Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Виды железобетонных конструкций. Достоинства и недостатки.



Виды железобетонных конструкций. Достоинства и недостатки.

1. Сборные конструкции – конструкции, возведение которых на строительной площадке производят из заранее изготовленных элементов.

2. Монолитные конструкции – конструкции, возведение которых осуществляют непосредственно на строительной площадке.

3. Сборно–монолитные конструкции – комплексные конструкции, в которых сборный и монолитный железобетон, укладываемый на месте строительства, работает под нагрузкой как одно целое.

Под сборными понимают конструкции, которые на строительной площадке возводятся (собираются) из элементов заводского изготовления.

Достоинства:

· достигается индустриализация и максимальная механизация строительства;

· сокращаются сроки возведения объектов;

· используются высокопрочный бетон и арматура, что приводит экономии материала.

Недостатки:

· большие затраты на создание и содержание производственной базы;

· транспортные расходы;

· трудоемкость, высокая стоимость и металлоемкость монтажных стыков;

· перерасход арматуры из условий обеспечения прочности при перевозке и монтаже;

· снижение жесткости элементов и конструкций в целом вследствие нарушения общей пространственной неразрезности (статической неопределимости).

· Под монолитными понимают конструкции, возведение которых осуществляется непосредственно на строительной площадке укладкой бетонной смеси и арматуры в заранее изготовленную опалубку.

Достоинства:

o Пространственная жесткость, неразрезность, что приводит к экономии материала;

o Исключаются трудоемкие работы по устройству стыков;

o Возможность создания разнообразных объемно-планировочных и архитектурных решений по индивидуальным проектам;

o Возможность широкого использования местных сырьевых ресурсов (песка, щебня, воды).

Недостатки:

o сезонность работ;

o устройство трудоемких опалубки и подмостей;

o продолжительность строительства, зависящее от длительности твердения бетона в естественных условиях;

o сравнительно низкая индустриализация строительства, объясняющаяся особенностями приготовления бетонной смеси, ее транспортирования и укладки, распалубки и т. д..

Под сборно-монолитными понимают конструкции, в которых сборный и монолитный железобетон, укладываемые на месте строительства работают под нагрузкой как одно целое. Этого достигают надежным сцеплением сборных элементов с монолитным бетоном, сваркой закладных деталей и выпусков арматуры.

o Содержание сборных элементов может составлять 25-90%.

o Сборно-монолитные конструкции сочетают достоинства и недостатки сборных и монолитных железобетонных конструкций.

Кубиковая и призменная прочность бетона. Применение их при проектировании ЖБК.

Кубиковая прочность

Для определения прочности бетона на осевое сжатие обычно испытывают в прессе бетонные кубы с размером ребра 150 мм, характер разрушения которых обусловлен наличием или отсутствием сил трения, возникающих на контактных поверхностях между подушками пресса и гранями куба.

  1. Несмазанный куб (рис. 2, а).

Силы трения между подушками пресса и гранями куба препятствуют свободным поперечным деформациям куба и соответственно упрочняют бетон сверху и снизу. По мере удаления от торцевых граней куба влияние сил трения уменьшается, поэтому после разрушения куб приобретает форму 2-х пирамид сверху и снизу.

  1. Смазанный куб (рис. 2, б).

Если устранить силы трения смазкой контактных поверхностей, прочность бетонного куба будет меньше, поперечные деформации проявляются свободно, трещины разрыва становятся вертикальными. Временное сопротивление сжатию бетона для куба с ребром 150 мм равно R, с ребром 200 мм - 0, 93 R, с ребром 100 мм – 1, 1R. Это объясняется изменением эффекта обоймы с изменением размеров куба.

 

а) б)

Рис. 2. Характер разрушения бетонных кубов:

а – несмазанный куб; б – смазанный куб;

Δ – поперечные деформации бетона.

Призменная прочность

Так как железобетонные конструкции по форме отличаются от кубов, основной характеристикой прочности бетона сжатых элементов является призменная прочность Rb–временное сопротивление осевому сжатию бетонных призм. Призменная прочность меньше кубиковой, и она уменьшается с увеличением отношения h/a. Влияние сил трения на среднюю часть призмы уменьшается с увеличением ее высоты и при h/a=4 значение Rb становится стабильным и равно приблизительно 0, 75R.

 

Рис. 3. Характер разрушения бетонной призмы.

