Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ОПИСАНИЕ И ПАРАМЕТРЫ МОНИТОРОВ



Содержание

 

ВВЕДЕНИЕ

1. ОПИСАНИЕ И ПАРАМЕТРЫ МОНИТОРОВ

1.1 Электронно-лучевая трубка

1.1.1. Точки и разрешение

1.1.2 Триады и шаг точек

1.1.3 Теневая и щелевая маски

1.2 Как работает электронно-лучевой монитор

1.3 Многочастотные мониторы

1.4 Тип экрана монитора

1.5 Цифровые сигналы для электронно-лучевых мониторов

2. ТИПЫ ВИДЕОАДАПТЕРОВ

2.1 Сведение лучей

2.2 Подушкообразные и бочкообразные искажения

2.3 Развертка, растр, обратный ход луча

2.4 Прогрессивная и чересстрочная развертка

2.5 Полоса пропускания

2.6 Плавание, дрожание и дрейф

3. ВИДЕОСИГНАЛ

3.1 Синхронизация и полярность синхросигнала

3.2 Цепи цветности

3.3 Блок видеосигнала

3.4 Блок кадровой развертки

3.5 Блок строчной развертки

3.6 Цепи высокого напряжения

4. КОНСТРУКЦИЯ

4.1 Шаг точки (размер пикселя)

5. ДИАГНОСТИКА ЭЛТ И УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

5.1. Конструкция ЭЛТ

5.2 Исправление коротких замыканий

5.3 Приборы для проверки и восстановления ЭЛТ

6. СИМПТОМЫ НЕИСПРАВНОСТЕЙ В ЭЛТ

7. ПОИСК И УСТРАНЕНИЕ НЕПОЛАДОК В ЦВЕТНЫХ МОНИТОРАХ

7.1 Сборка после ремонта

7.2 Настройка и проверка после ремонта

8. СИМПТОМЫ НЕИСПРАВНОСТЕЙ В МОНИТОРЕ

9. ЭНЕРГОПОТРЕБЛЕНИЕ И БЕЗОПАСНОСТЬ

9.1 Управление питанием

9.2 Уровень электромагнитных излучений

9.3 Частота развертки по вертикали

9.4 Частота развертки по вертикали

9.5 Частота развертки по горизонтали

9.6 Управление монитором

10. УСЛОВИЯ ЭКСПЛУАТАЦИИ МОНИТОРА

10.1 Тестирование монитора

10.2 Уход за монитором

11. СПЕЦЧАСТЬ. УСТРОЙСТВА ДЛЯ ВРЕМЕННОГО

РАЗДЕЛЕНИЯ ИМПУЛЬСНЫХ СИГНАЛОВ

ЗАКЛЮЧЕНИЕ

ЛИТЕРАТУРА

 


ВВЕДЕНИЕ

 

Начав со скромного отображения текста в монохромном режиме, мониторы усовершенствовались до такой степени, что стали обеспечивать вывод изображений с фотографическим качеством и цветностью.

Мониторы могут воспроизводить видеофильмы, графические изображения ошеломляющего качества, наполненные информацией рисунки, заменяющие интерфейс командной строки, бывший столь типичным всего несколько лет назад. В сущности, мониторы стали виртуальным окном в современный компьютер.

Поскольку сейчас эксплуатируются многие миллионы компьютеров, экономия на обслуживании и ремонте мониторов становится серьезной задачей как для специалистов, так и для любителей, увлекающихся компьютерами.

К счастью, основные принципы работы компьютерных мониторов за все это время практически не изменились.

 


ОПИСАНИЕ И ПАРАМЕТРЫ МОНИТОРОВ

 

Компьютеры описываются набором сравнительно хорошо известных характеристик, таких как объем оперативной памяти, емкость жестких дисков и тактовая частота.

А мониторы характеризуются целым набором физических параметров, не имеющих непосредственного отношения к компьютеру.

С учетом этих соображений наилучшим подходом к описанию способов разрешения затруднений, связанных с мониторами, будет предварительный рассказ о каждой из характеристик, влияющих на работу монитора.

Электронно-лучевая трубка

Электронно-лучевые трубки (ЭЛТ) — это, собственно, большие электронные лампы. Один конец ЭЛТ выполнен в виде длинной узкой горловины, а другой — в виде широкой практически плоской поверхности. Изнутри лицевая сторона ЭЛТ покрыта аккуратно уложенными крошечными кусочками (зернами) люминофора. Узкая часть ЭЛТ содержит элемент (называемый катодом), который раскален до высокой температуры (подобно нити обычных ламп накаливания).

