Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Излучатели и приемники ультразвука



Акустический излучатель (АИ) - устройство, предназначенное для преобразования энергии того или иного вида в звук, энергию и излучения ее в упругую среду. По виду преобразования АИ делят на: электроакустические, гидромеханические, пневмоакуcтические, парогазоакустические, взрывные, ударные.

В электрокустических излучателях в звуковую энергию преобразуется электрическая энергия, гидромеханических - энер­гия движущейся жидкости, в пневматических - энергия движуще­гося сжатого воздуха, в парогазоакустических - энергия захлопывания разогретого парогазового пузыря.

Наибольшее применение в сов­ременной науке и технике (в част­ности, электроакустике, гидроаку­стике, ультразвуковой технологии, дефектоскопии, медицине) получили электроакустические излучатели. При исследованиях законов распростра­нения звука в водной среде широко применяют взрывные АИ. Гидроме­ханические АИ используют в основ­ном в ультразвуковой технологии, а пневмоакустические и парогазоаку­стические —  для обеспечения низко­частотного излучения в жидкую среду. Основные характеристики АИ: резонансная частота, излучаемая мощность, электроакустический КПД и полоса пропускания частот.

Акустический приемник (АП) - устрой­ство, обеспечивающее прием акустических колебаний и измерение их парамет­ров путем преобразования акустической энергии в какую-либо другую (электриче­скую, механическую, тепловую). Наи­большее распространение получили электроакустические приемники раз­личных типов. В зависимости от принципа действия и конструктивных особенностей АП могут быть приемниками звукового давления, колеба­тельной скорости, ускорения, смеще­ния, интенсивности звука и радиаль­ного давления.

Для измерения звукового давле­ния, колебательной скорости, ускоре­ния и смещения используют те или иные разновидности электроаку­стических приемников; для измере­ния интенсивности звука — термические приемники, радиацион­ного давления — радиометры.

Основные характеристики АП: чувствительность к измеряемому параметру и пороговый, т. е. мини­мальный различаемый, сигнал.

Электроакустические приемники различных типов находят примене­ние в электроакустике, гидроаку­стике, ультразвуковой технологии, дефектоскопии, медицине и при про­ведении научных исследований акустическими методами. Термические приемники и радиометры применяют в ультразву­ковой технике.

Наряду со специально создавае­мыми приемниками существуют естественные АП - органы слуха чело­века и животных. Для усиления деятельности органов слуха чело­века используют специальные акустические резонансные устройства (слуховые трубки, стетоскопы и др.).

В 1826 г. в Женевском озере Колладоне и Штурмом впервые была измерена скорость распространения звука в воде с помощью церковного колокола. Еще до этого эксперимента Леонардо да Винчи отметил, что вода хорошо проводит звук. Однако можно вполне определенно считать, что эксперимент 1826 г. является первым случаем применения для излучения звука в воду резонансного устройства. В дальнейшем подводные колокола, возбуждаемые электромагнитными или пневматическими молоточками, использо­вались для измерения глубин акустиче­ским методом и для других навигацион­ных целей. По своей форме подводный сигнальный колокол (Рис.2.12) отличался от церковного. Край его был сделан очень толстым, чтобы улучшить резонансные свойства колокола при работе в воде, акустический импеданс которой более чем в 3000 раз превышает акустический импе­данс воздуха.

         

Рисунок 2.12 Подводный колокол, генератор Фессендена и пьезоэлектрический преобразователь Ланжевена

