Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Назначение и виды термической обработки.



ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА.

Коэффициент линейного расширения, электропроводность, теплопроводность, окисление, намагничиваемость, удельная теплота плавления, коэффициент трения (возникает благодаря силам взаимодействия между молекулами и атомами соприкасающихся тел).

ТЕХНОЛОГИЧЕСКИЕ СВОЙСТВА.

Определяют способность материала подвергаться различным методам холодной и горячей обработки.

Жидкотекучесть – способность сплава наполнять форму.

Усадка – сокращение размеров и объема после остывания.

Ковкость – способность материала деформироваться при невысоком сопротивлении и принимать нужную форму без разрушения.

Сваривание – способность металлов образовывать прочные соединения при совместном расплавлении.

ЭКСПЛУАТАЦИОННЫЕ СВОЙСТВА.

Определяет долговечность материалов машине.

Хладноломкость – способность работать при минусовых температурах.

Жаростойкость – способность работать при высоких температурах.

Износостойкость – способность сопротивляться истиранию в процессе трения деталей друг о друга.

Vp
Циклическая прочность – вал разрушается при нагрузке в 3 и 5 раз меньше, чем в статическом состоянии.

 


 

№10. Черные металлы (чугуны и стали), Сортамент, основные виды, марки материалов.

Черными металлами является железо и его сплавы. На долю черных металлов приходится 95% мировой металлопродукции.

Марки:

Чугун Fe+C (3-4, 5%).

В его состав могут входить полезные Mn & Si и плохие составляющие S & P (вместе с коксом). Чугун делят на группы:

Серый чугун. (технический): СЧ32, где прочность -sв=32 кг/м2. Используют для изготовления рам и станин машин.

Ковкий чугун. (более прочный): КЧ17-32 соответственно прочность-sв и пластичность -d. Изготовляют крупные детали, работающих при динамичной нагрузке: маховики паровых машин.

Высокопрочный жаростойкий чугун (300-400оС): ЧС5 (Si – 5% придает высокую термостойкость)

Сталь – деформируемый ковкий сплав Fe+C (до 2%). Различают по химическому составу:

Углеродистые стали. (Mn 1%, Si 0.45%).

1.Углеродистая сталь обыкновенного качества: Ст0 до Ст6 (7 марок), наиболее известная Ст3, по мере увеличения цифры увеличивается содержание углерода и прочность-sв. Из нее изготавливают прокат:

2.Сталь углеродистая качественная: Сталь 0, 8, 10, 15, 85. Цифры указывают содержание углерода в сотых долях процента, т.е. в 0, 01%. По мере увеличения цифры (углерода) увеличивается прочность.

- Низкоугродистые стали: используют для заготовок холодной штамповки.

- Среднеуглеродистая – содержание С до 0, 5%, самая известная Ст45. Используют для большинства машин.

- Высокоугледистые – для изготовления деталей, работающих на износ, закаливаемых до высокой прочности.

Сталь легированная конструкционная: для изготовления деталей машин. Легирующие элементы: Mn Si Cr и Ni Mo W.

Низколегированные (< 2.5%), легированные (2.5-10), высоколегированные (> 10%).Fe> 45. Маркируются и обозначаются цифрами и буквами: 1-ые две цифры – содержание углерода в сотых долях, буквы – легирующие элементы, 2-ые цифры – содержание этих элементов: Mn-Г, Si-С, Cn-Х, Ni-Н, Mo-М, W-В. Напр. 45Г, 10Г2С1, 15Г2Хф, 12Х2МН4А

Строительные легированные: 09Г2, 10Г2С1, 16Г2Хф. Из них широко используют 15Х, 20Х; 20Хр-хромованадьевые; 12ХР3А - хромоникелевые (пониженное содержание S & P); 18ХТ – хромо марганцовистые изготовляют ответственные детали машин в самолетах (там где необходима высокая надежность)

Высоколегированные. Кррозионостойкие 12ХН19; жаропрочные 10Х14Г14М4Т; жаростойкие (без окисления до 8000С) 08Х17Н15М3.