При этом из катода вылетают электроны. Если к лицевой стороне ЭЛТ приложить высокое положительное напряжение, вылетевшие из катода электроны (частицы с отрицательным зарядом) будут с ускорением двигаться вперед.

Когда электроны ударяются о люминофор, они вызывают его свечение. Чтобы управлять движением электронов и формировать картинку, используются магнитные поля.

Конечно, для управления пучком электронов требуется множество разных элементов, но ядром монитора является именно ЭЛТ.

Размер лицевой части ЭЛТ {размер экрана) обычно измеряется по диагонали, то есть ЭЛТ с диагональю 43, 2 см (17 дюймов) имеет расстояние между противоположными углами 43, 2 см (17 дюймов).

ЭЛТ большего размера стоят дороже, но дают более крупное изображение, которое обычно вызывает меньшее напряжение глаз.

Точки и разрешение

Элемент изображения (точка) — это наименьшая светящаяся область, которую может сформировать ЭЛТ.

В монохромных дисплеях точка может быть только включена или выключена. В цветных мониторах точка может светиться одним из нескольких цветов. Точки расположены как в таблице — рядами и столбцами.

Количество точек в рядах и в столбцах определяет разрешение монитора. Например, монитор VGA имеет разрешение 640 точек по горизонтали и 480 точек по вертикали, то есть всего 307200 точек.

Типичное разрешение монитора SVGA составляет 800 точек по горизонтали и 600 точек по вертикали, то есть всего 480000 точек.

Современные мониторы легко обеспечивают разрешение 1280 точек по горизонтали и 1024 точки по вертикали (1310720 точек) и даже 1600 точек по горизонтали и 1200 точек по вертикали (1920000 точек).

Для компьютерных мониторов разрешение имеет большое значение, поскольку более высокое разрешение дает возможность получить более детальное изображение.

Триады и шаг точек

В то время как монохромные ЭЛТ имеют покрытие из однородного люминофора (как правило, дающего свечение белого, янтарного или зеленого цвета), в цветных мониторах используются зерна люминофоров трех цветов (красный, зеленый и синий), расположенные треугольником {триада).

На рис. 1.1. показан пример расположения люминофоров триадами.

В цветном мониторе каждая триада формирует одну точку изображения (хотя триада состоит из трех зерен люминофора).

Для возбуждения свечения каждой точки используется три электронных луча от трех электронных пушек — одна пушка для красного цвета, одна для зеленого и одна для синего, и таким образом может быть получен любой цвет. Три зерна люминофора, составляющие одну точку, должны быть расположены настолько близко друг к другу, чтобы невооруженный глаз воспринимал их как единое целое.

Качество цветного изображения напрямую связано с тем, насколько близко друг к другу находятся зерна люминофора трех цветов.

Чем они ближе, тем более чистым кажется изображение. Если зерна расположены относительно далеко друг от друга, то качество изображения ухудшается, поскольку глаз начинает воспринимать их как самостоятельные элементы изображения.

Рис.1.1. Расположение зерен люминофора вЭЛТ

 

Это приводит к тому, что линии в изображении перестают казать ся сплошными, а цвета перестают быть чистыми. Шаг точек — это расстояние между двумя зернами люминофора одного цвета.

Эта величина также равна расстоянию между отверстиями в теневой маске. Мониторы с шагом точек 0, 28 мм или меньшим обеспечивают приемлемое качество изображения, хотя шаг точек 0, 25 мм и менее является более предпочтительным.

Теневая и щелевая маски

 

Рис.1.2. Сведение в цветных мониторах (масштаб не соблюден)

 

Теневая маска — это тонкий перфорированный металлический лист, расположенный сразу за люминофорным покрытием.

Электронные лучи каждой из трех электронных пушек сформированы так, чтобы сойтись в отверстии маски, а не на слое люминофора (см. рис. 1.2.). Микроскопические отверстия обеспечивают попадание электронного луча только на зерна люминофора соответствующего цвета.

Электроны, отклонившиеся от своего пути, останавливаются маской, и это предотвращает ошибочную засветку не того люминофора, сохраняя чистоту цвета.