В качестве гидрофонов в то время использовались угольные микро­фонные капсулы, заключенные в метал­лический корпус. Для получения повышенной акусти­ческой мощности в течение некоторого времени использовались водяные сирены, подвижная часть которых вращалась в водяном баке, прикрепленном к вну­тренней поверхности корпуса корабля. Но в 1907 г. Появился генератор Фессендена, который и был применен для подводной сигнализации. Генератор был создан на основе индукционного (асинхронного) двигателя с использованием электроди­намического эффекта. Колебания толстой металлической диафраг­мы возбуждались толстой медной трубкой определенной длины, которая могла свободно перемещаться в осевом направлении в сильном постоянном радиальном магнитном поле. Первичная обмотка, по которой протекал переменный ток, была намотана на расположенный внутри сердечник таким образом, что медная трубка представляла собой единственный короткозамкнутый виток вторичной обмотки. Индуцированный в медной трубке вторичный ток, взаимодействуя с постоянным полем, создавал переменную механическую силу. Механическая система генератора была очень массивной, чтобы преодолевать большой акустический импеданс среды. Переменный ток подводился от высокочастотного генера­тора, и частота выбиралась равной резонансной частоте диафраг­мы, соприкасающейся с водой, так как эффективность электро­акустического преобразования при возбуждении вне механиче­ского резонанса заметно падает. Генераторы Фессендена с резо­нансными частотами 540, 1050 и 3000 Гц выпускались промышлен­ностью и в течение довольно длительного времени использовались на практике для подводной сигнализации и измерения глубин акустическим методом. При разумных габаритах излучателя звук слышимых частот распространяется в воде ненаправленно. Кроме того, слышимый звук может очень раздражать пассажиров и команду корабля. С этих точек зрения, а также с учетом опре­деленных военных применений стала ясна необходимость исполь­зования ультразвуковых волн. В 1920 г. появился подходящий ультразвуковой излучатель, предназначенный для сигнализации с подводных лодок и названный излучателем Ланжевена. Этот излучатель представляет собой мозаику, набранную из кусков кварца Х-среза и заключенную между двумя толстыми металли­ческими пластинами. Если к пластинам приложено переменное электрическое напряжение, то в кристаллах кварца возникает пьезоэлектрическая вынуждающая сила, и они вместе с жестко связанными с ними пластинами начинают колебаться как единая механическая система. Частота возбуждающего электрического напряжения выбирается равной частоте основной продольной моды колебаний этой трехслойной структуры. (В первое время на практике, по-видимому, использовались частоты 17, 45 кГц и т. д.) Поверхность металлической пластины, обращенная к воде, совершает поршневые колебания, и направленность излучателя оказывается достаточной при диаметре пластины порядка 30—40 см. Противоположная поверхность другой пластины сопри­касается обычно с воздухом, так что она не дает акустического излучения. В 1933 г. были изобретены магнитострикционные вибраторы из тонких листов металла. Колеблющийся сердечник такого вибра­тора изготавливается в виде набора сотен склеенных между собой тонких пластин, отштампованных из листового никеля.

Рисунок 2.13 Магнитострикционные вибраторы (преобразователи), набираемые из пластин

Электрические обмотки размещаются в предусмотренных при штамповке окнах. Магнитострикционная вынуждающая сила создается переменным током, частота которого выбирается обычно равной частоте механического резонанса сердечника. Толщина отдельной пластины выбирается в соответствии с рабочей часто­той с учетом магнитной проницаемости и электрического сопро­тивления материала так, чтобы потери на вихревые токи не пре­вышали некоторого значения, поскольку они являются главным фактором, определяющим электроакустический коэффициент по­лезного действия преобразователя.

Магнитострикционные преобразователи такого типа могли совершенствоваться за счет разработки новых сплавов, обладаю­щих все большим и большим магнитострикционным эффектом и, следовательно, возможностью преобразования большей мощно­сти. В отличие от этого излучатели Ланжевена, источник возбуж­дающей силы которых зависит от природы кристаллов кварца, обладали меньшими возможностями совершенствования. Их аку­стическая мощность ограничивалась напряжением пробоя кристал­ла. Кроме того, прочная и равномерная приклейка мозаики из кристаллов к большой поверхности металлической пластины, подверженной сильным переменным напряжениям, связана с техническими трудностями. Напротив, в магнитострикционных виб­раторах склеиваемые поверхности в точности параллельны направ­лению колебаний, и поскольку речь идет о переменных механи­ческих напряжениях, нет необходимости принимать меры предосто­рожности для обеспечения прочности склейки. Эти преимущества магнитострикционных вибраторов способствовали быстрому вы­теснению ими преобразователей Ланжевена. Далее проводились исследования различных сплавов, и в 1942 г. был получен сплав алюминия с железом, названный альфером, применение которого снизило стоимость магнитострикционных преобразователей. Вибраторы из этого сплава быстро нашли широкое применение не толь­ко в ультразвуковых эхолотах, но и в рыболокаторах различных типов.

Вскоре, однако, был обнаружен большой пьезоэлектрический эффект в искусственном сегнетоэлектрике, названном керамикой титаната бария, а развитие технологических методов сделало изделия из керамики достаточно механически прочными для исполь­зования их в режиме ультразвуковых колебаний. Это произошло за промежуток времени с 1947 по 1950 г. Вынуждающая сила возникает в таком материале при воздействии на него переменного электрического поля, как и в кристалле кварца, но в данном случае нужна еще постоянная электрическая поляризация — электрическое смещение. Коэффициент электромеханической свя­з и для керамики титаната бария значительно выше, чем для квар­ца, и благодаря этому снова вспомнили об излучателе Ланжевена. В связи с разработкой прочных искусственных смол, таких, как аралдит, ультразвуковые преобразователи типа Ланжевена с керамическими пластинками из титаната бария вместо кварцевой мозаики вновь вошли в практику. Высокий коэффициент элек­тромеханической связи материала и малые диэлектрические поте­ри в нем позволили надеяться на то, что применение таких пре­образователей будет способствовать повышению общей эффектив­ности различных ультразвуковых установок. Несмотря на то, что упомянутые выше трудности, присущие технике сборки, не были преодолены и для преобразователя Ланжевена из титана­та бария, он нашел достаточно широкое практическое применение в различной маломощной ультра­звуковой аппаратуре, в частно­сти в компактных рыболокато­рах, где выступил серьезным конкурентом магнитострикцион­ных преобразователей из альфера или никеля.