 

 

№11. Цветные металлы и сплавы, характеристика основных марок Сортамент, основные виды.

Алюминий – обладает низким удельным сопротивлением, хорошей теплопроводимостью и хорошей коррозионной стойкостью (покрыт оксидной пленкой). А999 (сод. Al 99, 999%), А99, А95. Используют в машиностроении, алюминий применяют в виде сплавов: деформируемые ал. сплавы – выплавляются на основе Al, Mn; литейные ал. славы – изготовление деталей, которые целиком отливаются Al–Si 150-2000, Al-Si-Cu (АЛ3, АЛ5) до 2700, Al-Mg (АЛ8), Al-Mn (АМц), AL-Mg (АМг), Al-Mg-Si (АД), Al-Cu-Mn.

Медь и ее сплавы . Хорошо обрабатывается давлением и резаньем, обладает высокой теплопроводностью, электропроводностью, устойчивостью к коррозии.

Латунь сплав меди с цинком, обладающий достаточно хорошей прочностью и коррозионной устойчивостью. Л80 (меди 80%). Применение в машиностроении, приборостроении в химической промышленности.

Бронза – сплав, легирующими элементами являются различные металлы, кроме цинка. БрОФ4-0, 25 4%- олова 0, 25%- фосфора, остальное медь. По сравнению с предыдущим сплавом обладает большей прочностью, высокой коррозионной стойкостью, антифрикционными свойствами. Сплав самый прочный, изготовляют астрономические зеркала.

Медно-никелевые сплавы. Конструкционные: изготовление изделий из мельхиора – МНЖМц30-1-1, МН19; нейзильбер МНЦ 15-20 (посуда). Электротехнические: констант МНМц40-45 обладает высокой температурной стойкостью, изготовляют нагревательные элементы; копель МНМц43-05.

Титан и его сплавы. Вошел с развитием машиностроения. «+» высокая коррозионная стойкость, ненамагничиваемый, высокая удельная прочность, низкая теплопроводность, низкий коэффициент линейного расширения. Бывают литейные (ВТЛ, ВТ5Л, ВТ9Л- наиб. прочный 5000С), деформируемые.

Магний – в чистом виде Мг96, Мг95, Мг90. Подразделяют на литейные (Мл) и арматурные (Ма).

Обладают последние повышенной герметичностью, используют при изготовлении самолетов и ракет. «+»очень плотное соединение, «-»магний воспламеняется при физической обработке.

 

№12. Основные операции термической обработки.

Оборудование для плавки.

Главное оборудование в литейных цехах – печи для расплавления металла.

Вагранка. Маленькая доменная печь, для плавки чугуна. 1металлический корпус из чугуна, 2огнеупорный кирпич футеровка - кварцевый кирпич (до t 2300-2500’C), 3шихта - чередующиеся слои чугуна и кокса, 4дутье – отверстия с помощью которых подача кислорода, 5летка, которая периодически открывается, чтобы выпустить расплавленный металл. Температура в печи 1400-1500’C.

 

 

Дуговая электропечь. 1 электроды (из графита, вольфрама), 2 керамическая футеровка, 3 каркас из дешевого материала, 4 заготовки, исходный материал. Температура в печи – 2500’C.расплавленный металл практически без примесей. Расплавленный металл, помещенный в ковши, развозят по цеху.

 

 


Индукционные печи. Создается электромагнитное поле высокой частоты, за счет которого происходит плавка особых металлов. Температура в печи – 1500-1600’C. 1тигель.

 

 


Электрические печи сопротивления. Существуют тены - спираль из нихрома. Металл помещается и нагревается за счет потоков излучения, конвекции. Печи применяются для плавления цветных металлов.

Печи данное оборудование сложное, дорогостоящее. И процессы плавки – периодические.

