Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Физические основы ультразвуковой измерительной техники



Упругие механические колебания, распространяю­щиеся в воздухе, воспринимают как звук. Если их частота более 20 000 Гц (20 кГц), т. е. выше порога слышимости для человече­ского уха, то такие колебания называют ультразву­ковыми (УЗК). В дефектоскопии наиболее часто ис­пользуют диапазон частот 0,5—10 МГц (1 МГц=106 Гц).

Упругие колебания могут быть возбуждены в твер­дых, жидких и газообразных средах. При этом колеба­тельное движение возбужденных частиц благодаря на­личию упругих сил между ними вызывает распространение упругой УЗ-волны, сопровождаемое переносом энергии.

Для получения УЗ-колебаний применяют пьезоэлек­трические, магнитострикционные, электромагнитно-акус­тические (ЭМА) и другие преобразователи.

Наибольшее распространение получили пьезоэлектрические преобра­зователи, изготовленные из пьезокерамических материалов или из монокристалла кварца. На поверхности пьезо­пластины наносят тонкие слои серебра, служащие элек­тродами. При подаче на пьезопластину электрического напряжения она изменяет свою толщину вследствие обратного пьезоэлектрическо­го эффекта. Если напряжение знакопеременно, то пластина колеблется в такт этим изменениям, создавая в окружающей среде упругие колебания. При этом плас­тина работает как излучатель. И наоборот, если пьезоэлектрическая пластина воспринимает им­пульс давления (отраженная УЗ-волна), то на ее по­верхности вследствие прямого пьезоэлектри­ческого эффекта появляются электрические за­ряды, величина которых может быть измерена. В этом случае пьезопластина работает как приемник.

Процесс распространения ультразвука в пространст­ве является волновым. Граница, отделяющая колеблю­щиеся частицы среды от частиц, еще не начавших коле­баться, называется фронтом волны. Упругие волны характеризуются скоростью распространения С, длиной волны λ, и частотой колебаний f. При этом под длиной волны понимается расстояние между ближайшими час­тицами, колеблющимися одинаковым образом (в одинаковой фазе). Число волн, проходящих через данную точ­ку пространства в каждую секунду, определяет частоту УЗ-колебаний. Длина волны связана со скоростью ее распространения соотношением

Cледует отличать скорость волны С от скорости коле­бания частиц v. Скорость С — физическая константа сре­ды и зависит от ее свойств. Длину волны в любой среде можно изменить путем изменения частоты f возбуждаемых колебаний.

В зависимости от направления колебания частиц раз­личают несколько типов волн. Если частицы среды ко­леблются вдоль распространения волны, то такие волны называются продольными (волнами растяжения-сжатия). В случае, если частицы среды ко­леблются перпендикулярно к направлению распростра­нения волны, то это волны – поперечные (волны сдвига). Поперечные волны могут возникать лишь в среде, обладающей сопротивлением сдвига. Поэтому в жидкой и газообразной средах образуются только про­дольные волны. В твердой среде могут возникать как продольные, так и поперечные волны.

Скорость Ci продольных волн в среде плотностью  определяется модулем нормальной упругости Е и коэффициентом Пуассона :

                    (2.16)

Скорость Ct поперечных волн в среде плотностью р определяется модулем сдвига G:

                                 (2.17)

Учитывая, что  из уравнений (2.16) и (2.17) можно определить отношение скоростей поперечных и продольных волн:

                                  (2.18)

Поскольку для металлов  то

Пространство, в котором распространяются УЗ-волны, называют ультразвуковым полем. УЗ-волна в направлении своего движения несет определенную энергию. Количество энергии, переносимое УЗ-волной за 1 с через 1 см2 площади, перпендикулярной к направле­нию распространения, называется интенсивностью ультразвука I. Для плоской волны при амплитуде смещения А

                                 (2.19)

Произведение скорости С ультразвука на плотность  среды называется удельным акустическим сопротивлением.

Свойства ультразвука

Рассмотрим наиболее важные свойства УЗК: направленность УЗК, ближняя и дальняя зоны преобразователей, отражение УЗК от несплошностей, затухание, трансформация УЗК.

Рисунок 2.10 Структура ультразвукового поля излучателя: а — акустическое поле; б — изменение интенсивности вдоль луча; в — диаграмма направленности

Направленность УЗК. При излучении пьезоэлементом импульса УЗК в среде возникает УЗ-поле, которое имеет вполне определенные пространственные границы. Угол расхождения зависит от соот­ношения длины волны и диаметра излучателя 2а:

 (2.20)

Для малых углов направленность УЗ-поля тем выше, чем больше произведение af.

