Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Характеристика и анализ производства



Введение

 

Пивоваренное производство входит в число 10 ведущих отраслей российской экономики. В системе пищевой промышленности его удельный вес составляет около 23%. В отрасли занято 600000 человек.

По потреблению пива на душу населения в 2009 году Россия вышла на 30-е место в мире – 62 л, в то время как в Чехии (1-е место) потребляют около 158 л, а средний уровень (активных стран-потребителей) равен 70 л.

За первый квартал 2009 года, по данным Росстата, темпы роста производства пива в России составили всего 2, 3 процента, став самым низким показателем за последние несколько лет. Однако, несмотря на это, некоторым компаниям удается сохранять неплохие финансовые результаты. Выручка компании «Балтика» от реализации увеличилась на 5, 3%. Это было достигнуто благодаря переориентации на премиальный сегмент рынка, а также снижению цен на сырье.

Около 85% пивного рынка России приходится на долю 5 крупнейших пивоваренных компаний. Это «Пивоваренная компания «Балтика», «Сан ИнБев» (ранее «Сан Интербрю»), ООО «Пивоварни Хайнекен», МПБК «Очаково», «Пивоварня Москва-Эфес». Усиление конкуренции между компаниями способствует выпуску новых сортов пива. Часть продукции экспортируется, а остальная распределяется между каналами «On-trade» и «Off-trade» в соотношении 1: 11 (соответственно 8, 4 и 91, 6%).

Тенденция по продажам «On-trade» и «Off-trade» в Нижегородской области сохраняется Около 45% рынка здесь занято ООО «Пивоваренная компания «Волга» (мощность 2, 2 млн. гл/год), – в составе ООО «Пивоварни Хайнекен» с 2005 года. Компания ориентирована на сегмент рынка, соответствующий пиву эконом-класса, что отвечает преобладающим запросам потребителей в регионе. Остальную часть делят в разных долях крупные общероссийские пивоваренные компании и международные корпорации – ими удовлетворяются потребности в пиве и солодовых напитках среднего класса и premium. Все указанные предприятия реализуют только пастеризованное пиво, в том числе и в каналах «On-trade».

Существующие и появляющиеся в России и в мире методы производства пива можно разделить на следующие группы:

- традиционные по типу используемого сырья и технологии;

- с использованием нетрадиционного сырья и технологий;

- ускоренные;

- комбинированные;

- непрерывные;

- инновационные.

Традиционными считаются методы получения непастиризованного пива верхового и низового брожения из ячменного и пшеничного солодов с настойным или отварочным способами затирания, раздельным брожением и дображиванием. Достоинство методов: классический вкус и высокое качество продукта; недостатки: низкий срок хранения продукта, высокая стоимость сырья и значительные энергозатраты.

Методы с использованием нетрадиционного сырья для лагера или пива верхового брожения предполагают применение рисовой сечки, кукурузной муки, сахара, мальтозной патоки, несоложеного ячменя и пшеницы, затираемых отварочным или настойным способами с применением ферментных препаратов (микробиологического или синтетического происхождения). Брожение и дображивание разделены, возможна деалкоголизация, проводится пастеризация в потоке или туннеле, искусственное насыщение углекислым газом (карбонизация). Достоинства: понижены затраты себестоимости, достижимы новые оттенки вкуса, увеличен срок хранения; недостатки: рост энергозатрат при использовании отварочных способов затирания, ухудшение качества и вкуса вследствие пастеризации и карбонизации.

Ускоренные методы связаны, как правило, с применением цилиндроконических бродильных танков (ЦКТ), оборачиваемость которых в 1, 5 – 2, 5 раза выше, чем у традиционных, брожение и дображивание ведутся в одном аппарате. Достоинства: повышенная производительность без снижения качества, сниженные затраты на строительство цеха ЦКТ, технологическая гибкость, простота автоматизации техпроцесса и возможность эффективной безразборной мойки. Недостатки: высокая стоимость самих аппаратов.

Комбинированные методы практически лишены недостатков и способствуют достижению оптимальных результатов ведения технологического процесса, хотя и требуют значительных начальных капиталовложений.