 


 

№14. Литье в землю. Понятие модели, формы и стержней.

Древнейший способ литья. Два варианта выполнения: 1 ручная формовка по деревянным моделям, 2 машинная формовка по металлическим моделям.

1 ручной формовкой по деревянным моделям:

используется в единичном и малосерийном производстве, для получения заготовок сложной конфигурации мелких и средних размеров (до 200 т), для черных и цветных металлов. Название происходит из-за того, что материал модели – дерево. Формовочная смесь состоит из земля + глина + песок.

Отливка модели отличается:

 

 


Припуск – набавляют на обрабатываемые поверхности, чем больше припуск, тем больше механической обработки. Его величина Z=0, 5-1 мм до 15-20 мм, средний припуск 3-5мм.

Для извлечения деталей из формы перпендикулярно плоскости разъема делают – уклоны (внутренние и внешние), что требует дополнительных расходов.

Для упрощения формы - напуски, закрывают сплошным металлом.

На острых углах радиус скругления – галтель.

Модель – деревянная.

Состоит из двух частей:

 

 

 


Чтобы определить нахождение стержня необходим знак – возвышение.

Формовка.

Землю уплотняют.

Разбирают форму и извлекают модель. В земле пустота, куда вставляют стержень, если предусмотрено отверстие.

Для заливки металла – литник, через выпор смотрят степень заливки металлом данного пространства. После остывания, извлекают отливку, земля разрушается и уходит через решетку. Земля идет на повторное использование.

Достоинства: получение отливок любой точности и конфигурации, неограниченные размеры, сравнительная низкая себестоимость (опоки многоразовые).

Недостатки: низкая производительность, длительный процесс, низкая точность 14-17 кв., низкое качество поверхности Rz = 400000 мм, значительные расходы на литники (отхода до 35%), большие припуски и последующие большие отходы в стружку, тяжелые условия труда.

Литье в оболочковые формы.

Применяется в серийном производстве отливки из черных и цветных металлов с различной массой до 150 кг, сравнительно некрупных. Отливки имеют упрощенную конфигурации, обычно без внутренних полостей.

Особенность заключается в формовочной смеси, которая состоит из мелкозернистого кварцевого песка и термореактивной смолы, которая расплавляется при температуре 80-90’C, а при температуре 120’С через несколько секунд полимеризуется и затвердевает.

Технический процесс выполняется на специальных машинах.

Модель прикрепляют к крышке и нагревают до 80-90”С, затем переворачивают данную установку и смола, попавшая на металлическую модель расплавляется и прилипает, затем снова переворачивают и снова нагревают до температуры 120, и благодаря свойству смолы она затвердевает, получается полу форма. (аналогично вторую половинку)сковыривают корочку и получают форму, в которую можно заливать металл.

 

 


Крупные формы иногда ставят в опоку и засыпают землей, чтобы жидкий металл не пробил форму.

Достоинства: высокая производительность, промышленная точность отливок 12 кв., удовлетворительное качество поверхности Z = 0, 5-1, 5мм, резкое сокращение расходов формовочной смеси в 20-30 раз, низкие потребности в производительных площадях, примерно в 5 раз.

Недостатки: стоимость одного кг литья выше, чем в землю на 40-50%, ограниченные формы и массы отливок, токсическое воздействие паров смолы.

Литье под давлением.

Применяется для отливок сложной формы, массой до 100 кг из легкоплавких цветных металлов. Это самый высокопроизводительный способ лить позволяет производить 200-400 отливок в час.

Процесс литья заключается: расплавленный металл подается в рабочую полость стальной пресс-формы под давлением 300-500 МПа. Весь процесс осуществляется на одной машине, которая работает в автоматическом или полуавтоматическом режиме. Это наиболее известная форма литья.

 


Принцип:

 

Одна часть формы подвижная. Металл подается в специальный мундштук из цилиндра. Чтобы металл не остывал камера сжатия подогревается постоянно.

