулентнос­ти, или Vi -антигена. Обнаружение этого ан­тигена или специфичных к нему антител име­ет большое диагностическое значение.

Антигенными свойствами обладают также бактериальные белковые токсины, ферменты и некоторые другие белки, которые секретируются бактериями в окружающую среду (на­пример, туберкулин). При взаимодействии со специфическими антителами токсины, фер­менты и другие биологически активные моле­кулы бактериального происхождения теряют свою активность. Столбнячный, дифтерий­ный и ботулинический токсины относятся к числу сильных полноценных антигенов, поэ­тому их используют для получения анатокси­нов для вакцинации людей.

В антигенном составе некоторых бактерий выделяется группа антигенов с сильно выра­женной иммуногенностью, чья биологическая активность играет ключевую роль в формиро­вании патогенности возбудителя. Связывание таких антигенов специфическими антителами практически полностью инактивирует виру­лентные свойства микроорганизма и обеспечи­вает иммунитет к нему. Описываемые антиге­ны получили название протективных. Впервые протективный антиген был обнаружен в гнойном отделяемом карбункула, вызванного ба­циллой сибирской язвы. Это вещество являет­ся субъединицей белкового токсина, которая ответственна за активацию других, собственно вирулентных субъединиц — так называемого отечного и летального факторов.

 

12. Природа иммуноглобулинов. В ответ на введение антигена иммунная систе­ма вырабатывает антитела — белки, способные специфически со­единяться с антигеном, вызвавшим их образование, и таким образом участвовать в иммунологических реакциях. Относятся ан­титела к γ-глобулинам, т. е. наименее подвижной в электричес­ком поле фракции белков сыворотки крови. В организме γ-глобулины вырабатываются особыми клетками — плазмоцитами. γ-глобулины, несущие функции антител, получили название иммуноглобули­нов и обозначаются символом Ig. Следовательно, антитела — это иммуноглобулины, вырабатываемые в ответ на введение анти­гена и способные специфически взаимодействовать с этим же антигеном.

Функции. Первичная функция состоит во взаимодсйствии их активных центров с комплементарными им де­терминантами антигенов. Вторичная функция состоит в их способности:

• связывать антиген с целью его нейтрализации и элиминации из организма, т. е. принимать участие в формировании защи­ты от антигена;

• участвовать в распознавании «чужого» антигена;

• обеспечивать кооперацию иммунокомпетентных клеток (мак­рофагов, Т- и В-лимфоцитов);

• участвовать в различных формах иммунного ответа (фагоци­тоз, киллерная функция, ГНТ, ГЗТ, иммунологическая то­лерантность, иммунологическая память).

Структура антител. Белки иммуноглобулинов по химическому составу относятся к гликопротеидам, так как состоят из проте­ина и Сахаров; построены из 18 аминокислот. Имеют видовые отличия, связанные главным образом с набором аминокислот. Их молекулы имеют цилиндрическую форму, они видны в электронном микроскопе. До 80 % иммуноглобулинов имеют константу седиментации 7S; устойчивы к слабым кисло­там, щелочам, нагреванию до 60 °С. Выделить иммуноглобули­ны из сыворотки крови можно физическими и химическими ме­тодами (электрофорез, изоэлектрическое осаждение спиртом и кислотами, высаливание, аффинная хроматография и др.). Эти методы используют в производстве при приготовлении иммуно­биологических препаратов.

Иммуноглобулины по структуре, антигенным и иммунобио­логическим свойствам разделяются на пять классов: IgM, IgG, IgA, IgE, IgD. Иммуноглобулины М, G, А имеют под­классы. Например, IgG имеет четыре подкласса (IgG,, IgG2, IgG3, IgG4). Все классы и подклассы различаются по аминокис­лотной последовательности.

Молекулы иммуноглобулинов всех пяти классов состоят из полипептидных цепей: двух одинаковых тяжелых цепей Н и двух одинаковых легких цепей — L, соединенных между собой дисульфидными мостиками. Соответственно каждому классу иммуноглобулинов, т.е. М, G, A, E, D, разли­чают пять типов тяжелых цепей: μ (мю), γ (гамма), α (альфа), ε (эпсилон) и Δ (дельта), различающихся по антигенности. Легкие цепи всех пяти классов являются общими и бывают двух типов: κ (каппа) и λ (ламбда); L-цепи иммуноглобулинов различных классов могут вступать в соединение (рекомбинироваться) как с гомологичны­ми, так и с гетерологичными Н-цепями. Однако в одной и той же молекуле могут быть только идентичные L-цепи (κ или λ). Как в Н-, так и в L-цепях имеется вариабельная — V область, в которой последовательность амино­кислот непостоянна, и константная — С область с постоянным набором аминокислот. В легких и тяжелых цепях различают NH2- и СООН-концевые группы.

При обработке γ -глобулина меркаптоэтанолом разрушаются дисульфидные связи и молекула иммуноглобулина распадается на отдельные цепи полипептидов. При воздействии протеолитическим ферментом папаином иммуноглобулин расщепляется на три фрагмента: два не кристаллизующихся, содержащих детерминантные группы к антигену и названных Fab-фрагментами I и II и один кристаллизующий Fc-фрагмент. FabI- и FabII-фрагменты сходны по свойствам и аминокислотному составу и отличаются от Fc-фрагмента; Fab-и Fc-фрагменты являются компактными образованиями, соеди­ненными между собой гибкими участками Н-цепи, благодаря чему молекулы иммуноглобулина имеют гибкую структуру.