Непрерывные методы в отличие от указанных выше (периодических) позволяют осуществлять постоянный выпуск продукции, применяются на крупных зарубежных предприятиях (пример – компания «Бавария») и не являются массовыми в плане распространения. Достоинством методов непрерывного производства является сниженная себестоимость продукции, исключение непроизводственных простоев, возможность получения широкого ассортимента, в том числе безалкогольного пива. Недостаток: высокая вероятность контаминации продукта посторонней микрофлорой, появление нежелательных вкусовых оттенков.

К инновационным способам производства пива относятся:

- технология высокоплотного пивоварения;

- стриппинг сусла;

- использование майш-фильтров;

- технология приготовления «ледяного» пива;

- усовершенствованные мембранные методы деалкоголизации и методы прерывания спиртового брожения;

- мембранные методы стабилизации готового пива;

- использование иммобилизованных дрожжей;

- высокотемпературное кипячение сусла с хмелем;

- применение выносных контуров нагрева и кипячения сусла, механическая и термокомпрессия вторичного пара.

Целью проекта является разработка стратегии модернизации производства пива на малом предприятии города Дзержинска с выбором конкретных изменений в технологическом процессе и аппаратурном оформлении, отвечающих основным требованиям к инновациям.


Таблица 1 – Ассортимент продукции ООО «ДПЗ»

Наименование сорта пива Экстрактивность начального сусла, % масс. Содержание алкоголя (не менее), % об.
«Нижегородское бочковое» 12 4, 5
«Золотой сокол» 11 4

 

Продукция предприятия реализуется на территории Нижегородской, Московской, Владимирской, Тамбовской, Ивановской и Пензенской областей, в республике Марий-Эл.

На предприятии используется традиционная технология приготовления сусла. Подработка воды состоит в грубой очистке на песочныом и угольном фильтрах, обезжелезивании, натрий-катионитовом умягчении и обеззараживании на лампах УФО. Затирание проводится настойным способом, отделение сусла от дробины – в фильтрчане, подогрев – в сборнике сусла, кипячение в сусловарочном котле со встроенным кожухотрубчатым перколятором, осветление и частичное охлаждение – в вирпуле, окончательное охлаждение – в двухсекционном пластинчатом холодильнике косвенным способом (хладагенты – вода и гликоль, поступающий из фреоновой холодильной установки). Сусло аэрируется и поступает на брожение по сокращенной схеме в ЦКТ, далее фильтруется на фильтр-прессе, обеспложивается, направляется на форфас-хранение и розлив. Газообразные продукты брожения удаляются посредством вытяжной вентиляции, солодовая дробина направляется на корм скоту.

Проблемным моментом является отсутствие собственной котельной и, как следствие, существование необходимости использования пара, вырабатываемого на оборудовании, принадлежащем сторонней организации (ОАО «Дизель»). Указанное обстоятельство ведет к росту себестоимости продукции, а его влияние снижается посредством более активного применения розлива в ПЭТ-тару, подготовка которой не сопряжена с обработкой данным теплоносителем, и снижения объема пива, розливаемого в стеклотару. Потребность пара при розливе в кеги удовлетворяется за счет существования маломощного парогенератора, который, однако, неспособен обеспечить паром варочное отделение и линию розлива в стеклотару. Значительный расход пара при осуществлении варки и затирания также свидетельствует о необходимости проведения организационно-технических мероприятий, направленных на оптимизацию производственного процесса в условиях достижения желаемого эффекта, связанного с ростом годового выпуска пива.

Строительство собственной котельной сопряжено со значительными материальными затратами, однако позволяет решить проблему обработки стеклотары на соответствующей линии розлива. Современные технологические разработки в области пивоварения при их реализации на ООО «ДПЗ» способны привести к значительной экономии тепловой энергии, а некоторые из них – и холода. Кроме того, значительные временные затраты связаны с фильтрацией затора в фильтр-чане, что также нуждается в коррекции путем модернизации действующего аппарата или его замены фильтр-прессом.

На 2010 год намечен рост производственных мощностей предприятия для достижения выпуска в размере 90000 гл пива в год.

На 2011 год намечено расширение ассортимента продукции путем начала выпуска на предприятии безалкогольных напитков.