За время с 1954 по 1957 г. были получены новые полезные магнитострикционные материалы — ферриты; в результате про­мышленной разработки их технологии была достигнута механи­ческая прочность ферритов, достаточная для излучения ультра­звука большой мощности. Ввиду того что ферриты имеют очень высокое электрическое сопротивление, потери на вихревые токи не ощущаются для них в любом монолитном объеме материала, и вибратор может быть изготовлен сразу в окончательной форме из ферритового порошка путем прессования и последующего обжига. Электроакустический коэффициент полезного действия ферритов выше, чем к. п. д. металлических магнитострикционных вибраторов, набранных из тонких пластин, и обычно превышает последний примерно в 3 раза, достигая 80—90%. Характерные преимущества магнитострикционного пре­образователя по сравнению с пьезоэлектрическим присущи любому преобразователю из ферритов. Поэтому во многих областях промышленного применения ультразвука в настоящее время используются преимущественно ферритовые преобразователи.

 2.3.3 Методы ультразвуковой дефектоскопии

Для контроля материалов и сварных соединений при­меняют следующие основные методы УЗ-дефектоскопии.

Рисунок 2.14 Схемы использования основных методов УЗ-контроля: а — эхо-метод; б — теневой; в — зеркально-теневой; г — эхо-зеркальный; д — эхо-теневой.

Импульсный эхо-метод, основанный на отражении УЗ-колебаний от несплошности (отражателя), причем амплитуда эхо-сигнала пропорциональна площади этого отражателя. Этим методом контролируют поковки, штамповки, про­кат, термообработанное литье, пластмассы, измеряют толщину металлов и оценивают структуру материалов. Эхо-метод широко используют для контроля сварных соединений. Чувствительность эхо-метода высокая: она до­стигает 0,5 мм2 на глубине 100 мм. К преимуществам дан­ного метода следует также отнести возможность одно­стороннего доступа к зоне шва, поскольку достаточно только одного преобразователя и для излучения и для приема УЗ-сигналов. Недостатки эхо-метода — это срав­нительно низкая помехоустойчивость и резкое изменение амплитуды отраженного сигнала от ориентации дефекта (угла в между УЗ-лучом и плоскостью отражателя).

Теневой и зеркально-теневой методы, также широко распространенные, основаны на уменьшении амплитуды УЗ-колебаний вследствие наличия несплошности на их пути. Чем крупнее дефект, тем слабее прошедший к приемнику сигнал. В теневом методе УЗ-луч идет прямо от генератора к прием­нику через контролируемый металл. Теневой метод при­меняют в основном для контроля проката малой и сред­ней толщины, некоторых резиновых изделий (покрышек колес), для исследования упругих свойств стеклопласти­ков, бетона, графита и т. д. В отличие от эхо-метода теневой метод имеет высокую помехоустойчивость и слабую зависимость амплитуды от угла  ориентации дефекта. Однако имеются серьезные недостатки: необходимость двустороннего доступа и малая точность оценки коорди­нат дефектов. Зеркально-теневой метод отличается от те­невого тем, что регистрирует уменьшение УЗК, отражен­ных от нижней поверхности листа. Зеркально-теневой метод, как видно из схемы, не тре­бует двустороннего доступа к соединению. Этот метод широко используют для контроля железнодорожных рель­сов. Он позволяет также более достоверно определять наличие корневых дефектов в стыковых швах. Оба теневых метода используют обычно для соедине­ний с грубообработанной поверхностью. Например, их успешно применяют для контроля стыков арматуры пе­риодического профиля.

Эхо-зеркальный метод основан на сравнении амплитуд обратно-отраженного и зеркально-отраженного сигналов от дефекта. Основное преимущество эхо-зеркального метода — высокая выявляемость плоскостных дефектов и возмож­ность оценки их формы по специальному коэффициенту. Ограничения данного метода: примене­ние только для металла больших толщин (более 40 мм); сравнительно большой пороговый размер выявляемоcти дефектов округлой формы (диаметр не менее 3 мм).

Иногда используется эхо-теневой метод. В этом случае о наличии дефекта судят одновременно по эхо-импульсу от несплошности и по ослаблению однаж­ды отраженного донного сигнала. Эхо-теневой метод применяют при механизированном контроле сварных стыков труб. Он дает большую вероят­ность обнаружения дефектов и возможность оценки их характера, а также позволяет вести контроль за качест­вом акустического контакта при наличии сложной мно­гоканальной аппаратуры. В зависимости от метода УЗ-дефектоскопии и вида объекта контроля используют разные схемы соединения преобразователей. При эхо-методе широко применяют совмещенную схему ИП, когда один пьезоэлемент служит сначала излучателем зондирующего импульса, а по­том приемником отраженного от дефекта сигнала.   

В теневом и зеркальном методах при­меняется раздельная схема соединения преобразовате­лей: один из них служит излучателем энергии (от гене­ратора), а другой принимает прошедший через контро­лируемое соединение импульс. