Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Связь направления выпуклости функции со знаком второй производной



Теорема. Для того, чтобы дважды дифференцируемая в точке x0 функция была выпукла вверх (вниз) в этой точке, необходимо и достаточно, чтобы вторая производная этой функции в x0 была неположительной (неотрицательной).
Доказательство. Пусть функция y = f ( x ) выпукла вниз в точке х0. Разложим функцию в ряд Тейлора в данной точке х0:

.

Следует отметить, что первые два слагаемых ряда Тейлора совпадают с правой частью уравнения касательной, проведённой в графику функции y = f (x) в точке х0:

Y = f ( x0 ) + f '( x0 )·( xx0 ).

Учитывая, что слагаемое o(x - x0)2 в достаточно малой окрестности точки х0 мало, и на знак выражения влияния не оказывает, получим зависимость знака второй производной на направление выпуклости

sign ( f ( x ) − Y) = sign ( f ''( x0 ) ).

Теорема. Для того чтобы дважды дифференцируемая на интервале (а, b) функция, была выпукла вверх (вниз) в нем, необходимо, чтобы во всех точках этого интервала вторая производная функции была ≤ 0 ( ≥ 0).
Доказательство. Пусть функция в произвольной точке х0 Î (a, b) выпукла вниз. Тогда в достаточно малой окрестности точки х0 справедливо неравенство f ( x ) ≥ f ( x0 ) + f ' ( x0 )·( x - x0 ).
Запишем последнее неравенство в виде

f ( x ) − f ( x0 ) − f ' ( x0 )·( x x0 ) ≥ 0.

Применяя формулу Лагранжа к первому и второму слагаемому, получим

[ f ' ( c1 ) − f ' ( x0 ) ]·( xx0 ) ≥ 0.

Применяя ещё раз формулу Лагранжа в квадратной скобке, получим

f '' ( c2 )·( c1x0 )·( xx0 ) ≥ 0,

откуда непосредственно следует f '' ( c2 ) ≥ 0 так как x0 < с2 < c1 < x. Поскольку аргумент х выбран произвольно в достаточно малой окрестности точки х0, то и аргумент для второй производной в этом случае тоже произволен в достаточно малой окрестности точки х0.

Определение точки перегиба

Точка, в которой функция определена и в которой функция меняет направление выпуклости, называется точкой перегиба.
В окрестности такой точки x 0 график функции y = f (x) слева и справа от точки x0 имеет разные направления выпуклости.
Очевидно, что в точке перегиба касательная пересекает график функции так, что с одной стороны от этой точки график лежит под касательной, а с другой - над нею.
В окрестности точки перегиба график функции геометрически переходит с одной сторон касательной на другую и " перегибается" через нее. Отсюда и произошло название " точка перегиба".

Необходимое условие точки перегиба

Теорема. Пусть функция y = f (x) дважды непрерывно дифференцируема на интервале (a, b). Для того, чтобы точка М(x0, f(x0)) была точкой перегиба графика функции y = f (x) необходимо, чтобы f " (x0) = 0.
Доказательство. Предположим обратное, пусть f " (x0) ≠ 0. Тогда в силу непрерывности второй производной по теореме об устойчивости знака непрерывной функции существует окрестность точки x0, в которой f ″ (x) < 0 (f " (x) > 0), и, значит график функции y = f (x) имеет определенное направление выпуклости в этой окрестности. Но это противоречит наличию перегиба в точке M(x0; f (x0 )). Полученное противоречие доказывает теорему.
Не всякая точка М (x0, f (x0)), для которой f " (x0) = 0, является точкой перегиба. Например, график функции y = f(x) = x4 не имеет перегиба в точке (0; 0), хотя f " (х) = 12·x ² = 0 при х = 0. Поэтому равенство нулю второй производной является лишь необходимым условием перегиба. Точки М (x0; f (x0)) графика, для которых f" (x0) = 0, будем называть критическими. Необходимо дополнительно исследовать вопрос о наличии перегиба в каждой критической точке, для чего следует сформулировать достаточное условие перегиба.

Достаточное условие точки перегиба

Теорема. Пусть функция y = f (x) имеет вторую производную f " (x) в некоторой достаточно малой окрестности точки x0 интервала (a, b), за исключением, быть может самой точки х0, а график функции имеет касательную в точке С = (х0, f (x0)). Если при переходе через точку х0 вторая производная f " (x) меняет знак, то точка С является точкой перегиба графика функции y = f (x).
Доказательство. Из того, что f " (x) слева и справа от точки x0 имеет разные знаки, то направление выпуклости графика функции слева и справа от точкиx0 является различным. Это и означает наличие перегиба в точке M(x0; f (x0)).

 

Асимптоты кривых. Общая схема построения графиков функций.

Асимптоты функции

Асимптотой функции называют прямую, к которой приближаются точки графика функции при бесконечном удалении их от начала координат.

Вертикальные асимптоты

Вертикальные асимптоты определяются точками разрыва функции и границами области определения. График функции, непрерывной на всей числовой прямой, вертикальных асимптот не имеет. Некоторые особенности поведения функции в окрестности вертикальных асимптот представлено на рисунке.
Вертикальные асимптоты определяются точками разрыва второго рода
В этом случае f( x0 ± 0) = ± ∞, или f ( x0 ± 0) = + ∞ , или f (x0 ± 0) = − ∞.
Следует отметить, что в этом случае может отмечаться всё разнообразие поведения функции в окрестности точки разрыва. Например, на рис. 8.2 приведён график элементарной функции

.

Рис. 8.2. Точка разрыва второго рода для данной функции определяется только справа

Горизонтальные асимптоты

Если

,

то у = b — горизонтальная асимптота кривой y = f (x) (правая – при х стремящемуся к плюс бесконечности, левая – при х стремящемуся к минус бесконечности и двусторонняя, если пределы при х стремящемуся к плюс-минус бесконечности равны).


Рис. 8.3. Примеры горизонтальных двухсторонних и односторонних асимптот

Наклонные асимптоты

Уравнение наклонной асимптоты функции y = f (x) определим уравнением y =k·x + b. При этом параметры наклонной асимптоты определяются соотношениями

,
.

Для того, чтобы функция y = f (x ) имела асимптоту y = k ·x + b, необходимо и достаточно, чтобы существовали указанные выше конечные пределы.
Доказательство. По определению асимптоты имеем

.

Так как MP = MP1·cos α, где угол α есть величина постоянная, равная углу наклона асимптоты к оси Ох. Поэтому соотношение для определения асимптоты можно записать в виде

.

Так как точки М и Р1 соответствуют одному и тому же значению аргумента, то это соотношение можно записать в виде

. (9.1)

Если вынести за скобки х, то

,

из этого однозначно будет следовать

,

или

.

Откуда следует соотношение для нахождения углового коэффициента асимптоты

.

Зная угловой коэффициент асимптоты, из соотношения (9.1) получим

.


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 429; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.023 с.)
Главная | Случайная страница | Обратная связь