Направленность УЗ-поля удобно представлять в виде графика в полярных координатах, называемого диаграммой направленности. Диаграмма характеризует угловую зависимость амплитуды поля в дальней зоне. Полярный угол отсчитывают от полярной оси, совпадающей с направлением излучения максимальной амплитуды.

Диаграмму направленности прямого преобразователя выражают через цилиндрическую функцию Бесселя (пер­вого рода и первого порядка):

                      (2.21)

Анализ этого выражения показывает, что с увеличе­нием  или af направленность поля возрастает. При >0,6 в диаграмме, кроме основного, возникают боко­вые лепестки. Однако в них обычно сосредоточена малая часть (до 20 %) излучаемой энергии.

Ближняя и дальняя зоны. Приведенная выше фор­мула показывает направленность УЗ-пучка в так называемой дальней зоне или зоне Фраунгофера. В ближ­ней зоне, называемой зоной Френеля, амплитуда поля осциллирует (изменяется) как вдоль оси, так и по сечению пучка, а УЗ-волна при этом распростра­няется почти без расхождения.

Протяженность ближней зоны  для цилиндрического излучателя:

Из формулы видно, что увеличение диаметра излучателя, сужая направленность пучка, увеличивает ближнюю зону преобразователя.

Отражение от границы раздела сред, несплошностей. Это свойство УЗ-волн служит основой для их использования, например, в эхо-импульсном методе дефектоскопии материалов. При падении волны на поверхность раздела двух сред в общем случае часть энергии проходит во вторую среду, а часть отражается в первую. Если УЗ-волна перпендикулярна к границе двух сред, то проходящая и отраженная волны будут тако­го же типа, что и падающая.

Коэффициент отраже­ния R как отношение интенсивностей отраженной и па­дающей волн зависит от соотношения удельных акусти­ческих сопротивлений первой и вто­рой сред:

                (2.22)

Из формулы следует, что R не зависит от направ­ления УЗК через границу раздела сред. Коэффициент прохождения волны D=1-R. Чем боль­ше разница в акустических сопротивлениях, тем больше интенсивность отраженной волны.

Наличие несплошности также влияет на отражение УЗ-волн. Однако заполненные воздухом трещины раскрытием  мм отражают около 90% падаю­щей энергии УЗК. Можно считать, что пределом выявляемости трещин служат несплошности раскрытием . Если размеры дефектов малы, то УЗ-волны огибают небольшую несплошность без существенных отражений.

Свойство отражения УЗ-волн служит основой для вы­явления несплошностей в металлах, поскольку акустиче­ские свойства таких дефектов, как поры, шлаки, непровары, существенно отличаются от свойств основного ме­талла. Коэффициент отражения от трещин, несплавлений и пор близок к единице, если величина их раскрытия бо­лее 10-4 мм, а поперечный размер соизмерим с длиной волны. Для шлаков R= 0,35 — 0,65 в зависимости от мар­ки флюса.

Оксидные плены, особенно в сварных швах алюмини­евых сплавов или при контактной сварке, выявляются плохо, несмотря на их достаточно большое раскрытие и протяженность. Причиной этого является близость акус­тических свойств дефекта и металла. Стандартная УЗ-аппаратура позволяет уверенно вы­являть несплошности площадью S>1мм2. При увеличе­нии частоты УЗК можно выявлять несплошности и с мень­шей площадью, но при этом значительно повышается затухание УЗК.

Затухание. Коэффициент затухания  возрастает с увеличением частоты не линейно, а в повышенной степени. Причем ко­эффициент затухания различен для различных материа­лов и складывается из коэффициентов поглощения и рассеяния  Поглощенная звуковая энергия переходит в теплоту. Рассеянная энергия остается по форме звуковой, но ухо­дит из направленного пучка, отражаясь от неоднородной среды. В однородных средах (пластмасса, стекло) зату­хание определяется главным образом поглощением уль­тразвука:  Причем  пропорционально f . В металлах рассеяние преобладает над поглощением: бр>бп. Коэффициент рассеяния в металлах зависит от соотношения средней величины зерен D и длины l УЗ-волны. Увеличение размера зерен приводит к росту затухания УЗК, при этом  Для того чтобы рассеяние УЗК на зернах не искажа­ло результаты дефектоскопии, практически необходимо иметь l>(10...100)D. Если это условие выполняется по верхнему пределу (l>100D), то можно обычно контроли­ровать металл на глубину вплоть до 8 — 10 м и даже более.