 

 

Работа бетона под нагрузкой. Прочность бетона при кратковременной и длительной нагрузках.

Рис. 7. Диаграмма зависимости между напряжениями идеформациями в бетоне

при сжатии и растяжении:

I – область упругих деформаций; II – область пластических деформаций;

1 – загрузка; 2 – разгрузка; ε bu – предельная сжимаемость; ε btu – предельная растяжимость;

ε ер – доля неупругих деформаций, восстанавливающихся после разгрузки.

 

С увеличением скорости загружения V при одном и том же напряжении σ b неупругие деформации уменьшаются (рис. 9).

 

Рис. 8. Диаграмма σ b – ε bв сжатом бетоне при Рис. 9. Диаграмма σ b – ε bв сжатом бетоне при

Свойства сталей

Механические свойства:

прочность — способность материала выдерживать внешнюю нагрузку без разрушения. Количественно это свойство характеризуется пределом прочности и пределом текучести;

предел прочности — механическое напряжение, при превышении которого образец разрушается;

предел текучести — механическое напряжение, при превышении которого образец продолжает удлиняться при отсутствии нагрузки;

пластичность — способность стали изменять форму под действием нагрузки и сохранять ее после снятия нагрузки. Количественно характеризуется углом загиба и относительным удлинением при растяжении;

ударная вязкость — способность стали противостоять динамическим нагрузкам. Количественно оценивается работой, необходимой для разрушения специального образца, отнесенной к площади его поперечного сечения;

твердость — способность стали сопротивляться проникновению в нее других твердых тел. Количественно определяется нагрузкой, отнесенной к площади отпечатка при вдавливании стального шарика (метод Бринелля) или алмазной пирамиды (метод Виккерса).

Физические свойства:

плотность — масса вещества, заключенного в единичном объеме. Все металлы обладают высокой плотностью;

теплопроводность — способность передавать теплоту от более нагретых участков к менее нагретым;

электропроводность — способность пропускать электрический ток. Все металлы и их сплавы обладают высокой тепло- и электропроводностью.

Химические свойства:

окисляемость — способность вещества соединяться с кислородом. Окисляемость усиливается с повышением температуры металла. Низкоуглеродистые стали под действием влажного воздуха или воды окисляются с образованием ржавчины — оксидов железа;

коррозионная стойкость — способность металла не окисляться и не вступать в химические реакции с окружающими веществами;

жаростойкость — способность стали не окисляться при высокой температуре и не образовывать окалины;

жаропрочность — способность стали сохранять свои прочностные свойства при высокой температуре.

Технологические свойства:

ковкость — способность стали принимать новую форму под действием внешних сил;

жидкотекучесть — способность стали в расплавленном состоянии заполнять узкие зазоры и пространства;

обрабатываемость резанием — свойство стали поддаваться механической обработке режущим инструментом;

свариваемость — способность стали образовывать высококачественное сварное соединение, не содержащее дефектов

*Механические свойства и свариваемость арматурной стали зависят от ее химического состава (горячекатаная арматура) и способа упрочнения (термомеханическая или термическая обработка, холодная деформация). Механические свойства, химический состав, способы прокатки и упрочнения, параметры и вид профиля в той или иной степени определяют коррозионную стойкость и усталостную прочность арматуры.

*В зависимости от механических свойств арматуру делят на классы:

-горячекатаную А-I – A-VI (старое обозначение) или с указанием предела текучести (в новой редакции) А240 – А1000

-термомеханически или термически упрочненную Aт-IIIC – Aт-VII или Aт400 – Aт1200.

Повышение прочности может быть достигнуто также термическим упрочнением и механической вытяжкой.

При термическом упрочении вначале осуществляют нагрев арматуры до 800…900°С и быстрое охлаждение, а затем нагрев до 300…400°С с постепенным охлаждением (закалка с отпуском)

При мех. вытяжке арматуры на 3-5% вследствие структурных изменений кристалл. решетки – наклепа, сталь упрочняется. При повторной вытяжке (нагрузке) диаграмма деформирования будет отличается от исходной, а предел текучести

*Методы упрочнения металла:

Термомеханическая обработка стали

Поверхностное упрочнение стальных деталей.

Закалка токами высокой частоты.

Газопламенная закалка.

Старение.

Обработка стали холодом.

Упрочнение методом пластической деформации.