Технологическая часть

Процессы при затирании

Затирание зернопродуктов является главной стадией приготовления пивного сусла. Цель затирания состоит в водной экстракции из солода растворимых веществ и нерастворимых частей зернопродуктов после их перевода в растворимое состояние в результате физико-химических и биохимических превращений. Указанные соединения и составляют экстракт сусла и пива. Растворимыми являются сахара, декстрины, минеральные вещества и определенные белки. К нерастворимым соединениям относится крахмал, а также целлюлоза, часть высокомолекулярных белков и другие вещества, остающиеся в виде дробины по окончании последующего фильтрования.

Затиранию предшествует дробление солода, результатом которого должен быть помол оптимального состава, обеспечивающий, с одной стороны, наилучшее экстрагирование, а с другой – наилучшее фильтрование заторной массы.

Основополагающими процессами на стадии затирания являются:

- расщепление крахмала;

- расщепление глюкана (гумми-веществ);

- расщепление белковых веществ;

- превращения жирных кислот.

Важнейшим ферментативным процессом при затирании является расщепление крахмала. Весовое соотношение крахмала, расщепляемого при солодоращении и затирании, равно 1: 10 и 1: 17, в то время как для белков – 1: 1. В качестве катализаторов расщепления крахмала в заторе выступают амилолитические ферменты солода. Под действием - и - амилаз крахмал гидролизуется до мальтозы и декстринов по следующим основным реакциям:

 

(С6Н10О5)n + Н2О n/2  С12Н22О11,

(С6Н10О5)n + Н2О n/х  (С6Н10О5)х.

 

Осахаривание крахмала представляет собой его трехстадийное ферментативное расщепление на продукты, не дающие с йодом цветной реакции, характеризующееся последовательным протеканием следующих этапов:

- клейстеризация,

- разжижение,

- собственно осахаривание.

Клейстеризация является физико-химическим процессом и неотъемлемым условием эффективности ферментативного гидролиза крахмала. В первом приближении, по данным можно считать температуру клейстеризации крахмала солода и ячменя в присутствии амилаз равной 60 0С. Медленный нагрев крахмальной суспензии является фактором лучшей набухаемости зерна и возможности проведения процесса при более низкой температуре.

Разжижение представляет собой снижение вязкости крахмального клейстера под действием α – амилазы. Протекающая ферментативная реакция связана с распадом амилопектина под действием указанного фермента. Оптимальная температура разжижения крахмального клейстера в заторе равна 65 – 70 0С при оптимальном рН=4, 6.

Собственно осахаривание – это полное расщепление разжиженного крахмала амилазами на мальтозу и декстрины, которое становится возможным только после проведения первых двух стадий. α – Амилаза разрывает цепочки амилозы и амилопектина преимущественно на декстрины с 7 – 12 глюкозными остатками. От концевых групп образовавшихся цепочек - амилаза отщепляет мальтозу; этот процесс продолжается в течение более длительного времени, чем разделение цепочек большей длины α – амилазой.

Из-за различной длины цепочек кроме мальтозы образуются и другие сахара, глюкоза и мальтотриоза. Но во всех случаях расщепление веществ останавливается на 2 – 3 глюкозных остатках перед α –1, 6–связями амилопектина, поскольку они не могут быть расщеплены ни одной из двух амилаз. Данный факт ведет к неизбежному содержанию этих предельных декстринов в нормальном сусле. Содержание в солоде предельной декстриназы – фермента, способного расщеплять кроме α –1, 4–связей и α –1, 6–связи, не оказывает заметного влияния на протекающие процессы ввиду принадлежности значения температурного оптимума для данного фермента интервалу 50 – 60 0С; поэтому при 70 0С обнаруживается лишь слабая активность этого биокатализатора.

Важнейшими факторами, влияющими на расщепление крахмала являются:

- температура при затирании;

- продолжительность затирания;

- величина рН при затирании;

- концентрация затора.