Сложная часть процесса – изготовление пресс формы. Из высококачественных сталей 5ХНМ, внутренняя поверхность шлифуется до 0, 1мкм.

Каждый цикл литья состоит: смазка пресс формы машинным маслом с графитом; установка стержней; смыкание пресс формы; заливка металла в камеру; впрыск металла в рабочий ход; выдержка или охлаждение; извлечение отливки.

Достоинства: высокая производительность; возможность автоматизации, высокая точность 9-10кв; низкая шероховатость Rz = 6, 3-10мкм; маленькие припуски на обработку 0, 1-0, 4 мм.

Недостатки: высокая стоимость и сложность изготовления пресс форм; ограничение размеров, сложности внутренних форм; некоторая пористость отлива из-за газовых пузырьков, неуспевающих покинуть пресс формы.

Применяют в крупносерийном производстве.

 


 

№17. Сущность обработки давлением, основные виды процессов.

Обработка давлением основана на способности металлов получать пластические (остаточные) деформации, под действием воздействующих на них внешних сил, не разрушаясь. При этом заготовка простой формы принимает схожую с деталью форму того же объема. Снижаются отходы. Процесс х-ся высокой производительностью.

Но металл в процессе пластической обработки упрочняется. Растет его прочность и уменьшается пластичность, если продолжать его деформировать он может разрушиться. Чтобы восстановить его с-ва заготовку подвергают термической обработке (отжигу).

Все процессы обработки металла давлением делятся на:

1) Горячую обработку. Она осуществляется с предварительным нагревом заготовки до достаточно высоких температур (800-900)С, чтобы повысить пластичность

2) Холодную обработку. Осуществляется при комнатной температуре, за счет их естественной пластичности.

По х-ру протекания пластической деформации все процессы обработки давлением делятся на:

1) Прокат - обжатие заготовки вращающимися валками, что приводит к изменению поперечного сечения данной заготовки. Получают прокатные изделия длиной от 6 до 12 м разного профильного сечения. На прокатном стане металлического завода.

 

 

 


2) Волочение - протягивание длинной заготовки через сужающееся отверстие в спец инструменте, называемом волок. Процесс может производиться в несколько проходов на волочильном стане. Данным способом получают проволоку, прутки и т.д.

 

3) Ковка - деформация заготовки ударами инструмента простой формы, при свободном течении металла между бойком и наковальней. Древнейший способ обработки металла, требующий высокого мастерства управления силой удара. Оборудование- молот. Используется для крупных заготовок, т к не обеспечивает большой точности.

 

 

4) Штамповка - обработка давлением с помощью штампа, внутренняя полость которого имеет конфигурацию штампуемой заготовки. Самый распространенный метод, отличающийся высокой производительностью. Разделяется на два процессов: 1.объемная горячая штамповка, 2холодная листовая штамповка.

 

 

 

№18. Оборудование для обработки давлением.

Самый капиталоемкий метод обработки. Необходимо крупное оборудование и большие производственные площади. Основное оборудование: молоты (ударное воздействие), прессы (плавное статическое воздействие).

1) Паро-воздушный молот. Материал деформируется благодаря силе падающих частей, масса которых 1-8 тонн. Масса заготовок 20-350 кг, они обычно простой формы. Самое простое и дешевое оборудование. Но работает с большим шумом и низкой точностью, необходимы большие припуски.

 

Подается сжатый воздух или пар под давлением

         
 
 

 

 


2) Кривошипно-шатунные горячековочные прессы. Используют накопленную механическую энергию маховика, передаваемую на боек через кривошипно-шатунный механизм. Плавно работает с меньшими ударами, усилием до 100МН, но их стоимость в 3-4 раза больше чем у молота.

     
 

 


3) Горизонтально-ковочные машины. Используют энергию моховика, передаваемую через кривошипно-шатунный механизм, позволяющий наносить удары в двух направлениях. Штамп состоит из двух половинок: матрицы и пуансона, формирующего внутренние поверхности.