Свариваемость арматурной стали обеспечивается химическим составом, технологией изготовления и компактностью сечения. Возможность применения горячекатаной и термомеханически упрочненной стержневой арматуры для различных способов сварки и конструкции соединений, регламентированных ГОСТ 14098, приведены в табл. 1.52.

*При использовании широко применяемой арматуры класса A-III из стали марки 35ГС запрещается выполнять крестообразные сварные соединения вручную дуговыми прихватками, так как это приводит к преждевременному разрушению таких стыков.

*Для монолитных железобетонных конструкций иногда используют арматуру из стальных прокатных профилей в виде уголков, двутавров и швеллеров, а также плоского или профилированного стального листа. Для дисперсного армирования тонкостенных бетонных конструкций применяют фибру, изготавливаемую из стали, стекловолокна или пластика. Для арматуры из стали марки 25Г2С ручная дуговая сварка крестообразных соединений прихватками допускается. Для арматуры классов Ат-lllc и Ат-IVc ванная сварка допускается при использовании удлиненных накладок.

*При изготовлении арматурных сеток и каркасов, а также сварке встык отдельных стержней следует преимущественно применять контактную точечную и стыковую сварку, а при изготовлении западных деталей - автоматическую сварку под флюсом и контактную рельефную сварку. Начато использование различных видов неметаллической арматуры в виде стержней и канатов для обычных и предварительно напряженных бетонных конструкций.

Виды и классы арматуры.

Стержневая горячекатаная арматура в зависимости от ее основных механических характеристик подразделяется на шесть классов с условным обозначением: А-I, А-II, А-III, А-IV, А-V, А-VI.

Стержневая термически упрочненная в ее обозначении отмечается дополнительным индексом «т»: Ат-III, Ат-IV, Ат-V, Ат-VI. дополнительной буквой С указывается на возможность стыкования сваркой Ат-IIIС, К- на повышенную коррозионную стойкость.

Высокопрочная арматурная проволока: гладкая класса – В-II, периодического профиля Вр-II

 

Обыкновенная арматура проволока периодического профиля класса Вр-I, В-I

 

Арматурные канаты: К-7, К-19.

 

Каждому классу арм. соот. определенные марки арматурной стали с одинаковыми механическими характеристиками, но различным хим. составом. В обозначении марки стали отражается содержание углерода и легирующих добавок. Например, в марке 25Г2С первая цифра обозн. содер углерода в сотых долях процента (0, 25%) Г- что сталь легирована марганцем, 2- что его содержание может достигать 2%, С-наличие в стали кремния.

 

20ХГ2Ц Х- хром, Т-титан, Ц- цирконий.

Класс Диаметр в мм Марка стали
А1 (А240) 6-40 Ст3кп, Ст3пс, Ст3сп
А2 (А300) 10-40, 40-80 Ст5сп, Ст5пс, 8Г2С
А3 (А400) 6-40, 6-22 35ГС, 25Г2С, 32Г2Рпс
А4 (А600) 10-18(6-8), 10-32(36-40) 80C, 20ХГ2Ц
А5 (А800) 10-32(6-8), (36-40) 23в2Г2Т

 

 

6. Сущность предварительно напряженного ЖБК. Достоинства и недостатки. Способы создания предварительного напряжения, способы натяжения арматуры.

Предварительно-напряженные конструкции – это конструкции или их элементы, в которых предварительно, т.е. в процессе изготовления, искусственно созданы в соответствии с расчетом начальные напряжения растяжения в арматуре и обжатия в бетоне.

Обжатие бетона на величину σ bp осуществляется предварительно натянутой арматурой, которая после отпуска натяжных устройств стремится возвратится в первоначальное состояние. Проскальзывание арматуры в бетоне исключается их взаимным сцеплением или специальной анкеровкой торцов арматуры в бетоне.

Начальные сжимающие напряжения создают в тех зонах бетона, которые впоследствии испытывают растяжение.

Железобетонные элементы без предварительного напряжения работают при наличии трещин: ,

где - эксплуатационная нагрузка,

- нагрузка, при которой образуются трещины;

- разрушающая нагрузка.

Железобетонные предварительно-напряженные элементы работают под нагрузкой без трещин или с ограниченным по ширине их раскрытием: .

Таким образом, предварительное напряжение не повышает прочность конструкции, а увеличивает ее жесткость и трещиностойкость!