При разработке некоторых ЭЛТ теневая маска была заменена щелевой маской (называемой также апертурнойрешеткой), в которой, в отличие от теневой маски, проделаны не отверстия, а вертикально расположенные щели.

В ЭЛТ со щелевой маской шаг точки определяется как расстояние между щелями.

Обратите внимание, что монохромные ЭЛТ не нуждаются в теневой маске, поскольку слой люминофора однороден, и все его зерна дают свечение одного цвета.

Многочастотные мониторы

 

В одних мониторах установлена фиксированная частота развертки.

В других поддерживаются разные частоты в некотором диапазоне (такие мониторы называются многочастотными multiple - frequency monitor ). Большинство современных мониторов многочастотные, т.е. мoгут работать с разными стандартами видеосигнала, которые получили довольно широкое распространение.

Фирмы-производители для обозначения мониторов такого типа используют различные термины: синхронизируемые (multisync), многочастотные (multifrequency), многорежимные (multiscan), автосинхронизирующиеся (autosynchronous) и с автонастройкой (autotracking).


Тип экрана монитора

 

Экраны мониторов Moiyr быть двух типов: выпуклые и плоские.

Экран типичного дисплея выпуклый. Такая конструкция характерна для большинства ЭЛТ (в том числе и телевизионных кинескопов).

Обычно экран искривлен как по вертикали, так и по горизонтали.

В некоторых моделях (Sony FD Trinitron и Mitsubishi DiamondTron NF) используется конструкция Trinitron, в которой поверхность экрана имеет небольшую кривизну только в горизонтальном сечении. Кривизна вертикального сечения экрана равна нулю. На таком экране возникает гораздо меньше бликов и улучшается качество изображения. Недостаток этой конструкции — высокая себестоимость производства, а следовательно, и более высокая цена.

На рис. 1.4. показаны типичные электронно-лучевые мониторы выпуклого и плоского типов.

ТИПЫ ВИДЕОАДАПТЕРОВ

 

Монитору необходим источник входных данных. Сигналы, подаваемые на монитор, поступают из видеоадаптера, встроенного в систему или подключаемого к компьютеру.

Существует три способа подключения компьютерных систем к электронно-лучевому или жидкокристаллическому монитору.

■   Отдельные видеоплаты. Этот метод, для реализации которого требуются разъемы расширения AGP или PCI, обеспечивает наиболее высокий уровень эффективности и максимальную эксплуатационную гибкость при выборе объема памяти и необходимых возможностей.

Набор микросхем графического ядра, встроенный в системную плату. Эффективность этого метода ниже, чем при использовании отдельных видеоплат, а объем памяти изменить практически невозможно.

■   Набор микросхем системной платы с интегрированным видеоадаптером. Наиболее низкая стоимость любой графической конфигурации и довольно низкая эффективность, особенно для трехмерных игр или работы с графическими приложениями. Раз решающая способность и возможности цветопередачи ниже, чем при использовании отдельных видеоадаптеров.

Как правило, видеоадаптеры используются в большинстве систем, созданных на основе системных плат Baby-AT или АТХ, в то время как в системных платах LPX, NLX и Micro-АТХ обычно используются встраиваемые наборы микросхем графического ядра. Во многих современных недорогих компьютерах, созданных на базе системных плат формфактора Micro-ATX, Flex-ATX или NLX, используются наборы микросхем системной логики с интегрированной видеосистемой, как в серии Intel 810. Модернизация систем с интегрированным графическим ядром (содержащих набор микросхем видеосистемы или набор микросхем системной платы, включающий в себя графическое ядро) обычно осуществляется с помощью отдельной видеоплаты. Однако в системы такого типа разъем AGP, наиболее подходящий для современных быстродействующих видеосистем, обычно не включается.

Термин видеоадаптер ( video adapter ) применим к интегрированной или отдельной видеосхеме.

Сведение лучей

 

В цветном мониторе используются три электронные пушки. Сами по себе электроны не имеют цвета, но каждая пушка возбуждает свечение люминофора определенного цвета. Все три электронных луча перемещаются по поверхности экрана вместе, и они сходятся в отверстиях теневой маски. Сведение лучей обеспечивает чистоту цветов на экране. В идеале каждый из лучей попадает только на зерна люминофора своего цвета, и результирующее свечение имеет в точности нужный цвет (например, чисто белый). Если один или несколько лучей сведены неточно, они будут засвечивать и зерна не «своего» люминофора, тогда цвет не будет передан правильно. В большинстве случаев плохое сведение приводит к образованию окрашенных теней. Например, рядом с белой линией может появиться красная, зеленая или синяя тень. Сильное нарушение сведения может привести к размытости или искажению изображения.