Максимально возможное содержание мальтозы и наивысшая конечная степень сбраживания достигается при температуре 62 – 63 0С. Паузы при затирании выдерживаются при оптимальных для амилаз температурах:

а) мальтозная пауза при 62 – 65 0С, – соответствует низшим температурам осахаривания, которые поддерживают действие - амилазы (при этом образуется больше мальтозы, но не происходит полного осахаривания затора);

б) пауза осахаривания при 72 – 75 0С, – соответствует оптимальной температуре для α – амилазы (происходит интенсивное образование декстринов);

в) максимальная температура осахаривания затора (76 – 78 0С), соответствующая перекачке заторной массы в фильтрационный чан (активна только α – амилаза).

Влияние длительности затирания на процесс расщепления крахмала связано с тем, что действие ферментов на данной стадии является неравномерным. Выделяются как минимум две области активности ферментов, зависящие от времени.

Максимум ферментативной активности достигается через 10 – 20 минут, при этом максимум ферментативной активности при 62 – 63 0С выше, чем при 67 – 68 0С. Через 40 – 60 минут активность ферментов снижается сначала быстро, а затем этот спад уменьшается. Таким образом:

- с увеличением длительности затирания растет концентрация раствора экстракта, но этот процесс все больше замедляется;

- с увеличением длительности затирания (особенно при 62 – 63 0С) возрастает содержание мальтозы и с ним растет конечная степень сбраживания, - такое сусло может интенсифицировать процесс главного брожения.

Влияние рН затора на расщепление крахмала заключается в том, что оно превышает в естественных условиях оптимумы рН амилаз и составляет от 5, 6 до 5, 9. Повышение общей кислотности возможно при использовании биологического подкисления затора: путем введения неорганических кислот (молочной, соляной или серной) или добавления подкисляющего материала.

β - Глюкан представляет собой соединение, входящее в состав клеток ячменного зерна наряду с белковыми веществами, целлюлозой и гемицеллюлозой. Высокомолекулярный β - глюкан имеет склонность к гелеобразованию при определенных условиях, способен вызвать повышение вязкости пива и препятствовать последующему фильтрованию затора. Бахромчатые мицеллы β - глюкана – это вытянутые незакрученные молекулы, которые не ветвятся. Многие из них ассоциированы, связаны водородными мостиками. Подобное состояние способствует их растворимости, что характерно для начала затирания.

По мере клейстеризации структура зерен крахмала разрушается, при этом частично связанные в поперечном направлении бахромчатые мицеллы освобождаются. Эндо-β -глюканаза может расщеплять сшитые бахромчатые мицеллы на β - глюкан (оптимальная температура составляет 45 – 50 0С). Удлинение паузы при оптимальной для действия указанного фермента температуре большая часть β - глюкана переводится в растворимую форму, что уменьшает опасность гелеобразования.

Расщепление белковых веществ катализируется солодовыми протеазами. При затирании происходит распад в среднем 30 – 40 % от общего содержания белков в солоде и ячмене. Определяющим является не количество перешедших в сусло белковых веществ, а соотношение отдельных их фракций, которое должно удовлетворять наиболее благоприятным для дальнейшего сбраживания и качества готового пива условиям.

Наибольшая часть высокомолекулярных протеинов выпадает в осадок не позднее окончания кипячения сусла. В пиво попадают только продукты расщепления, которые необходимы для размножения дрожжей и быстрого сбраживания. Расщепление белков при затирании идет в широком интервале температур: 40 – 70 0С, - не ограниченном температурой пептонизации от 45 до 55 0С, хотя при этой температуре процесс протеолиза белков происходит наиболее интенсивно. При этих температурах и рН затора из комплексов протеолитических ферментов солода действует главным образом кислая протеиназа (эндопептидаза), которая сравнительно стабильна при высоких температурах, и ее рН-оптимум близок к рН затора.

Принципиально ферментативное расщепление под действием эндопептидаз солода имеет вид:


белок пептоны полипептиды дипептиды аминокислоты.