Как Н-цепи, так и L-цепи имеют отдельные, линейно свя­занные компактные участки, названные доменами; в Н-цепи их по 4, а в L-цепи — по 2.

Активные центры, или детерминанты, которые формиру­ются в V-областях, занимают примерно 2 % поверхности мо­лекулы иммуноглобулина. В каждой молекуле имеются две де­терминанты, относящиеся к гипервариабельным участкам Н-и L-цепей, т. е. каждая молекула иммуноглобулина может свя­зать две молекулы антигена. Поэтому антитела являются двух­валентными.

Типовой структурой молекулы иммуноглобулина является IgG. Остальные классы иммуноглобулинов отличаются от IgG дополнительными элементами организации их молеку­лы.

В ответ на введение любого антигена могут вырабатываться антитела всех пяти классов. Обычно вначале вырабатывается IgM, затем IgG, остальные — несколько позже.

В образовании антител различают четыре фазы:

1. Фаза покоя (лаг-фаза, фаза индукции) – с момента поступления антигена в организм до появления антител. Продолжительность этой фазы – от нескольких дней до 1 мес., в зависимости от свойств антигена, его дозы, способа введения в организм, возраста животного и др. В этот период происходит пролиферация и дифференцировка лимфоидных клеток в направлении синтеза иммуноглобулина класса М.

2. Фаза нарастания титров антител (лог-фаза, продуктивная фаза) – от появления антител до момента достижения их максимального количества. Длительность этой фазы – 2–15 дней. В этой фазе антитела освобождаются из плазмоцитов и поступают в кровяное русло. Уменьшается число клеток, синтезирующих IgM, начинает нарастать продукция IgG. Впоследствии появляются IgA, а также JgE, JgD.

3. Фаза стабилизации, в которой уровень антител (или их титр) остается неизменным обычно в течение нескольких дней или недель. Ее длительность зависит от вида животного, характера антигенов и класса продуцируемых антител (иммуноглобулины имеют разный период полураспада).

4. Фаза снижения продукции антител. Продолжительность этой фазы различна и зависит от сохранения антигена в тканях, который является индуктором образования антител. Этому способствует, например, введение антигена с адъювантом, который создает депо, из которого АГ медленно поступает в организм, обеспечивая длительную антигенную стимуляцию. Снижение титра антител в результате начинается спустя несколько недель или месяцев. Способность к длительному образованию антител и в высоких титрах можно поддерживать путем повторных введений антигена на протяжении длительного времени.

При повторном попадании антигена через несколько недель или месяцев динамика иммунного ответа изменяется (информация об антигене хранится в генетическом аппарате лимфоцитов иммунной памяти). Латентный период и период нарастания титра антител становятся короче. Титры антител достигают максимума быстрее и сохраняются на высоком уровне дольше, повышается аффинитет антител. При вторичном ответе сразу синтезируются антитела класса G.

 

13. Иммуноглобулины по структуре, антигенным и иммунобио­логическим свойствам разделяются на пять классов: IgM, IgG, IgA, IgE, IgD.

Иммуноглобулин класса G. Изотип G состав­ляет основную массу Ig сыворотки крови. На его долю приходится 70—80 % всех сывороточ­ных Ig, при этом 50 % содержится в тканевой жидкости. Среднее содержание IgG в сыворот­ке крови здорового взрослого человека 12 г/л. Период полураспада IgG — 21 день.

IgG — мономер, имеет 2 антигенсвязывающих центра (может одновременно свя­зать 2 молекулы антигена, следовательно, его валентность равна 2), молекулярную массу около 160 кДа и константу седиментации 7S. Различают подтипы Gl, G2, G3 и G4. Синтезируется зрелыми В-лимфоцитами и плазматическими клетками. Хорошо опре­деляется в сыворотке крови на пике первич­ного и при вторичном иммунном ответе.

Обладает высокой аффинностью. IgGl и IgG3 связывают комплемент, причем G3 ак­тивнее, чем Gl. IgG4, подобно IgE, обладает цитофильностью (тропностью, или сродс­твом, к тучным клеткам и базофилам) и участ­вует в развитии аллергической реакции I типа. В иммунодиагностических реакциях IgG может проявлять себя как не­полное антитело.

Легко проходит через плацентарный барь­ер и обеспечивает гуморальный иммунитет новорожденного в первые 3—4 месяца жизни. Способен также выделяться в секрет слизис­тых, в том числе в молоко путем диффузии.

IgG обеспечивает нейтрализацию, опсонизацию и маркирование антигена, осуществля­ет запуск комплемент-опосредованного цито­лиза и антителозависимой клеточно-опосредованной цитотоксичности.

Иммуноглобулин класса М. Наиболее круп­ная молекула из всех Ig. Это пентамер, кото­рый имеет 10 антигенсвязывающих центров, т. е. его валентность равна 10. Молекулярная масса его около 900 кДа, константа седи­ментации 19S. Различают подтипы Ml и М2. Тяжелые цепи молекулы IgM в отличие от других изотипов построены из 5 доменов. Период полураспада IgM — 5 дней.

На его долю приходится около 5—10 % всех сывороточных Ig. Среднее содержание IgM в сыворотке крови здорового взрослого человека составляет около 1 г/л. Этот уровень у человека достигается уже к 2—4-летнему возрасту.

IgM филогенетически — наиболее древний иммуноглобулин. Синтезируется предшест­венниками и зрелыми В-лимфоцитами. Образуется в начале первичного иммунного ответа, также первым начинает синтезиро­ваться в организме новорожденного — опре­деляется уже на 20-й неделе внутриутробного развития.