В документации к мониторам обычно упоминается допустимая величина нарушений сведения — расхождение лучей. Она обычно разная для центра экрана и его краев. Как правило, расхождение лучей в центре экрана не должно превышать 0, 45 мм, а на краях — 0, 65 мм. Чем больше расхождение лучей, тем хуже качество изображения. К счастью, сведение лучей можно регулировать; регуляторы, как правило, находятся внутри монитора.


Таблица 3.1. Разрешения и типичные частоты развертки

Разрешение

Полоса пропускания

 

Говоря простым языком, полоса пропускания монитора — это максимальная скорость, с которой точки могут посылаться на монитор. Типичные мониторы VGA имеют полосу пропускания 30 МГц. Это означает, что монитор за секунду может отобразить на экране до 30 миллионов точек. Примем во внимание, что каждая строка состоит из 640 точек, а частота строчной развертки — 31, 45 кГц, то есть ежесекундно рисуются 31450 строк. При этом монитор обрабатывает 20128000 точек в секунду. Новейшие цветные мониторы имеют полосу пропускания в 135 МГц. Такие мониторы, имеющие разрешение 1280x1024 точки и частоту строчной развертки 79 кГц должны обрабатывать ежесекундно 101120000 точек в секунду (1280 точек в строке, умноженные на 79000 строк в секунду), поэтому расширение полосы пропускания действительно необходимо для получения высоких разрешений.

Плавание, дрожание и дрейф

 

Электронный луч (лучи), формирующий изображение, направляется в нужный участок экрана с помощью магнитных полей. Эти поля создаются отклоняющими катушками, находящимися на горловине ЭЛТ. Аналоговый сигнал, подаваемый на отклоняющие катушки, формируется электрическими цепями отклонения (вертикального и горизонтального). В идеале цепи отклонения должны каждый раз направлять электронный луч в точности по одному и тому же маршруту. При этом изображение на экране будет устойчивым. В реальности изображение может смещаться в ту или иную сторону. Дрожанием называются такие отклонения, произошедшие за 15-секундный период. Плавание изображения — это отклонения, произошедшие за 30-секундный период. Дрейф — это отклонения, произошедшие за период в одну минуту. Обратите внимание, что эти три термина описывают, в общем-то, одно и то же явление, но за разный период времени. Степень этих искажений может быть выражена либо в точках, на которые происходит сдвиг, либо в миллиметрах.


ВИДЕОСИГНАЛ

 

Параметры видеосигнала включают в себя уровень сигнала и характеристики аналогового видеовхода.

В большинстве случаев используется видеосигнал с амплитудой 0, 7 В.

Для электрических цепей, управляющих монитором, это сравнительно небольшая величина.

Видеовход характеризуется входным сопротивлением, которое обычно равно 75 Ом. Старые мониторы использовали цифровой дискретный сигнал с амплитудой до 1, 5 В.

Цепи цветности

 

Рис.3.1.. Блок-схема цветного монитора ( VGA ) BENQ 795 FT

 

Если вы хотите разобраться в работе цветного монитора, лучше начать с блок-схемы. Блок-схема монитора VGA показана на рис. 3.1.

Необходимы три самостоятельных усилителя видеосигнала (для каждого цвета — красного, зеленого и синего).

В то время как ранние модели цветных мониторов для передачи видеосигнала использовали цифровые схемы, современные мониторы используют для этого аналоговый сигнал, который дает возможность изменять интенсивность каждого цвета.

Цветная ЭЛТ сконструирована так, чтобы формировать сразу три электронных пучка, каждый из которых вызывает свечение люминофора соответствующего цвета.

Изменением плотности этих электронных пучков можно получить любой цвет точки экрана. Для практической цели изучения цветного монитора можно поделить его на три блока: блок видеосигнала, блок строчной развертки и блок кадровой развертки.

Блок видеосигнала

 

Типичная схема блока видеосигнала показана на рис 3.2.

Это часть схемы цветного монитора LG Flatron 795 FT.

На ней видны три одинаковые схемы видеоусилителей цветных сигналов. Элементы схем с номерами 5хх (например, IC501) составляют усилитель красного видеосигнала.