 

Процесс ведется таким образом, чтобы в сусло при затирании переходили определенные белки в необходимом соотношении, которое (в %) имеет вид: А: В: С = 25: 15: 60. Пептоны и полипетиды, представляющие фракцию В, обусловливают образование пены пива, а пептиды и аминокислоты фракции С необходимы как компоненты питательной среды дрожжей. Аминокислоты имеют важное значение для питания дрожжей (последние потребляют как минимум 10 – 14 мг α – аминного азота на 100 мл сусла). Так как пролин не используется дрожжами в качестве α – аминокислоты, в сусле должно содержаться α – аминного азота не менее 20 мг на 100 мл. Высокомолекулярные продукты гидролиза, составляющие фракцию А, влияют на стойкость пива. Недостаточный гидролиз белка ведет к снижению органолептических свойств готового пива и стойкости при хранении.

Высокомолекулярные продукты распада белков ячменя, подобно альбуминам и глобулинам, не выделяются из раствора во время кипячения и называются стойко растворимыми белками сусла. Эти белки при кипячении их растворов в дальнейшем коагулируют. Фракцию растворимых белков составляют коагулируемые белки, стойко растворимый белок, настоящие растворимые белковые вещества и продукты белкового расщепления.

Наряду с белками, перешедшими в сусло под действием протеолитических ферментов, другая их часть растворяется при высоких температурах под влиянием присутствующих в сусле солей. Одновременно растворенные в сусле белки в процессе затирания частично осаждаются в результате нагревания затора, а также реакции белков с полифенольными веществами из оболочек зерна.

Растворы белков обладают типичными свойствами гидрофильных коллоидов. Белки, растворимые в воде, при нагревании превращаются в нерастворимые (гидрофобные) и затем коагулируют.

При затирании часть содержащихся в зерносырье липидов расщепляется на глицерин и жирные кислоты. Наряду с ферментативным значительную роль играет и окислительное расщепление химически активных ненасыщенных жирных кислот, которые под действием липоксигеназы и кислорода превращаются в промежуточные продукты, способные позднее в виде карбонилов старения влиять на стойкость вкуса пива. С самого начала приготовления сусла необходимо максимально ограничить влияние кислорода.

При затирании растворяются и насыщенные жирные кислоты, составляющие значительную часть жиров, содержащихся в зернах крахмала (амилопластах) в количестве 5 – 7 %.

К прочим процессам при затирании относится растворение части еще нерастворенных органически связанных фосфатов под действием ферментов фосфатаз, а также выделение дубильных веществ и антоцианогенов из оболочек и эндосперма зернового сырья при увеличении длительности и температуры затирания.

Высокомолекулярные дубильные вещества и антоцианогены играют существенную роль при образовании в пиве помутнений, – они связываются с высокомолекулярными белковыми веществами и выпадают в осадок. Кроме того, они оказывают негативное влияние на вкус пива. Низкомолекулярные дубильные вещества своим редуцирующим действием оказывают положительное влияние. Эта редуцирующая способность может быть достигнута уже при фильтровании затора при условии исключения внесения кислорода.

 

Солод

Рецептуры продукции производства предполагают использование светлого солода высокого качества «Скарлетт» (поставщик-производитель – «Острогожский завод по производству солода», Воронежская область), светлых солодов высокого качества «Viner» и «Pilsner», а также карамельного «Karamunkh №3» (немецкого производства от компании-поставщика ЗАО «Молт», Москва).

Возможны вариации типов применяемых солодов без изменения целевых физико-химических и органолептических показателей самого зерносырья, а также сусла и пива.

Качество солода определяется по органолептическим, физико-механическим и физиологическим, а также по физико-химическим показателям. Оно должно соответствовать ГОСТ 29294-92 «Солод пивоваренный ячменный. Технические условия», поставляемое сырье – сопровождаться сертификатами соответствия и качественными удостоверениями. Основные органолептические показатели – это запах, вкус, хрупкость зерен при раскусывании, цвет, форма и размер.Запах светлого солода должен быть чистым, солодовым, а карамельного – сладковатым, карамельным и (или) меланоидиновым. Не должно быть затхлого запаха, запаха плесени и дыма. Вкус солода должен быть приятно сладковатым, без постороннего привкуса, при раскусывании зерно должно быть хрупким, эндосперм – белым (светлый солод) или светло-желтым – коричневатым (карамельный солод) и рассыпчатым.Цвет оболочки должен быть равномерным, светло желтым (светлый солод) или коричневым (карамельный солод). Не допускаются зеленые и подчеркнуто темные тона, обусловленные плесенью. Хорошо растворенное, рыхлое солодовое зерно должно сохранять форму и размер зерна переработанного ячменя. Требования к физико-механическим и физиологическим показателям качества солода в соотвтетствии с ГОСТ 29294-92 приведены в таблице 2, к физико-химическим показателям – в таблице 3.