Преимущества предварительно-напряженных конструкций:

· повышенная жесткость и трещиностойкость конструкции;

· возможность использования высокопрочной арматуры (A-IV и выше);

· предварительное напряжение приводит к уменьшению сечения элемента

· возможность выполнения эффективных стыков сборных элементов;

· предварительное напряжение позволяет изготавливать комбинированные конструкции (например, обжимаемую зону выполнять из тяжелого бетона, а остальную – из легкого);

· повышенная выносливость при многократно повторяемых, динамических нагрузках;

· преднапряженные конструкции более безопасны, т.к. перед разрушением имеют большой прогиб и тем самым сигнализируют, что прочность конструкции почти исчерпана;

· повышенная сейсмостойкость;

· повышенная долговечность.

Недостатки предварительно-напряженных конструкций:

· повышенная трудоемкость и необходимость специального оборудования и классифицированных работников;

· большая масса;

· большая тепло- и звукопроводность;

· усиление преднапряженных конструкций всегда сложнее, чем без преднапряжения;

· меньшая огнестойкость;

· при коррозии высокопрочная арматура быстрее теряет пластические свойства, возникает опасность хрупкого разрушения.

 

Способы создания предварительного напряжения, способы натяжения арматуры.

Способы натяжения арматуры:

1. На упоры (до бетонирования). Арматуру заводят в форму до бетонирования элемента, один конец закрепляют в упоре, другой – натягивают домкратом до заданного напряжения σ sp. Затем в форму заливают бетон. После достижения бетоном передаточной прочности Rbpарматуру отпускают с упоров, при этом она обжимает окружающий бетон. Чтобы избежать разрушения бетона в торцах элементов, отпуск натяжения арматуры производят постепенно, снижая сначала на 50%, а затем до 0.

2. На бетон. Сначала изготавливают бетонный элемент, в котором предусматривают каналы или пазы. После приобретения бетоном передаточной прочности Rbp, в каналы пропускают рабочую арматуру и натягивают ее на бетон. После натяжения концы арматуры закрепляют анкерами. Для обеспечения сцепления арматуры с бетоном каналы и пазы заполняют под давлением цементным раствором.

Методы натяжения арматуры:

1. Электротермический – необходимое относительное удлинение арматуры еsp получают электрическим нагревом арматуры до соответствующей температуры.

2. Механический – необходимое относительное удлинение арматуры получают вытяжкой арматуры натяжными механизмами (гидравлические и винтовые домкраты, лебедки, тарировочные ключи, намоточные машины и т.д.).

3. Электротермомеханический – совокупность механического и электротермического методов.

4. Физико-химический– заключается в самонапряжении конструкции вследствие использования энергии расширяющегося цемента.

 

Начальное предварительное напряжение в арматуре. Величина контролируемого натяжения. Потери ПН – первые и вторые потери.

Значения предварительных напряжений имеют существенное значение. При малых значениях эффект преднапряжения может быть утрачен вследствие потерь предварительного напряжения. При высоких значениях возникает опасность разрыва арматуры при натяжении.

Предварительные напряженияσ sp и σ ’sp в арматуреSи S’ следует назначать с учетом допустимых отклонений р таким образом, чтобы выполнялись условия:

; ,

где - при механическом способе натяжения арматуры;

- при электротермическом способе натяжения арматуры, где l – длина натягиваемого стержня, p – в МПа.

Начальные предварительные напряжения в арматуре не остаются постоянными, с течением времени они уменьшаются. Различают первые потери предварительного напряжения в арматуре, происходящие при изготовлении элемента и обжатии бетона, и вторые потери, происходящие после обжатия бетона.

*Первые потери

σ 1Потери от релаксации напряжений в арматуре при натяжении на упоры зависят от способа натяжения и вида арматуры:

при механическом способе натяжения, МПа: высокопрочной арматурной проволоки и канатов, стержневой арматуры; при электротермическом и электротермомеханическом способах натяжения: высокопрочной арматурной проволоки и канатов, стержневой арматуры.

σ 2. Потери от температурного перепада, т. е. от разности температуры натянутой арматуры и устройств, воспринимающих усилие натяжения при пропаривании или прогреве бетона.

σ 3. Потери от деформации анкеров, расположенных у натяжиых устройств вследствие обжатия шайб, смятия высаженных головок, смещения стержней в зажимах или в захватах при механическом натяжении на упоры.

σ 4. Потери от трения арматуры:

а) о стенки каналов или поверхность конструкции при натяжении на бетон

б) об огибающие приспособления при натяжении на упоры

σ 5.Потери от деформации стальных форм при

σ 6. Потери от быстронатекающей ползучести бетона зависят от условий твердения, уровня напряжений и класса бетона; развиваются они при обжатии (и в первые 2—3 ч после обжатия).