Номера бхх свидетельствуют о принадлежности детали к усилителю зеленого видеосигнала, 7хх — синего. Через детали с номерами 8хх подается сигнал на управляющую сетку ЭЛТ. Рассмотрим работу одного из видеоусилителей.

Аналоговый сигнал красного цвета проходит через фильтр F501. Ферритовые шайбы на входе и выходе фильтра и конденсатор небольшой емкости служат для уменьшения шумов.

Видеосигнал усиливается транзистором Q501. Переменный резистор VR501 служит для подстройки коэффициента усиления (степени, в которой усиливается сигнал). Затем сигнал поступает на дифференциальный усилитель, собранный на микросхеме IC501.

С него сигнал подается на транзисторы Q503 и Q504, а с них — на двухтактный усилитель на транзисторах Q505 и Q506.

Переменный резистор VR502 устанавливает уровень постоянного напряжения, которое складывается с усиленным сигналом для получения выходного сигнала.

Выходной сигнал подается непосредственно на соответствующую управляющую сетку ЭЛТ. Два других видеоусилителя работают точно так же.

Неисправности, возникающие в усилителях видеосигнала цветных мониторов, редко приводят к полному исчезновению изображения.

Даже если один усилитель выйдет из строя, два других будут управлять работой своих электронных пушек.

Конечно, исчезновение одного из цветов приведет к искажению цвета изображения, но оно все равно будет отображаться на экране.

Выход из строя видеоусилителя может привести к заполнению экрана соответствующим цветом или к полному исчезновению этого цвета. Например, если выйдет из строя усилитель сигнала красного цвета, изображение на экране будет либо перенасыщено красным цветом, либо красный цветбудет полностью отсутствовать, а изображение будет сине-зеленым.

Блок кадровой развертки

 

Блок кадровой развертки управляет кадровыми отклоняющими катушками. Чтобы дать представление о работе этого блока и взаимодействии его с другими блоками монитора, на рис. 3.3 приведена схема блоков кадровой и строчной развертки, высоковольтного выпрямителя и блока питания монитора LG Flatron 795 FT.

Элементы схем с номерами 4хх (например, IC401) являются частью блока кадровой развертки.

Кадровые синхроимпульсы поступают на монитор через разъем СН202 (контакт, помеченный буквой V).

Для согласования полярности синхроимпульсов и выбора видеорежима используется микросхема «исключающее ИЛИ» (IC201).

Так какдля разных видеорежимов полярность строчных и кадровых синхроимпульсов разная, микросхема IC201 в соответствии с текущим режимом подает требуемые сигналы на аналоговый ключ IC401.

Он управляет задающим генератором кадровой развертки (IC402) для получения одного из трех размеров изображения по вертикали.

Тем самым достигается автоподстройка размера растра в зависимости от режима работы.

Кадровые синхроимпульсы, подаваемые на вывод 2 микросхемы IC402, запускают задающий генератор кадровой развертки, формирующий пилообразное напряжение.

Частота кадровой развертки устанавливается равной 60 Гц, но может быть подстроена переменным резистором VR404. Настоятельно рекомендуется не пытаться регулировать частоту кадровой развертки, если нет возможности контролировать настройки с помощью осциллографа.

Линейность изображения по вертикали регулируется переменным резистором VR405, центрирование — переменным резистором VR406. Настраивать линейность и центрировать изображение следует только по специальной испытательной табли це.

Интересно отметить, что в данном случае в выходном каскаде кадровой развертки не используются дискретные элементы.

Отклоняющая катушка (V-DY) подключена непосредственно к выходу усилителя, встроенного в микросхему IC402.

Цепь коррекции подушкообразных искажений связывает через трансформатор Т304 кадровые и строчные отклоняющие катушки. Транзисторы Q401 и Q402 образуют компенсирующую цепь, которая слегка модулирует ток, протекающий через строчные отклоняющие катушки.

Это предотвращает появление искажений при проекции плоского двумерного изображения на искривленную поверхность экрана ЭЛТ. Переменный резистор VR407 регулирует степень компенсации подушкообразных искажений.

Так же как и регулировку сведения, регулировку компенсации подушкообразных искажений следует выполнять только по специальной испытательной таблице.

Неисправности, которые могут возникнуть в блоке кадровой развертки, обязательно сказываются на изображении.

Серьезные неисправности могут привести к исчезновению кадровой развертки и появлению на экране узкой горизонтальной линии.