 

 

 


Мощность до 30МН, позволяют получать более точные и сложные заготовки. Но стоят они в 1, 5 раз больше чем горячековочные прессы.

4) Гидравлические штамповочные прессы. Машины условно статического действия. Усилие создается с помощью жидкости или газа под давлением 20-30 Мпа. Похожи на молоты. 100МН. Получаются самые крупные и точные заготовки: корпуса лодок, кузова автомобилей. Самое дорогое и громоздкое оборудование высотой до 10-15 метров.

5) Печи для нагрева и отжига: газопламенные, электрические.

 


 

№19. Горячая объемная штамповка.

Это формообразование заготовок нагретых до температуры 1000-1200 градусов в фасонных полостях штампов, сдавленных со значительным усилием. Нагрев снимает сопротивление металла деформированию, обеспечивает хорошее заполнение сложной формы. Однако точность заготовок и качество поверхностей не высоки. Что требует значительной последующей механической обработки. Высокопроизводительный процесс, широко применяется в машиностроении (горячештамповочные цеха). Производство осуществляется на одном рабочем месте и состоит из 2 операций нагрев (печь) и штамповка (молот).

Технологическая подготовка ГШП состоит:

1. Проектирование чертежа штамповки

2. Проектирование технологического процесса штамповки

3. Проектирование и изготовление штампов

Чертеж отличается наличием припусков и напусков, штамповочных уклонов и радиусов скругления. Сами штампы изготовляют из дорогих сталей 3Х2В8Ф, 7Х3.

 

 

Изготовление их отличается сложностью и трудоемкостью, это причина их высокой стоимости. Стоимость штампов переводится на стоимость получаемых в них заготовок. В процессе работы штампы изнашиваются. Они могут использоваться для изготовления 3000-5000 до 10000-15000 заготовок.

Технологический процесс состоит:

1. Нагрев заготовок определяет качество, производительность и стоимость продукции. Нагрев должен быть равномерным; осуществляться в специальных печах (газопламенных, электрических, соляных). Нагреть до нужной температуры и выдержать, а за тем быстро подать на штамповку.

2. Штамповка: нагретая заготовка из печи переносится в штамп, включ. рабочий ход молота или пресса, за 1-2 удара формируется простая заготовка.

 

 

 


3. Обрезка заусенца: когда полости штампов смыкаются, часть металла может выступать (2-3%) и образуется заусенец, который нужно обрубить (в специальном прессе с отверстием)

 

 


4. Правка применяется для сложных заготовок, искривляющихся в процессе штамповки или охлаждения. Выполняется в этом же штампе в холодном или подогретом состоянии(600-500).

5. Отжиг применяется для возвращения металлу пластичных св-в (возвращается исходное состояние металла).

6. Очистка от окалины проводится мех. путем на дробеструйных установках или мет. щетками, и химич. путем (травление)

7. Калибровка - холодное обжатиезаготовки в спец. точных штампах для придания необходимой точности размерам, чистоты поверхности за счет пластичности основного металла.

 


№20. Холодная объемная штамповка.

Формообразование деталей в штампах пластическим деформированием при комнатной температуре за счет естественной пластичности.

Особенности:

Процесс обеспечивает высокое качество поверхности, высокую точность и невысокую шероховатость поверхности при малых отходах и высокой производительности.

Материал заготовки должен обладать высокой пластичностью. d> 10%, Y> 12%.

Заготовки не могут быть слишком сложной формы

Металл при холодной штамповке сильно упрочняется, что требует промежуточного отжига для восстановления пластичности заготовки.

Главный инструмент - штамп, который изготовляется из высокопрочных дорогих сталей, сплавов, что вызывает сложности изготовления, стоимость штампов переносится на количество деталей.

Холодная штамповка отличается точностью, качеством, применяется в крупносерийном и массовом производстве.

Инструментальные стали.