Обладает высокой авидностью, наиболее эффективный активатор комплемента по клас­сическому пути. Участвует в формировании сывороточного и секреторного гуморального иммунитета. Являясь полимерной молекулой, содержащей J-цепь, может образовывать сек­реторную форму и выделяться в секрет сли­зистых, в том числе в молоко. Большая часть нормальных антител и изоагглютининов относится к IgM.

Не проходит через плаценту. Обнаружение специфических антител изотипа М в сыво­ротке крови новорожденного указывает на бывшую внутриутробную инфекцию или де­фект плаценты.

IgM обеспечивает нейтрализацию, опсонизацию и маркирование антигена, осуществля­ет запуск комплемент-опосредованного цито­лиза и антителозависимой клеточно-опосредованной цитотоксичности.

Иммуноглобулин класса А. Существует в сы­вороточной и секреторной формах. Около 60 % всех IgA содержится в секретах слизистых.

Сывороточный IgA : На его долю прихо­дится около 10—15% всех сывороточных Ig. В сыворотке крови здорового взрослого чело­века содержится около 2,5 г/л IgA, максимум достигается к 10-летнему возрасту. Период полураспада IgA — 6 дней.

IgA — мономер, имеет 2 антигенсвязывающих центра (т. е. 2-валентный), молекуляр­ную массу около 170 кДа и константу седи­ментации 7S. Различают подтипы А1 и А2. Синтезируется зрелыми В-лимфоцитами и плазматическими клетками. Хорошо опре­деляется в сыворотке крови на пике первич­ного и при вторичном иммунном ответе.

Обладает высокой аффинностью. Может быть неполным антителом. Не связывает комплемент. Не проходит через плацентар­ный барьер.

IgA обеспечивает нейтрализацию, опсони-зацию и маркирование антигена, осуществля­ет запуск антителозависимой клеточно-опос-редованной цитотоксичности.

Секреторный IgA : В отличие от сывороточ­ного, секреторный sIgA существует в полимерной форме в виде ди- или тримера (4- или 6-валентный) и содержит J- и S-пeптиды. Молекулярная масса 350 кДа и выше, константа седиментации 13S и выше.

Синтезируется зрелыми В-лимфоцитами и их по­томками — плазматическими клетками со­ответствующей специализации только в пре­делах слизистых и выделяется в их секреты. Объем продукции может достигать 5 г в сутки. Пул slgA считается самым многочисленным в организме — его количество превышает суммарное содержание IgM и IgG. В сыворотке крови не обнаруживается.

Секреторная форма IgA — основной фак­тор специфического гуморального местного иммунитета слизистых оболочек желудочно-кишечного тракта, мочеполовой системы и респираторного тракта. Благодаря S-цепи он устойчив к действию протеаз. slgA не активи­рует комплемент, но эффективно связывается с антигенами и нейтрализует их. Он препятс­твует адгезии микробов на эпителиальных клетках и генерализации инфекции в преде­лах слизистых.

Иммуноглобулин класса Е. Называют так­же реагином. Содержание в сыворотке крови крайне невысоко — примерно 0,00025 г/л. Обнаружение требует применения специаль­ных высокочувствительных методов диагнос­тики. Молекулярная масса — около 190 кДа, константа седиментации — примерно 8S, мо­номер. На его долю приходится около 0,002 % всех циркулирующих Ig. Этот уровень дости­гается к 10—15 годам жизни.

Синтезируется зрелыми В-лимфоцитами и плазматическими клетками преиму­щественно в лимфоидной ткани бронхолегочного дерева и ЖКТ.

Не связывает комплемент. Не проходит че­рез плацентарный барьер. Обладает выражен­ной цитофильностью — тропностью к тучным клеткам и базофилам. Участвует в развитии гиперчувствительности немедленного типа — реакция I типа.

Иммуноглобулин класса D . Сведений об Ig данного изотипа не так много. Практически полностью содержится в сыворотке крови в концентрации около 0,03 г/л (около 0,2 % от общего числа циркулирующих Ig). IgD имеет молекулярную массу 160 кДа и константу се­диментации 7S, мономер.

Не связывает комплемент. Не проходит че­рез плацентарный барьер. Является рецепто­ром предшественников В-лимфоцитов.

 

14. см 12

 

15. Иммунодефициты — это нарушения нор­мального иммунного статуса, обусловлен­ные дефектом одного или нескольких механизмов иммунного ответа.

Различают первичные, или врожденные (генетические), и вторичные, или приобре­тенные, иммунодефициты.

Первичные, или врожденные, иммунодефициты.

В качестве первичных иммунодефицитов выделяют такие состояния, при которых нарушение иммунных гуморальных и кле­точных механизмов связано с генетическим блоком, т. е. генетически обусловлено неспо­собностью организма реализовывать то или иное звено иммунологической реактивности. Расстройства иммунной системы могут затра­гивать как основные специфические звенья в функционировании иммунной системы, так и факторы, определяющие неспецифическую резистентность. Возможны комбинирован­ные и селективные варианты иммунных рас­стройств. В зависимости от уровня и характера нарушений различают гуморальные, клеточ­ные и комбинированные иммунодефициты.