Как правило, это будет связано с выходом из строя микросхемы IC402, содержащей и задающий генератор, и усилитель кадровой развертки.

Если пропадает только верхняя или нижняя половина изображения, то, возможно, вышла из строя только часть выходного каскада микросхемы IC402.


Рис. 3.2. Принципиальная схема видеусилителя монитора BENQ 795 FT


Рис. 3.3. Принципиальная схема цепей развертки монитора BENQ 795 FT


Однако любая неисправность, оказывающая воздействие на работу задающего генератора кадровой развертки, приведет к полному исчезновению этой развертки. Если искажения не слишком существенны (вытянутое или, наоборот, сжатое изображение), это может быть вызвано частичным выходом из строя микросхемы IC402 или подключенных к ней других деталей. Чрезмерно вытянутое изображение, как правило, отображается с «загнутыми» краями. Заметьте, что неисправности кадровой развертки не влияют на цвет изображения.

Блок строчной развертки

 

Блок строчной развертки управляет строчной отклоняющей катушкой. Именно этот узел обеспечивает перемещение луча по экрану слева направо и обратно. Чтобы понять, как он работает, снова изучите рис. 3.9. Все элементы схем с номерами Зхх (как IC301) относятся к блоку строчной развертки. Строчные синхроимпульсы поступают на монитор через разъем СН202 (контакт, помеченный буквой Н) и для согласования полярности поступают на микросхему «исключающее ИЛИ» (IC201). Преобразованные синхроимпульсы запускают генератор строчной развертки (IC301). Частота строчной развертки должна быть равна 31, 5 кГц, для ее подстройки можно использовать переменный резистор VR3O2. Настоятельно не рекомендуется регулировать частоту строчной развертки, если нет возможности контролировать настройки с помощью осциллографа. Подстройка фазы строчной развертки выполняется резистором VR301. Настраивать частоту и фазу строчной развертки следует только по специальной испытательной таблице.

Микросхема IC301 разработана для формирования высокоточных прямоугольных импульсов, управляющих ключевыми транзисторами Q301 и Q302. С вывода 3 микросхемы 1С 301 управляющие импульсы подаются на транзистор Q301. Транзистор открывается и закрывается, формируя импульсы напряжения на переходном трансформаторе ТЗОЗ. Импульсы с вторичной обмотки трансформатора ТЗОЗ управляют выходным каскадом строчной развертки на транзисторе Q302, к которому подключены строчные отклоняющие катушки (H-DY). В отклоняющей цепи имеются две переменных индуктивности для регулирования линейности по горизонтали (L302) и размера по горизонтали (L303). Коллектор транзистора Q302 подключен также к выходному трансформатору (FBT). Работа высоковольтного выпрямителя рассматривается в следующем разделе.

Неисправности в блоке строчной развертки могут выражаться несколькими способами. Одно из типичных проявлений неисправностей — исчезновение строчной развертки, при этом в центре экрана остается вертикальная линия. Обычно это происходит при неисправностях в генераторе строчной развертки (IC301), реже — из-за неисправности транзистора Q301. Второе типичное проявление — полное исчезновение изображения (и растра) почти всегда вызвано неисправностями в выходном каскаде строчной развертки. Поскольку к этому каскаду подключен и выходной трансформатор, нарушение его работы приводит к исчезновению высокого напряжения и полному исчезновению изображения.

Цепи высокого напряжения

 

Чтобы электронный луч приобрел достаточную энергию на пути от катода к люминофору, на анод ЭЛТ должно подаваться высокое положительное напряжение.

Обычно оно составляет от 15 до 30 кВ. Чем больше размер ЭЛТ, тем выше требуемое напряжение из-за большего расстояния от катода до экрана.

Сердцем цепей высокого напряжения является выходной трансформатор строчной развертки (FBT), показанный на рис. 3.3.

Первичная обмотка подключена к выходному транзистору строчной развертки (Q302).

Другая часть первичной обмотки используется для компенсации изменения высокого напряжения при изменении яркости или контрастности изображения.

Во время обратного хода луча формируется всплеск высокого напряжения, вызванный резким изменением тока в отклоняющих катушках.

Как можно видеть на рис. 3.3, выходной трансформатор строчной развертки содержит одну вторичную обмотку с несколькими отводами.

С верхнего (по схеме) вывода снимается высокое напряжение, подающееся на анод ЭЛТ.