1.углеродистые инструментальные C (углерод)=0, 9-1, 3% (У10А, У11А, У12А). У них твердость в закаленном состоянии HRC 60-62, но низкая красностойкость 200-250°C., Vр=15-18м/мин. Используются для изготовления ручного режущего инструмента (метчики, напильники).

2.легированные инструментальные.: Сr, W, Vo, Ni, C (добиваются повышенных режущих св-в. (XBГ, 9XC, XГ); HRC 62-64; красностойкость 250-300°C; Vр=15-25м/мин. применяются для сложного фасонного режущего инструмента.

3.быстрорежущие до 19% W, Co, Cr; HRC 62-65; красностойкость 600-700°C; Vр до 80 м/мин. Применяются в виде пластинок, насажденных на державку.

Минералокерамика

Синтетический материал на основе глинозема Al2O3. Получают пластинки большой твердости HRC 91-93, высокая красностойкость 1200°С, высокая износостойкость. Применяется в пластинках СМП, но очень хрупкий материал, только в чистовой обработке (в основном точение), без ударов и вибрации. ЦМ-322.

Тех. процесс сборки.

1. Подготовка детали к сборке, контроль мойка, расконсервация.

2. Сборка различных соединений.

3. Контроль соединений машины в целое.

4. Иногда выполняется разборка изделий с доработкой и сборка заново.

5. Испытание изделия в холостую и под нагрузкой.

6. Нанесение защитных покрытий: смазка, окраска.

7. Консервация и упаковка изделий перед транспортировкой.

 

 

№37. Организационные схемы сборки.

В зависимости от масштаба изделий, их массы применяют различные формы организации сборочных процессов: 1)стационарная сборка – характеризуется тем, что весь процесс сборки выполняется на одной сборочной позиции – стенде при неподвижном изделии. Применяется при сборке сложных тяжелых изделий: турбины, самолеты. При единичном и мелкосерийном производстве весь процесс сборки выполняется одной бригадой слесарей – сборников высокой квалификации.

Бригада рабочих специализируется по виду выполняемых работ, и выполняют работу переходя с одного стенда на другой: стационарная поточка при сборке самолетов.

Наиболее частая организация:

2)Подвижная сборка, когда собираемое изделие перемещается в процессе сборки с одной позиции на другую, где последовательно выполняются сборочные операции. Используются при сборке мелкой и средней тяжести изделий при значительном их объеме пр-ва: (серийное, массовое). Весь технологический разделяется на большое число простых и нетрудоемких операций. Их длительность подбирается кратно их выпуску: , где F – годовой фонд рабочего времени ~ 4140 часов, N – объем изделий 25000, t – 10 мин. Формулу придумал Г.Форд. В условиях массового производства собираемый объект перемещается от одного рабочего места к другому следующими способами: в ручную (по наклонным лоткам, тележкам, одним рабочим другому), с помощью механических устройств - конвейеров.

Конвейер двигается со скоростью от 0, 25-3, 5 м/мин и пока объект находится в зоне рабочего подвижная поточная сборка – самый передовой способ произ-ва, высокопроизводительный способ организации сборочного производства. 1910г. – Г.Форд.

 


 

№38. Способы сборки разъёмных соединений.

В машинных механизмах разъемная сборка преобладает. Различают способы соединения.

Соединение зазором – выполняется вручную, путем плавного движения одной детали на другую. Зазоры для вала диаметром 50-0.05 мм, для отверстия диам.50 +0.07. мм Зазоры max=0, 12, min=0. Для посадки используют деревянные молотки.

Резьбовые соединения.

     
 


Осуществляется соединительными болтами, иногда болты скрепляются с гайками. Одной из больших проблем таких соединений является самоотвинчивание т.е. ослабевание усилия стягивание (при длительном воздействии, в рез. вибрации, вследствие температурной деформации). Чтобы это предотвратить использ:

контргайки,

 


пружинные шайбы, при попытки болта отвертеться острые концы врезаются в болт и в гайку и препятствуют развенчиванию

шплинты:

 

Виды зубчатых передач.