 

Таблица 2 – Физико-механические и физиологические показатели качества солода по ГОСТ 29294-92

Наименование показателя Значение
Массовая доля мучнистых зерен, %, не менее 85
Массовая доля стекловидных зерен, %, не более 3
Массовая доля сорной примеси, % 0
Проход через сито 2, 2 х 20 мм, %, не более 3

 

Таблица 3 – Физико-химические показатели качества солода по ГОСТ 29294-92

Наименование показателя Значение
Массовая доля влаги, %, не более: - в светлом солоде - в карамельном солоде   4, 5 3, 7 – 4, 2
Выход экстракта, % от сухих веществ, не менее: - из светлого солода - из карамельного солода   79 74
Цветность сусла до кипячения, см3 раствора йода концентрацией 0, 1 моль/дм3 на 100 см3 воды, не более: - из светлого солода - из карамельного солода     0, 18 9, 38
Кислотность сусла до кипячения, см3 раствора гидроксида натрия концентрацией 1 моль/дм3на 100 см3 сусла   0, 9 – 0, 11
Разность массовых долей экстрактов тонкого и грубого помолов, %, не более 1, 5
Содержание белка, % от сухих веществ, не более 11, 5
Отношение массовой доли растворимого белка к массовой доле белковых веществ в сухом веществе солода (число Кольбаха), %   38 – 41
Продолжительность осахаривания, мин, не более 15
Прозрачность сусла до кипячения (визуально) Прозрачное

Хмель

Для охмеления сусла применяется горько-ароматный гранулированный хмель двойного назначения «Perle» (тип гранул – 45). Производитель – HVB «Hopfenverwertungsgenossenschaft Hollertau» (Германия). Поставщик – ООО «Хмелепродукт» (Москва). Обязательным условием доставки является наличие качественного удостоверения и сертификата соответствия. Показатели гранулированного хмеля в соответствии с ГОСТ 21946-92 «Хмель-сырец; хмель прессованный и гранулированный. Технические условия; методы испытания» приведены в таблице 4.

 

Таблица 4 – Требования к качеству гранулированного хмеля горько-ароматических сортов по ГОСТ 21946-92

Показатель Характеристика или значение
Запах Ярко выраженный, хмелевой
Цвет Зеленый
Длина гранул, мм 12 – 15
Диаметр гранул, мм 5
Влажность, %  6 – 13
Содержание - кислоты, % от сухих веществ,  6 – 8
Массовая доля эфирного масла, %  1, 0 – 2, 0

 

Данные качественных удостоверений в среднем численно равны требованиям стандарта.

 

Вода

Вода для производства пива поступает из централизованного источника и должна соответствовать требованиям СанПиН 2.1.4.1074-01 «Питьевая вода и водоснабжение населенных мест. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества». С учетом ее влияния на физико-химические и биохимические процессы в пивоварении к ней предъявляются дополнительные требования, указанные в технологической инструкции по водоподготовке для производства пива и безалкогольных напитков (ТИ 10-5031536-73-90). Для их достижения проводится водоподготовка: пропускание воды через фильтр с активированным углем, песчаный фильтр, обезжелезиватель; умягчение воды осуществляется на натрий-катионитовом фильтре, обеззараживание – на установке с использованием ультрофиолетового облучения.

По органолептическим показателям вода должна представлять собой прозрачную бесцветную жидкость без вкуса и запаха. Химические и микробиологические показатели качества воды приведены в таблице 5.