Врожденные иммунодефицитные синдро­мы и заболевания представляют собой до­вольно редкое явление. Причинами врожден­ных иммунодефицитов могут быть удвоение хромосом, точечные мутации, дефект фер­ментов обмена нуклеиновых кислот, генети­чески обусловленные нарушения мембран, повреждения генома в эмбриональном пе­риоде и др. Как правило, первичные имму­нодефицита проявляются на ранних этапах постнатального периода и наследуются по аутосомно-рецессивному типу. Проявляться первичные иммунодефициты могут в виде недостаточности фагоцитоза, системы комп­лемента, гуморального иммунитета (В-системы), клеточного иммунитета (Т-системы) или же в виде комбинированной иммунологичес­кой недостаточности.

















Вторичные, или приобретенные, иммунодефициты

Вторичные иммунодефициты в отличие от первичных развиваются у лиц с нормально функционировавшей от рождения иммунной системой. Они формируются под воздействи­ем окружающей среды на уровне фенотипа и обусловлены нарушением функции иммунной системы в результате различных заболеваний или неблагоприятных воздействий на орга­низм. При вторичных иммунодефицитах могут поражаться Т- и В-системы иммунитета, фак­торы неспецифической резистентности, воз­можны также их сочетания. Вторичные имму­нодефицита встречаются значительно чаще, чем первичные. Вторичные иммунодефицита, как правило, преходящи и поддаются иммунокоррекции, т. е. восстановлению нормальной деятельности иммунной системы.

Вторичные иммунодефицита могут быть: после перенесенных инфекций (особенно ви­русных) и инвазий (протозойные и гельминтозы); при ожоговой болезни; при уремии; при опухолях; при нарушении обмена веществ и истощении; при дисбиозах; при тяжелых травмах, обширных хирургических операци­ях, особенно выполняемых под общим нар­козом; при облучении, действии химических веществ; при старении, а также медикамен­тозные, связанные с приемом лекарств.

По времени возникновения выделяют ан­тенатальные (например, ненаследственные формы синдрома ДиДжорджи), перинаталь­ные (например, нейтропения новорожденного, вызванная изосенсибилизацией матери к антигенам нейтрофилов плода) и постнатальные вторичные иммунодефицита.

По клиническому течению выделяют ком­пенсированную, субкомпенсированную и декомпенсированную формы вторичных иммуноде-фицитов. Компенсированная форма сопро­вождается повышенной восприимчивостью организма к инфекционным агентам, вы­зывающим оппортунистические инфекции. Субкомпенсированная форма характеризует­ся склонностью к хронизации инфекционных процессов. Декомпенсированная форма про­является в виде генерализованных инфекций, вызванных условно-патогенными микробами (УПМ) и злокачественными новообразова­ниями.

Известно разделение вторичных иммунодефицитов на:

Физиологические, новорожденные, пубертатного периода, беременности и лактации, старения, биоритмичности, экологические, сезонные, эндогенные интоксикации, радиационные, СВЧ, патологические, постинфекционные, стрессовые, регуляторно-метаболические, медикаментозные, онкологические.

Иммунодефициты, как первичные, так и особенно вторичные, широко распростране­ны среди людей. Они являются причиной проявления многих болезней и патологичес­ких состояний, поэтому требуют профилак­тики и лечения с помощью иммунотропных препаратов.

 

16. Иммунокомпетентные клетки - клетки, способные специфически распознавать антиген и отвечать на него иммунной реакцией. Такими клетками являются Т- и В-лимфоциты (тимусзависимые и костномозговые лимфоциты), которые под влиянием чужеродных агентов дифференцируются в сенсибилизированный лимфоцит и плазматическую клетку.

Т-лимфоциты – это сложная по составу группа клеток, которая происходит от полипотентной стволовой клетки костного мозга, а созревает и дифференцируется в тимусе из предшественников. Т-лимфоциты разделяются на две субпопуляции: иммунорегуляторы и эффекторы. Задачу регуляции иммунного ответа выполняют Т-хелперы. Эффекторную функцияю осуществляют Т-киллеры и естественные киллеры. В орагнизме Т-лимфоциты обеспечивают клеточные формы иммунного ответа, определяют силу и продолжительность иммунной реакции.

 

 

17.

Способность к образованию ан­тител появляется во внутриутробном периоде у 20-недельного эмбриона; после рождения начинается собственная продукция иммуноглобулинов, которая увеличивается до наступления зре­лого возраста и несколько снижается к старости. Динамика об­разования антител имеет различный характер в зависимости от силы антигенного воздействия (дозы антигена), частоты воздействия антигена, состояния организма и его иммунной системы. При первичном и повторном введении антигена динамика антителообразования также различна и протекает в несколько ста­дий. Выделяют латентную, логарифмическую, стацио­нарную фазу и фазу снижения.

В латентной фазе происходят переработка и представление антигена иммунокомпетентным клеткам, размножение клона клеток, специализированного на выработку антител к данному антигену, начинается синтез ан­тител. В этот период антитела в крови не обнаруживаются.

Во время логарифмической фазы синтезированные антитела высво­бождаются из плазмоцитов и поступают в лимфу и кровь.

В ста­ционарной фазе количество антител достигает максимума и ста­билизируется, затем наступает фаза снижения уровня антител. При первичном введении антигена (первичный иммунный от­вет) латентная фаза составляет 3—5 сут, логарифмическая — 7— 15 сут, стационарная — 15—30 сут и фаза снижения — 1—6 мес и более. Особенностью первичного иммунного ответа является то, что первоначально синтезируется IgM, а затем IgG.