Высоковольтный диод, конструктивно объединенный вместе со строчным трансформатором, выполняет однополупериодное выпрямление напряжения. Только выбросы положительного напряжения проходят на анод.

Конструктивная емкость анода ЭЛТ играет роль фильтра, сглаживающего высоковольтные импульсы для получения постоянного напряжения.

Но для нормальной работы ЭЛТ надо подавать напряжение и на другие электроды.

Отвод от вторичной обмотки строчного трансформатора используется для получения регулируемых напряжений, подаваемых на фокусирующий электрод и на экранирующую сетку.

От этих регулировок зависит работа ЭЛТ.

Неисправности в высоковольтных цепях могут сделать монитор неработоспособным.

Во многих случаях, когда выходной транзистор строчной развертки исправен и развертка работает нормально, выходит из строя выходной трансформатор строчной развертки и одно или несколько высоких напряжений не подается на ЭЛТ. Процедуры поиска и устранения неисправностей в высоковольтных цепях описаны ниже.


КОНСТРУКЦИЯ

 

Прежде чем начать вдаваться в описание процесса устранения неполадок, полезно ознакомиться с конструкцией монитора.

На рис.4.1. показана схема соединения узлов и блоков монитора LG Flatron 795 FT. Почти все детали собраны надвух платах — плате усилителей видеосигналов (видеоусилителей) и на основной плате.

Основная плата содержит цепи развертки, блок питания и высоковольтные цепи. Плата видеоусилителей содержит цепи, по которым проходят видеосигналы красного, зеленого и синего цветов.

Видеосигналы подаются на плату видеоусилителей, к ней же подводятся напряжения, подаваемые на фокусирующие и экранирующие электроды, и подключаются регуляторы яркости и контрастности.

Плата видеоусилителей надевается на цоколь кинескопа (хотя из рис. 3.10 этого и не видно).

Выключатель питания, индикатор включения и петля размагничивания подключаются к основной плате.

На ней находятся и разъемы для подключения сетевого шнура и кабеля, соединяющего монитор с видеоадаптером.


Рис.4.1.. Схема соединения узлов и блоков монитора BENQ 795 FT


Шаг точки (размер пикселя)

 

Еще одним важным свойством, характеризующим качество мониторов, является расстояние между точками, определяемое конструкцией теневой маски или апертурной решетки, расположенной внутри электронно-лучевого монитора. Теневая маска представляет собой металлическую пластину, встроенную в переднюю часть монитора сразу после слоя люминофора. Пластина содержит тысячи отверстий, используемых для фокусировки лучей, исходящих из электронных пушек, что позволяет единовременно облучать только одну правильно окрашенную точку люминофора. Высокая скорость обновления экрана (60-85 раз в секунду) приводит к тому, что все точки облучаются одновременно. При этом теневая маска позволяет сфокусировать облучение на необходимых точках.

В монохромном мониторе разрешение соответствует размеру зерна люминофора, а в цветном — как минимум одной триаде разноцветных пятен. Термины расстояние между точками или зернистость означают расстояние между соседними триадами в миллиметрах (рис. 4.2.). Экраны, характеризуемые меньшим значением зернистости, имеют более тесно расположенные триады пятен люминофора и поэтому могут формировать более четкое изображение. И наоборот, экраны с большим значением зернистости формируют менее четкое изображение.

Оригинальный цветной монитор IBM PC имел зернистость 0, 43 мм — значение, которое теперь не соответствует практически ни одному стандарту. Представленные на рынке современные мониторы имеют зернистость 0, 25 мм и меньше. Я бы не рекомендовал приобретать мониторы с зернистостью больше 0, 28 мм. Если вы хотите сэкономить средства, то лучше приобретите монитор с меньшим экраном и меньшей зернистостью.


Рис.4.2.. Зернистость это расстояние между соседними триадами

 

В мониторах Sony Trinitron и Mitsubishi DiamondTron используется особый тип апертурной решетки: вертикальные полосы красного, зеленого и голубого люминофора. Этот тип электронно-лучевой трубки обеспечивает более яркое и качественное изображение. В таких мониторах зернистость представляет расстояние не между точками, а между полосами

(рис. 15.6). Зернистость 0, 25 мм в этих мониторах равноценна расстоянию между точками 0, 27 мм в традиционных мониторах.