1. Цилиндрические – 85%;

 

 

2. Конические – 10%;

 

 


3. Червячные – 8%, передача вращения между скрещивающимися осями.

 

При сборке зубчатые колеса устанавливаются на валы, которые устанавливаются в корпус. Главное при сборке обеспечить необходимую величину бокового зазора (от 0 до 0, 1мм - оптимальный). Зазор необходим для компенсации теплового расширения. Если зазор мал, то при расширении колеса заклинивает, если же большой, то зубья ломаются при ударе друг о друга. Чтобы определить величину зазора используют различные методы:

1. С помощью щупа – набор пластинок точной толщины;

2. Прокатывание свинцовой проволоки м/у зубьями, она расплющивается, и ее измеряют;

3. С помощью спец приборов – индикаторов по величине мертвого хода (одно колесо закрепляется, другое накатывается).

 


 

№39. Способы сборки неразъёмных соединений.

Все виды соединений разделяются на два класса разъемные и неразъемные. Разъемные соединения допускают разборку и повторную сборку без нарушения целостности собираемых деталей. К ним относятся соединения болтами, гайками и т.д. Неразъемные не могут быть разобраны без повреждения соединяемых деталей. Их получают сваркой, пайкой, запрессовкой и т.д.

Сварка – один из основных методов сборки неразъемного соединения.Сварка технологический процесс получения неразъемных соединений в результате частичного оплавления соединяемых деталей. Дешевый процесс легко механизируется, простое оборудование.

Особенность: сварка позволяет заменить сложную цельнометаллическую тяжелую конструкцию на сборную, состоящую из простых элементов, полученных прокаткой. Это позволяет снизить трудоемкость и себестоимость продукции. Сварные соединения на 20-30% менее прочны, чем литой металл.

Процесс сварки бывает двух типов давлением и плавлением.

Плавлением.

 

 


               электрод

 

Температура 200`С. при охлаждении объем уменьшается, а этому препятствует напряжение. Прочность соединения на 1/3 < прочности сплошного металла.

Технологический процесс состоит:

1.Очистка механическим или физическим путями.

2.Сжатие пов-ти с определенным усилием, иногда с помощью подогрева для более эффективного дифундирования атомов.

3.Выдержка для достаточно пластичных металлов, низкоуглеродистых (платина, золото).

Склепывание - способ соединения деталей с помощью промежуточных соединений (клепок). Детали накладываются, друг на друга в них просверливаются сквозные отверстия и в них вставляются заклепки.

С другой стороны наносится удар бойком, и под действием силы нажима клепка расплющивается, и она прочно заполняет отверстие.

В настоящее время заклепочные соединения постепенно вытесняются сваркой, однако их целесообразно применять там, где конструкция подвергается высоким динамическим нагрузкам, заклепочные соединения выполняются из алюминия, меди и стали. Заклепки малого диаметра до 10мм «садят» в холодном состоянии. Заклепки большого диаметра нагревают до 800 – 900С и садят в горячем состоянии. Для клепки применяют специальные инструменты - прессы, автоматы, клепальные молотки.

Запрессовка деталей – при изготовлении соединяемые детали делают такими, чтобы они ни входили друг в друга.

Например: d вала 100+0, 08+0, 02: min 100.02, max 100.08; d отверстия 100-0, 05 max100 min99.95.

Такие соединения получают двумя способами: механическим и тепловым. Механический заключаются в том что, несмотря на разницу размеров, все таки удается вставить детали за счет упругих деформаций. Тепловой способ – при нагревании и или охлаждении детали сжимаются или расширяются. Тогда применяется нагревание охватывающих поверхностей или охлаждение вставляемых деталей. Метод соединения деталей нагреванием дает прочность соединения на 25 – 30% выше прочности механической запрессовки, за счет шероховатости пов-ти.