В отличие от первичного иммунного ответа при вторичном введении антигена (вторичный иммунный ответ) латентный период укорочен до нескольких часов или 1—2 сут, логарифми­ческая фаза характеризуется быстрым нарастанием и значитель­но более высоким уровнем антител, который в последующих фазах длительно удерживается и медленно, иногда в течение не­скольких лет, снижается. При вторичном иммунном ответе в отличие от первичного синтезируются главным образом IgG.

Такое различие динамики антителообразования при первич­ном и вторичном иммунном ответе объясняется тем, что после первичного введения антигена в иммунной системе формирует­ся клон лимфоцитов, несущих иммунологическую память о данном антигене. После повторной встречи с этим же антиге­ном клон лимфоцитов с иммунологической памятью быстро раз­множается и интенсивно включает процесс антителогенеза.

Очень быстрое и энергичное антителообразование при повтор­ной встрече с антигеном используется в практических целях при необходимости получения высоких титров антител при произ­водстве диагностических и лечебных сывороток от иммунизиро­ванных животных, а также для экстренного создания иммуни­тета при вакцинации.

 

 

18. Органы иммунной системы разделяют на центральные и периферические:

к центральным относят:

•красный костный мозг; его главная функция

-продукция иммунокомпетентных клеток из стволовойполипотентной; все лимфоидные клетки имеют на своей поверхности гликопротеиновые маркеры

•вилочковая железа(thymus) -место созревания и дифференцировки Т лимфоцитов, затем заселяющихпериферические органы иммунитета; в тимусе происходит селекция Тлимфоцитов, имеющих рецепторы ксобственным тканям; чем более длительно функционирует тимус, тем дольше живет организм; наиболееразвита железа в детском возрасте, ее инволюция начинается примерно в 12-14 лет.

к периферическим органам относят:

•селезенку

•лимфатические узлы и образования

•миндалины, в которых есть т.н. Ти В-зоны, в которых созревают соответственно Т-и В-лимфоциты

Центральными органами иммунной системы называют органы, где происходит формирование и созревание иммуноцитов. К ним относят костный мозг, вилочковую железу (тимус) и сумку Фабрициуса. Периферические органы иммунной системы содержат зрелые лимфоциты. Здесь после антигенного воздействия происходит их дальнейшая пролиферация и дифференцировка, продуцируются антитела и эффекторньш лимфоциты. К периферическим органам относятсяселезенка , лимфатические узлы, скопления лимфоидной ткани под слизистыми поверхностями желудочно-кишечного, дыхательного, мочеполового трактов(групповые лимфатические фолликулы, тонзиллы, пейеровы бляшки).

Тимус, или вилочковая железа, - лимфоэпителиальный орган. Он состоит из долек, каждая из которых содержит корковый и мозговой слой. Клетки-предшественники тимоцитов формируются в костном мозге и через кровь попадают в кору тимуса. Основным элементом коры являются фолликулы Кларка, в которых вокруг приводящего кровеносного сосуда концентрируются эпителиальные и дендритные клетки, макрофаги и лимфоциты. Клетки и их гуморальные продукты (цитокины, гормоны) стимулируют деление незрелых лимфоцитов, поступивших в кору. В процессе деления они созревают. На их поверхности появляются новые структуры, а некоторые стадиоспецифические структуры утрачиваются. Структуры, определяющие особенности клеток иммунной системы, обладают антигенными свойствами. Они получили название «Cluster of differentiation» (показатель дифференцировки) и обозначение CD. Лимфоциты, созревающие в тимусе, - Т-лимфоциты обладают характерными для них молекулами CD2, определяющими их адгезивные свойства и молекулами CD3, являюиимися рецепторами для антигенов. В тимусе Т-лимфоциты дифференцируются на две субпопуляции, содержащие антигены CD4 либо CD8. Лимфоциты CD4 обладают свойствами клеток-помощников - млперов (Тх), лимфоциты CD8 - цитотоксическими свойствами, а также супрессорным эффектом, заключающимся в их способности повалять активность других клеток иммунной системы.

За одни сутки в тимусе образуется 300-500 млн. лимфоцитов. При тгом на клетках формируются рецепторы как к чужеродным, так и к собственным антигенам. В ходе созревания Т-лимфоциты проходят позитивную селекцию - отбор клеток, обладающих рецепторами для молекул главного комплекса тканевой совместимости (МНС), обеспечивающих возможность последующих контактов Т-лимфоцитов с клетками, представляющими им чужеродный антиген. В корковом слое тимуса происходит и негативная селекция: клетки с рецепторами для собственных антигенов, вступающие в контакт с ними погибают. В результате в мозговой слой тимуса поступает 3-5% клеток сформировавшихся в корковом слое. Это лимфоциты с рецепторами к чужеродным антигенам способны впоследствии после контакта с соответствующим антигеном реализовать специфическую иммунную реакцию. В мозговом слое дифференцировка лимфоцитов завершается формированием CD4+- и С08+-лимфоцитов. Созревание клеток в тимусе длится 4-6 сут., после чего лимфоциты поступают в кровь, лимфу, ткани, во вторичные органы иммунной системы.

Эпителиальные клетки тимуса образуют пептидные гормоны и гормоноподобные пептиды: тимулин, альфа и бета-тимозин, тимопоетин, способствующие созреванию и дифференцировке Т-лимфоцитов в тимусе и вне него. Выделение этих гормонов и создание их синтетических аналогов производится для создания лекарственных средств, регулирующих иммунологические функции. Тимус начинает функционировать у шестинедельного эмбриона человека, к рождению его масса достигает 10-15 г, к началу полового созревания - 30-40 г. Далее происходит постепенная инволюция тимуса с утратой до 3% активной ткани ежегодно. Инволюция тимуса сопровождается снижением продукции Т-лимфоцитов. Их уровень в организме поддерживается за счет долгоживущих клеток, внетимусного созревания части клеток под действием цитокинов. Предполагают, что последствия инволюции тимуса входят в число причин старческой патологии и определяют продолжительность жизни человека.