Компания NEC представила новый тип электронно-лучевой трубки с апертурной решеткой, в которой используются мозаичные ячейки из трех полос цветов люминофора (рис. 15.7). Естественно, что такой тип трубки обеспечивает еще более качественное изображение по сравнению с предыдущими типами электронно-лучевых трубок.



Конструкция ЭЛТ

 

Прежде чем мы приступим к обсуждению неполадок в ЭЛТ, вы должны познакомиться с ее конструкцией. На рис. 5.1 показана в разрезе типичная цветная ЭЛТ. Чтобы образовать изображение на экране, пучки электронов генерируются, формируются и направляются на поверхность экрана, покрытую люминофором. Когда пучок электронов (он невидимый) ударяется о люминофор, возникает свечение. Именно таким светом светится экран ЭЛТ. Цвет свечения определяется химическим составом люминофора. Обратите внимание, что в цветной ЭЛТ формируются три пучка электронов: один для возбуждения люминофора с красным свечением, один — с зеленым и один — с синим.

Электронный луч образуется горячей проволочкой. Подогреваемая электрическим током, она приобретает очень высокую температуру (ее свечение видно в горловине ЭЛТ). Ее тепло передается соответствующему катоду, и нанесенный на него слой оксида бария начинает «кипеть» электронами. Первоначально электроны просто окружают катод большим облаком. Но поскольку электроны заряжены отрицательно, они притягиваются любым большим положительным напряжением. Напряжение средней величины (около 500 В), приложенное к экранирующей сетке начинает разгонять электроны, вытягивая их из горловины ЭЛТ и превращая неупорядоченное электронное облако в электронный луч, вто время как управляющие сетки ограничивают плотность луча. После того как электроны минуют экранирующую сетку, под влиянием высокого положительного напряжения на аноде (от 15 до 30 кВ) они начинают стремительно двигаться к экрану. Но луч еще слишком широк, и чтобы сделать его узким, регулируют напряжение на фокусирующей сетке.

В результате получается узкий пучок электронов, летящих с высокой скоростью. Но поскольку вам вряд ли захочется смотреть на яркую точку в центре экрана, необходимо каким-то образом перемещать электронный луч по всему экрану. Отклонение луча реализуется с помощью отклоняющих магнитов, расположенных вокруг горловины ЭЛТ. Вы можете увидеть эти магниты (на самом деле — электромагниты, отклоняющую систему) — это тяжелые катушки провода, расположенные в том месте, где горловина смыкается с конической частью ЭЛТ. Отклоняющая система состоит из четырех катушек: две противоположно расположенные катушки отклоняют луч вверх-вниз, другая пара отклоняет луч


Рис. 5.1. Поперечный разрез типичной ЭЛТ

 

вправо-влево. На эти катушки подается сигнал с цепей отклонения, и электронный луч пробегает по всей площади экрана.

Еще один элемент ЭЛТ, работу которого вам нужно понять — это теневая маска. Это тонкий металлический лист с множеством пробитых в нем маленьких отверстий. В некоторых ЭЛТ вместо теневой маски используется апертурная решетка или щелевая маска — в ней отверстия не круглые, а продолговатые. Оба типа масок служат одной цели — обеспечить попадание электронного пучка только на люминофор соответствующего цвета. Маска — жизненно важный элемент цветной ЭЛТ. В монохромных мониторах экран ЭЛТ покрыт одним однородным слоем люминофора. Если электронный пучок попадет и на соседнее зерно люминофора, буква или линия всего лишь немного расплывутся. А в цветной ЭЛТ это приведет к изменению цвета точки. Маска помогает обеспечивать чистоту цвета. Эта чистота также регулируется специальным магнитом, обеспечивающим точное позиционирование луча на зернах люминофора. Магнит сведения помогает направить все три электронных луча в одно и то же отверстие в теневой маске.


Конечно, сетки, подогреватели, катоды расположены внутри стеклянной колбы ЭЛТ. Электрические подключения выполняются с помощью металлических штырьков, выходящих наружу через цокольную часть горловины ЭЛТ. В табл. 3.2 описано назначение каждого вывода. Имейте в виду, что высокое анодное напряжение подключается непосредственно к аноду через вывод на конической части колбы. Кроме того, ЭЛТ некоторых типов могут иметь дополнительные выводы.Таблица

 

Обрыв подогревателя в ЭЛТ

 


Поделиться:



Последнее изменение этой страницы: 2019-10-04; Просмотров: 197; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.1 с.)
Главная | Случайная страница | Обратная связь