*Вторые потери

σ 7. Потери от релаксации напряжений в арматуре при натяжении на бетон высокопрочной арматурной проволоки и стержневой арматуры принимаются такими же, как и при натяжении на упоры. 8. Потери от усадки бетона и укорочения элемента зависят от вида бетона, способа натяжения арматуры, условий твердения.

σ 8. Потери от усадки бетона и укорочения элемента зависят от вида бетона, способа натяжения арматуры, условий твердения.

σ 9. Потери от ползучести бетона (следствие соответствующего укорочения элемента) зависят от вида бетона, условий твердения, уровня напряжений

σ 10. Потери от смятия бетона под витками спиральной или кольцевой арматуры (при диаметре труб, резервуаров до 3 м)

σ 11. Потери от деформаций обжатия стыков между блоками сборных конструкций.

*Для конструкций, эксплуатируемых при влажности воздуха окружающей среды ниже 40 %, потери от усадки и ползучести бетона увеличиваются на 25 %. Для конструкций, эксплуатируемых в районах с сухим жарким климатом, эти потери увеличиваются на 50 %.

При натяжении арматуры на упоры учитывают:

σ los1=σ 1+σ 2+σ 3+σ 4+σ 5+σ 6

σ los2=σ 8+σ 9

При натяжении арматуры на бетон учитывают:

σ los1=σ 3+σ 4

σ los1=σ 7+σ 8+σ 9+σ 10+σ 11

σ =σ los1+σ los2

Суммарные потери при любом способе натяжения могут составлять около 30 % начального предварительного напряжения. В расчетах конструкций суммарные потери должны приниматься не менее 100 МПа.

 

Виды железобетонных конструкций. Достоинства и недостатки.

1. Сборные конструкции – конструкции, возведение которых на строительной площадке производят из заранее изготовленных элементов.

2. Монолитные конструкции – конструкции, возведение которых осуществляют непосредственно на строительной площадке.

3. Сборно–монолитные конструкции – комплексные конструкции, в которых сборный и монолитный железобетон, укладываемый на месте строительства, работает под нагрузкой как одно целое.

Под сборными понимают конструкции, которые на строительной площадке возводятся (собираются) из элементов заводского изготовления.

Достоинства:

· достигается индустриализация и максимальная механизация строительства;

· сокращаются сроки возведения объектов;

· используются высокопрочный бетон и арматура, что приводит экономии материала.

Недостатки:

· большие затраты на создание и содержание производственной базы;

· транспортные расходы;

· трудоемкость, высокая стоимость и металлоемкость монтажных стыков;

· перерасход арматуры из условий обеспечения прочности при перевозке и монтаже;

· снижение жесткости элементов и конструкций в целом вследствие нарушения общей пространственной неразрезности (статической неопределимости).

· Под монолитными понимают конструкции, возведение которых осуществляется непосредственно на строительной площадке укладкой бетонной смеси и арматуры в заранее изготовленную опалубку.

Достоинства:

o Пространственная жесткость, неразрезность, что приводит к экономии материала;

o Исключаются трудоемкие работы по устройству стыков;

o Возможность создания разнообразных объемно-планировочных и архитектурных решений по индивидуальным проектам;

o Возможность широкого использования местных сырьевых ресурсов (песка, щебня, воды).

Недостатки:

o сезонность работ;

o устройство трудоемких опалубки и подмостей;

o продолжительность строительства, зависящее от длительности твердения бетона в естественных условиях;

o сравнительно низкая индустриализация строительства, объясняющаяся особенностями приготовления бетонной смеси, ее транспортирования и укладки, распалубки и т. д..

Под сборно-монолитными понимают конструкции, в которых сборный и монолитный железобетон, укладываемые на месте строительства работают под нагрузкой как одно целое. Этого достигают надежным сцеплением сборных элементов с монолитным бетоном, сваркой закладных деталей и выпусков арматуры.

o Содержание сборных элементов может составлять 25-90%.

o Сборно-монолитные конструкции сочетают достоинства и недостатки сборных и монолитных железобетонных конструкций.


Поделиться:



Последнее изменение этой страницы: 2017-05-06; Просмотров: 295; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.085 с.)
Главная | Случайная страница | Обратная связь