Костный мозг, общая масса которого у человека достигает 3 кг, выполняет несколько иммунологических функций. Как уже упоминалось, костный мозг служит местом происхождения всех клеток иммунной системы. Здесь же происходит созревание и дифференцировка В-лимфоцитов. Костный мозг функционирует и как вторичный орган иммунной системы. Макрофаги костного мозга обладают фагоцитарной активностью, а В-лимфоциты дифференцируются в плазматические клетки, которые продуцируют антитела. Направления дифференцировки стволовых клеток костного мозга определяются клетками стромы костного мозга, макрофагальными клетками, лимфоцитами и образуемыми ими цитокинами. Клетки костного мозга продуцируют гормоноподобный пептидный фактор, способствующий активации В-лимфоцитов.

Лимфатические узлы - скопления лимфоидной ткани, расположенные по ходу лимфатических и кровеносных сосудов. У человека имеется 500-1000 лимфатических узлов, а также более мелкие скопления лимфоидной ткани под слизистыми поверхностями и в коже. Лимфатические узлы обеспечивают неспецифическую резистентность организма, выполняя функции барьеров и фильтров, удаляющих из лимфы и крови чужеродные частицы. Вместе с тем лимфатические узлы служат местом формирования антител и клеток, осуществляющих клеточные иммунные реакции.

Кожа, эпителиальные и паренхиматозные органы содержат многочисленные лимфатические капилляры, собирающие тканевую жидкость, именуемую лимфой. Лимфа поступает далее в лимфатические сосуды, по ходу которых последовательно располагается множество лимфатических узлов, строма которых служит фильтром, удаляющим из лимфы практически все чужеродные частицы, в том числе и вирусы, и до 2% растворимых антигенных молекул. В лимфоузлах иммунного организма задерживаются практически все водорастворимые антигены.

Лимфатический узел покрыт соединительнотканной капсулой, от которой внутрь узла отходят трабекулы, разделяющие его на доли, в которых содержится корковое и мозговое вещество, а между ними лежит паракортикальный слой. Основной структурой коркового вещества являются скопления лимфоидных фолликулов, содержащих лимфоциты, преимущественно В-группы, дендритные клетки и макрофаги. Лимфоидные фолликулы могут быть первичными и вторичными. Первичные фолликулы преобладают в покоющемся лимфоузле, содержащиеся в них клетки малоактивны, митозы встречаются редко. В случаях формирования реакции на антиген первичные фолликулы превращаются во вторичные фолликулы, называемые также зародышевыми центрами.

В-лимфоциты, находившиеся в первичном фолликуле, в ответ на поступивший в узел антиген активируются с помощью Т-клеток, начинают быстро делиться и дифференцироваться в антителообразующие клетки - зрелые лимфоциты и плазматические клетки, а также клетки иммунологической памяти, обеспечивающие быстрый ответ на новое поступление антигена. Часть антителообразующих лимфоузлов перемещается в мозговой слой лимфоузла, в другие лимфоузлы, где продолжают продуцировать антитела. Пространство между фолликулами коркового слоя и паракортикальные зоны мозгового слоя алолнены преимущественно Т-лимфоцитами, из которых при иммунной реакции формируются цитотоксические и другие эффекторные лимфоциты, осуществляющие клеточные реакции иммунной защиты. В мозговом слое лимфатического узла содержится большое количество макрофагов, осуществляющих фагоцитоз поступающих в лим-фоузел микроорганизмов и других чужеродных частиц.

Функции периферических органов иммунной системы выполняют также лимфоидные структуры глоточного кольца, кишечника, мочеполовых органов, кожи, бронхов и легких. Структуры, обеспечивающие защиту слизистых, получили название - лимфоидная ткань, ассоциированная со слизистыми - MALT (Mucosa-associated lymphoid tissue). В состав MALT входят GALT, BALT - лимфоидные ткани, «ссоциированные с кишечником, с бронхолегочной системой. К ним примыкают лимфоидные структуры кожи-SALT (Skin associated lymphoid tissue). Клеточные структуры этих лимфоидных образований, а также лимфоциты, находящиеся в тканях, имеют то же происхождение, что и структуры других периферических органов иммунной системы.

 

19.

Иммунный статус — это количественная и качественная харак­теристика состояния функциональной активности органов им­мунной системы и некоторых неспецифических механизмов про-тивомикробной защиты.

Нарушения иммунного статуса и способности к нормальному иммунному ответу на разные антигены называют иммунодефи-цитными состояниями (иммунодефицитами), которые делятся.

• на первичные (врожденные, наследственные);

• вторичные (приобретенные).

2. Первичный иммунодефицит человека — генетически обусловлен­ная неспособность организма реализовать то или иное звено им­мунитета. Проявляются вскоре после рождения, наследуются, как правило, по рецессивному типу.

Первичные иммунодефицитные состояния могут выражаться в поражениях В- и Т-системы иммунитета и вспомогательных клеток (антителообразование и клеточные формы) иммунного ответа, а могут быть и комбинированными, но все они назы­ваютсяспецифическими , в отличие от наследственно обуслов­ленных дефектов неспецифических факторов защиты — фаго­цитоза, системы комплемента и др.