Для нагрева применяют солевые ванны тем нагрева 150-2000С. Охлаждение выполняется либо сухим льдом до –700С, либо жидким азотом до –1760С.

Склеивание – применяется все чаще, благодаря изобретению искусственных склеивающих материалов. Клеевые соединения удовлетворительно сопротивляются сдвигам и динамическим нагрузкам, но их тепловая стойкость не превышает 90С. В качестве клеев используют смеси эпоксидной смолы, смеси с портландцементом. Этим клеем можно склеить такие пары как текстолит и чугун, текстолит и сталь, бронза и чугун и т.д. склеиваемые поверхности должны тщательно счищаться, обезжириваться. Для ускорения процессов склейки детали иногда нагревают.

 

 


 

№40. Оборудование сборочных цехов.

Условно существует две группы:

1. Технологическое

2. Вспомогательное или транспортные.

Состав (1):

1. ручной слесарно-сборочный инструмент (отвертки, молотки, гаечные ключи, зубила, напильники, плоскогубцы, круглогубцы);

2. Ручные машины для слесарных работ (сверлильные станки, гайковерты и т.д.);

3. Сборочные приспособления универсальные (тески, домкраты, установочно-зажимные стенды);

4. Специальные станки: установочно-зажимные стенды.

5. Прессы (ручные, пневматические, гидравлические);

6. Оборудование для балансировки вращающихся деталей;

7. Оборудование для мойки, нагрева, заправки смазкой;

8. Оборудование для сварочных работ: трансформаторы;

9. Оборудование для покраски (пульверизаторы, сушильные аппараты);

Состав (2): разнообразные устройства:

- Конвейеры подвесные (не требуют дополнительных производственных площадей, обладающие значительной протяженностью, используют для транспортировки м/у цехами, этажами);

     
 

 

 


- Напольные конвейеры (расположены на уровне рабочего):

ленточные (для сборки легких и средний изделий 800-1000), v=6 – 30м/мин., зависят от такта пр-ва, пластинчатые (для сборки устойчивых изделий 400-1000), v=1 – 5м/мин.,

роликовые - рольганги (1 – 3м/мин.) основаны на трении качения: неприводные, наклон 1-30, рабочему необходимо лишь толкнуть, для крупных модулей существует передача и изделие катится.

 

 


-    Грузоведущие (напольные конвейеры для тяжелых изделий).

тележечные – движение м/б непрерывным 0, 25-6 м/мин либо периодические:

 

рамные – вмонтирован в полу рама совершает движения по направлениям(поднимет изделие, перемещает и возвращает его обратно):

- Мостовые краны (для изделий m> 5тонн) перемещаются по специальным путям;

 
Крановщица управляет процессом

 


- для перемещения изделий до 5 тонн используют кран-балку.

 

 

В качестве транспортирующих устройств используются роботы, так называемые робокары.


 

№41. Электроэрозионные методы обработки.

В современном машиностроении с НТР возникают проблемы обработки материалов с особыми физико-механическими свойствами из высокопрочных, вязких материалов. И с другой стороны возникают проблемы обработки тонкостенных деталей с пазами и отверстиями в несколько мкм. Эти проблемы решаются с помощью электрофизических методов обработки в которых используется физические явления. Эти методы являются необходимым методом, дополнением к мех. обработке, не заменяя ее. Обычные методы обработки менее энергоемки чем эти методы. Но есть особый случай, где электрофизические методы более удобны и лучше. Занимают определенный объем трудозатрат 5-10%.

Электроэрозионная обработка.

В основе ЭЭО лежат физические явления электрической эрозии, т.е. разрушения эл. контактов при возникновении между ними электрических разрядов.

В конце 40-х годов предложение использовать это явление для обработки: схема

 

     
 

 

 


Поделиться:



Последнее изменение этой страницы: 2019-10-04; Просмотров: 179; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.178 с.)
Главная | Случайная страница | Обратная связь