 

Таблица 5 – Показатели качества воды

Показатель

Значение (не более)

согласно СанПиН 2.1.4.1074-01

согласно ТИ 10-5031536-73-90

Химические показатели, суммарно

Величина рН

6, 0 – 9, 0

6, 0 – 6, 5
Сухой остаток минеральных солей, мг/дм3

 

1000

  500
Окисляемость, мг О2/дм3

5, 0

2, 0
Щелочность, мг-экв./дм3

-

0, 5 – 1, 5
Общая жесткость, мг-экв./дм3

7, 0

2, 0 – 4, 0
Активный хлор, мг/дм3

0, 3 – 0, 5

-
Сероводород, мг/дм3

0, 003

-

Катионы

 Алюминий, мг/дм3

0, 5

0, 5
Аммиак, мг/дм3

0, 5

Следы
Бериллий, мг/дм3

0, 0002

-
Бор, мг/дм3

0, 5

-
Железо (суммарно. мг/дм3)

0, 3

0, 1
Кадмий, мг/дм3

0, 001

-
Кальций, мг-экв./дм3

-

2, 0 – 4, 0
Кобальт, мг/дм3

0, 1

-
Кремний, мг/дм3

10, 0

2, 0
Литий, мг/дм3

0, 3

-
Магний, мг/дм3

-

Следы
Марганец, мг/дм3

0, 1

0, 1
Медь, мг/дм3

1, 0

0, 5
Молибден, мг/дм3

0, 25

-
Мышьяк, мг/дм3

0, 05

-
Натрий, мг/дм3

200

-
Никель, мг/дм3

0, 1

-
Ртуть, мг/дм3

0, 0005

-
Свинец, мг/дм3

0, 03

-
Селен, мг/дм3

0, 01

-
Серебро, мг/дм3

0, 05

-
Стронций, мг/дм3

7, 0

-
Сурьма, мг/дм3

0, 05

-
Цинк, мг/дм3

5, 0

-

Анионы

Бромиды (броматы), мг/дм3

0, 2

-
Нитраты, мг/дм3

45, 0

10, 0
Нитриты, мг/дм3

0

0
Сульфаты, мг/дм3

500

100 – 150
Фосфаты, мг/дм3

3, 5

-
Хлориды, мг/дм3

350

100 – 150
Фториды, мг/дм3

1, 2 – 1, 5

-
Хром Cr+6, мг/дм3

0, 05

-
Цианиды, мг/дм3

0, 035

-

Микробиологические свойства

Бактерии группы кишечной палочки, клеток/дм3

  0   0

КМАФАнМ, число колониеобразующих бактерий в 1 см3

  50   20
       

 

Если в графе стоит знак «-», это означает отсутствие данных по соответствующему показателю в нормативной документации.

 

Дрожжи

Для сбраживания сусла предлагается использовать пивоваренные дрожжи низового брожения. Применяется штамм 34 (Н) из Германии (коллекция института Вальдштеттен). Поставляемые густые дрожжи должны сопровождаться качественным удостоверением и сертификатом.

Дрожжи должны иметь хорошую флокуляционную способность, давать полный вкус и аромат. Консистенция густых дрожжей должна быть однородной, пастообразной, цвет – кремовым, поверхность – глянцевой, запах – устойчивым дрожжевым, без посторонних оттенков.

Основные требования, предъявляемые к дрожжам штамма 34 (Н), приведены в таблице 6.

 

Таблица 6 – Характеристики применяемых дрожжей

Показатель Характеристика или значение
Размеры клеток, мкм 6, 5 х 7, 1
Бродильная активность, г СО2 на 100 мл сусла (11% СВ) за 7 сут при температуре 70С   2, 81
Конечная степень сбраживания сусла, % 81, 4

 

Готовое пиво

Качество пива как готового продукта регламентируются ГОСТ Р 51174-98 «Пиво. Общие технические условия». Стандартом регламентируются органолептические и физико-химические свойства.

Основные органолептические показатели пива – это прозрачность, цвет, аромат, вкус, пена и насыщенность диоксидом углерода. Пиво должно быть прозрачно и иметь блеск. Цвет должен соответствовать типу и находиться на минимально установленном уровне для данного типа пива. По аромату необходимо соответствие для данного типа пива, он должен быть свежим и выраженным.Вкус пива должен быть чистым, без посторонних привкусов, гармоничным, соответствующим данному типу пива. Горечь – чисто хмелевая, мягкая, быстро проходящая.Пена для пива в бутылках должна быть обильной, компактной, устойчивой, высотой от 30 мм и стойкостью не менее 2 мин при обильном выделении пузырьков газа, для пива в кегах – компактной, устойчивой, высотой не менее 30 мм и стойкостью от 2 мин при редком и быстро исчезающем выделении пузырьков.