Наиболее характерным клиническим проявлением первичных иммунодефицитных состояний являются рецидивирующие ин­фекцииверхних дыхательных путей и пищеварительного трак­та, пиодермии, артриты, остеомиелиты.

При недостаточности гуморального иммунитета преобладают бактериальные инфекции; при недостаточности клеточного — вирусные и грибковые.

3. Вторичные иммунодефицитные состояния возникают как след­ствие нарушений иммунорегуляции и других патологических про­цессов, сопровождаются лимфопениейи гипогаммаглобулинемией .

Вторичные иммунодефициты связаны со следующими обстоя­тельствами:

• перенесенными инфекционными заболеваниями (корь, грипп, проказа, кандидоз);

• соматическими (с нефротическим синдромом);

• онкологическими (опухоли лимфоретикулярной природы) за­болеваниями;

• ожогами;

• тяжелыми травмами;

• обширными хирургическими вмешательствами;

• некоторыми лечебными воздействиями (рентгеновское облуче­ние, лучевая терапия опухолей, терапия кортикостероидами, цитостатиками и иммунодепрессантами при трансплантации тканей и органов, тимэктомия, спленэктомия и др.).

При хроническом лимфолейкозе, миеломе, макроглобулине -мии и заболеваниях, сопровождающихся потерей белка, пре­имущественно страдает В-система иммунитета.

При лимфогранулематозе, болезни Ходжкина, проказе, вирус­ных инфекциях — Т-система.

Старость представляет собой выраженный Т-иммунодефицит.

4. Для выявления иммунодефицитных состояний возникает необхо­димость оценки показателей функциональной активности им­мунной системы, т. е. иммунного статуса. Оценка иммунного статуса слагается из нескольких этапов:

клинико-лабораторного,который включает в себя:

• сбор и оценку иммунологического анамнеза (частота ин­фекционных заболеваний, характер их течения, выражен­ность температурной реакции, наличие очагов хронической инфекции, реакции на вакцинации или введение лекарст­венных средств);

• оценку результатов общего клинического анализа крови (содержание гранулоцитов, моноцитов, лимфоцитов);

• выявление с помощью бактериологических, вирусологиче­ских и/или серологических исследований бактерионоси­тельства и вирусоносительства;

лабораторно-иммунологического.На этом этапе в иммунологи­ческой лаборатории проводятся исследования, целью которых, собственно, и является качественная и количественная оценка функциональной активности иммунной системы (иммуннокомпетентных клеток). Для этого разработан ряд (набор) тес­тов, которые делят на тесты 1-го (ориентировочного) и 2-го (аналитического) уровней.

Тесты 1-го уровня являются ориентировочными и позволяют выявить грубые нарушения деятельности иммунной системы.

Они включают в себя определение :

• общего и относительного числа лимфоцитов;

• основных субпопуляций (Т- и В-клетки);

• фагоцитарной активности лейкоцитов;

• концентрации иммуноглобулинов разных классов в сыворотке крови.

Общее (абсолютное) и относительное число лимфоцитов опре­деляют по данным клинического анализа крови. Содержание Т- и В-лимфоцитов подсчитывают в реакции иммунофлюорес-ценции, используя меченые моноклональные флюоресцирую­щие сыворотки кспецифическим поверхностным антигенным маркерам, обозначаемым символами CD(clasterdifferentiation). Таких антигенных маркеров известно несколько десятков, но отдельные из них характерны для того или иного типа клеток:

• рецептор CD3 — всех Т-лимфоцитов;

• рецепторы CD19, 20, 21, 72 - В-лимфоцитов;

• рецепторы CD4 — Т-хелперы;

• рецепторы CD8 — Т-супрессоры;

• рецепторы CD16 — NK-клетки (натуральные киллеры).

Более доступным и простым, но менее точным и устаревшим является метод розеткообразования. Он основан на том, что В-лимфоциты могут адсорбировать на своей поверхности эрит­роциты мышей, а Т-лимфоциты — эритроциты барана (их также могут образовывать NK-клетки). Лимфоцит с прилип­шими к нему эритроцитами — это и есть розетка, их подсчи­тывают в окрашенных по Романовскому-Гимземазках из смеси лимфоцитов и соответствующих эритроцитов.

Для оценки фагоцитарной активности нейтрофилов крови оп­ределяют процент фагоцитирующих клеток и фагоцитарный по­казатель(среднее количество микробных клеток, поглощен­ных одним лейкоцитом).

Концентрацию (уровень) иммуноглобулинов разных классов G, М, А и Е в сыворотке крови определяют в реакции преципитащи в геле {радиальная иммунодиффузия по Манчини) с антиглобулиновыми сыворотками к IgG, IgM, IgA, IgE, но этот метод дает достаточно большую ошибку при определении: ± 15%.

Тесты 2-го уровня позволяют провести более глубокий анализ состояния иммунной системы и уточнить характер дефектов, выявленных с помощью тестов 1-го уровня. К ним относятся, например, определение отдельных субклассов иммуноглобули­нов (особенно IgG, секреторного IgA) и В-лимфоцитов, регу-ляторных и эффекторных клеток.

Кроме того, с помощью иммуноферментных и радиоиммунных методов можно определить концентрации отдельных цитоки -новглавных регуляторных молекул, определяющих тип им­мунного ответа.

Например, интерлейкин-2 является обязательным компонентомиммунного ответа на любые антигены, втомчислемикробные, таккак •обеспечивает пролиферацию идифференцировку Т-лимфоцитов.