При распространении УЗ-волн в металлах возможна реверберация — постепенное затухание колебаний, обусловленное повторными отражениями. Реверберация может быть объемной (из-за многократного отражения колебаний от поверхностей, ограничивающих контроли­руемое изделие) и структурной (из-за многократного от­ражения и рассеяния колебаний границами зерен ме­талла).

Рассеяние УЗК значительно зависит от анизотропии кристаллов. При этом скорость по одной из осей кристал­ла или зерна существенно отличается от скорости вдоль его другой оси. У алюминиевых сплавов и у сталей упругая межзеренная анизотропия кристаллов обычно мала. У нержавеющих (аустенитных) сталей и чугуна явления межзеренной анизотропии резко выражены, что приводит к рассеянию УЗК и плохой прозвучиваемости этих ма­териалов.

Зависимость коэффициента затухания от величины зерна используют для измерения размеров зерна. При этом принимают диапазон волн примерно в области l=(4-10)D. Коэффициент затухания выражают либо в децибелах на метр (дБ/м), либо в неперах на метр (Нп/м). Зату­хание 1 Нп/м означает, что на расстоянии 1 м амплитуда волны уменьшается в е раз (е=2,718 — основание натуральных логарифмов, или число Непера). Эти единицы связаны соотношением 1 Нп/м = 8, 68 дБ/м.

В практике УЗ-дефектоскопии коэффициент затухания часто измеряют в Нп/см или, что то же самое, в см-1. Вследствие значительной зависимости коэффициента затухания ультразвука от величины зерна металла этот коэффициент имеет весьма большие колебания в тех из­делиях, которые склонны к образованию разнозернистой структуры, например в крупногабаритных поковках из аустенитной стали.

С ростом частоты коэффициент затухания увеличива­ется, поэтому крупнозернистые металлы прозвучивают обычно на более низких частотах 0,5—1,8 МГц.

Трансформация УЗК. Рассмотренные выше процессы отражения УЗ-волн относились к нормальному их па­дению на границу раздела сред. При контроле сварных швов применяют, как правило, наклонные преобразова­тели с вводом УЗК под некоторым углом к вертикали.

Рисунок 2.11 Отражение и преломление продольной волны на гра­нице раздела двух твердых сред

В общем случае при падении продольной волны наклон­но под углом к границе двух твердых сред происходит трансформация (расщепление) этой волны (рис. 2.6, а). Возникают две преломленные волны (продольная  и поперечная ) и две отраженные  и . Углы прелом­ления и отражения зависят от скоростей соответствующих волн в данных средах (зако­н Снеллиуса). Записанный только для преломле­ния волн этот закон имеет вид

                    (2.23)

При увеличении угла падения , который соответст­вует углу плексигласовой призмы в наклонных преобра­зователях, углы ввода УЗК в металл  и  также ме­няются и вся диаграмма как бы поворачивается против часовой стрелки вокруг точки 0. При этом сначала возможно исчезновение в прозвучиваемом ме­талле луча , а потом — луча . Углы , соответствующие исчезновению продольной, а затем поперечной волн в металле, называют соответственно первым и вторым критическими углами. Значению  отвечает угол , а значению  угол

При УЗ-дефектоскопии сварных швов во многих слу­чаях целесообразно вводить в металл только поперечную волну. Поэтому угол призмы наклонных преобразовате­лей выбирают обычно в интервале между двумя найден­ными выше критическими значениями:

 

Поправку на 2—5° вводят для большей помехозащи­щенности контроля: в первом случае от продольной, а во втором — от поверхностной волны.

Акустический тракт. Процессы преобразования энер­гии УЗ-колебаний происходят в трех так называемых трактах УЗ-дефектоскопа: электроакустическом, электри­ческом и акустическом.

Электроакустический тракт — это участок схемы дефектоскопа, который состоит из пьезопреобразователей, демпферов, переходных и контактных слоев, электрических колебательных контуров генератора на входе приемника.

В электроакустическом тракте электрические колеба­ния преобразуются в ультразвуковые и обратно, поэтому он определяет резонансную частоту УЗК, длительность зондирующего импульса и коэффициенты преобразования электрической энергии в акустическую.

Электрический тракт, определяющий амплиту­ду зондирующего импульса и коэффициент усиления, со­стоит из генератора и усилителя.

Акустическим трактом называют путь ультра­звука от излучателя до отражателя в материале и от этого отражателя до приемника. Важная задача мето­дики УЗ-контроля — расчет акустического тракта, т. е. оценка ослабления амплитуды эхо-сигнала в зависимос­ти от акустических и геометрических параметров тракта.


Поделиться:



Последнее изменение этой страницы: 2019-03-22; Просмотров: 571; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.029 с.)
Главная | Случайная страница | Обратная связь