Физико-химические показатели различны для пива с разной экстрактивностью начального сусла. Диффференцированные требования в соответствии с ГОСТ Р 51174-98 представлены в таблице 7.

 

Таблица 7– Физико-химические показатели пива по ГОСТ Р 51174-98

Наименование показателя

Экстрактивность начального сусла, % масс.

11

12

16

Объемная доля спирта, %, не менее 4 (4, 5)

4, 5

5, 8

Кислотность, к. ед. 1, 5 – 2, 6

1, 9 – 3, 2

3, 0 – 4, 5

Цветность, ц. ед.

0, 4 – 1, 5

Массовая доля СО2, %, не менее

0, 33

Высота пены, мм, не менее

30

Пеностойкость, мин., не менее

2

Стойкость, сут., не менее

60(8)

Энергетическая ценность пива, ккал в 100 г пива

42

46

62
Углеводы в 100 г пива, не более

4, 6

4, 7

6, 6
           

 

В скобках указаны параметры для нефильтрованного пива, содержащего дрожжевые клетки. Показатели безопасности готового пива в соответствии с СанПиН 23.2.1071-01 представлены в таблице 8.

 

Таблица 8 – Показатели безопасности готового пива по СанПин 23.2.1071-01

Показатели Допустимые уровни, мг/кг, не более
Содержание токсичных элементов: свинец мышьяк кадмий ртуть   0, 3 0, 2 0, 03 0, 005
Содержание радионуклидов: цезий-137 стронций-90   70 100

 

Микробиологические показатели представлены в таблице 9.


Таблица 9– Микробиологические показатели готового пива

Вид пива

Объем или масса продукта (см3 или г), в которых не допускается наличие

бактерий группы кишечной палочки патогенных, в том числе сальмонелл
- в кегах 1, 5 12, 5
- в бутылках 5 12, 5

 

Стеклянные бутылки, ПЭТ-тара и кеги с пивом маркируются по ГОСТ Р 51074-97. Этикетка должна содержать следующую информацию:

- наименование и тип пива;

- наименование и местонахождение изготовителя;

- товарный знак изготовителя;

- величину экстрактивности начального сусла в %;

- минимальная величина объемной доли этилового спирта (алк. не менее…% об. или спирт не менее…% об.);

- дату розлива;

- состав основного сырья, использованного при изготовлении пива;

- срок годности;

- условия хранения;

- объем, л;

- пищевую и энергетическую ценность;

- обозначение стандарта, в соответствии с которым изготовлен и может быть идентифицирован продукт;

- информацию о сертификации.

Продукция предприятия сертифицируется, при этом помимо обязательной проводится добровольная сертификация выпускаемой продукции. Для производства создаются технологические инструкции.

 

Затем происходит трехкратная прокачка мутного сусла и возврат в фильтрчан (работа «на себя»). Используемые преобразователи давления с электрическим выходным сигналом измеряют сопротивление дробины и регулируют перемещение рыхлителя. Сбор первого сусла осуществляется в промежуточный танк Е305.

Далее следует двухкратное фильтрование с промывными водами до концентрации сухих веществ в последней промывной воде 2, 5% масс. На этом этапе датчики фиксируют разность давлений (фильтрационное давление), ножи рыхлителя прорезают дробину при комбинированном вращательном и поступательном (опускание рыхлителя на высоту до 10 – 15 см над уровнем сита) движении механизма. Тип промывки – непрерывный.

После стекания последней промывной воды посредством грузового клапана осуществляется выгрузка дробины при откинутой вниз выгрузной лопатке, установленной на рыхлителе и имеющей гидравлический привод.

Общее время фильтрования затора составляет 4 часа.


Поделиться:



Последнее изменение этой страницы: 2020-02-16; Просмотров: 197; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.119 с.)
Главная | Случайная страница | Обратная связь