 

 

20. Иммунологическая толе­рантность — явле­ние, противоположное иммунному ответу и иммунологической памяти. Проявляется она отсутствием специфического продуктивного иммунного ответа организма на антиген в связи с неспособностью его распознавания.

В отличие от иммуносупрессии имму­нологическая толерантность предполагает изначальную ареактивность иммунокомпетентных клеток к определенному антигену.

Иммунологическую толерантность вызы­вают антигены, которые получили название толерогены . Ими могут быть практически все вещества, однако наибольшей толерогенностью обладают полисахариды.

Иммунологическая толерантность быва­ет врожденной и приобретенной. Примером врожденной толерантности является отсутс­твие реакции иммунной системы на свои собственные антигены. Приобретенную толе­рантность можно создать, вводя в организм вещества, подавляющие иммунитет (иммунодепрессанты), или же путем введения антигена в эмбриональном периоде или в первые дни после рождения индивидуума. Приобретенная толерантность может быть активной и пассив­ной. Активная толерантность создается пу­тем введения в организм толерогена, который формирует специфическую толерантность. Пассивную толерантность можно вызвать ве­ществами, тормозящими биосинтетическую или пролиферативную активность иммунокомпетентных клеток (антилимфоцитарная сыворотка, цитостатики и пр.).

Иммунологическая толерантность отличает­ся специфичностью — она направлена к строго определенным антигенам. По степени рас­пространенности различают поливалентную и расщепленную толерантность. Поливалентная толерантность возникает одновременно на все антигенные детерминанты, входящие в со­став конкретного антигена. Для расщепленной, или моновалентной , толерантности характер­на избирательная невосприимчивость каких-то отдельных антигенных детерминант.

Степень проявления иммунологической толе­рантности существенно зависит от ряда свойств макроорганизма и толерогена.

Важное значение в индукции иммуноло­гической толерантности имеют доза анти­гена и продолжительность его воздействия. Различают высокодозовую и низкодозовую толерантность. Высокодозовую толерантность вызывают введением больших количеств вы­сококонцентрированного антигена. Низкодозовая толерантность, наоборот, вызывается очень малым количеством вы-сокогомогенного молекулярного антигена.

Механизмы толерантности многообразны и до конца не расшифрованы. Известно, что ее основу составляют нормальные процессы регуляции иммунной системы. Выделяют три наиболее вероятные причины развития имму­нологической толерантности:

1. Элиминация из организма антигенспецифических клонов лимфоцитов.

2. Блокада биологической активности им-мунокомпетентных клеток.

3. Быстрая нейтрализация антигена анти­телами.

Феномен иммунологической толерантнос­ти имеет большое практическое значение. Он используется для решения многих важных проблем медицины, таких как пересадка ор­ганов и тканей, подавление аутоиммунных реакций, лечение аллергий и других патоло­гических состояний, связанных с агрессив­ным поведением иммунной системы.

Паралич иммунологический — это форма имму­но­логи­че­ской не­до­ста­точ­но­сти, ха­рак­те­ри­зующа­я­ся пол­ным от­сут­стви­ем иммун­ного от­ве­та.

Иммунологический паралич возникает после инъекции взрослым особям большого количества пневмококкового полисахарида. При введении полисахарида в дозе 0,5 мкг развивается иммунный ответ, а при введении 500 мкг, то есть в 1000 раз больше иммунный ответ отсутствует (Л.Фелтон, 1949 – феномен Фелтона).

Иммунологический паралич вызывается также введением животным больших доз растворимых белков. Это явление было описано в 1962 году и получило название феномена Дрессера. Состояние паралича длится до тех пор, пока антиген персистирует ( присутствует) в организме и зависит от дозы антигена. Его можно продлить повторными инъекциями антигена.

Практикуется создание иммунологического паралича к аллотрансплантатам у взрослых организмов при помощи «антигенной перегрузки». Было показано, что аллотрансплантация больших лоскутов кожи обеспечивает большую продолжительность их приживания, чем при пересадке малых лоскутов. Так, например, лоскут кожи размером 2-6 см2 отторгается на 14-й день, а лоскут размером 30-60 см2 отторгается в 50% случаев через 30 и более суток после пересадки.

 

21.

Трансплантационный иммунитет – это реактивность иммунокомпетентных клеток, направленных против чужеродных антигенов, находящихся на поверхности мембран клеток трансплантата, опухолевых клеток, а также нормальных собственных клеток, адсорбировавших вирусные и бактериальные антигены. Трансплантационный иммунитет обеспечивает элиминацию в организме чужеродных в генетическом отношении клеточных элементов, а также собственных клеток, синтезирующих чужеродные вещества или адсорбировавшие чужеродные антигены из жидкой среды.

При трансплантации организм реципиента распознает чужеродные структуры и осуществляет против них иммунологические реакции, которые ведут к отторжению трансплантата. В последнем распознаются молекулы, именуемые трансплантационными антигенами или антигенами гистосовместимости.

Трансплантат – живой материал (клетки, ткани, органы), используемый для пересадки в пределах собственного организма или взятый для пересадки другому организму.

Процесс пересадки называется трансплантацией.

Аутотрансплатат – когда производится пересадка тканей с одного места на другое (кожи, например) в пределах одного индивидуума.


Поделиться:



Последнее изменение этой страницы: 2019-05-08; Просмотров: 242; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.494 с.)
Главная | Случайная страница | Обратная связь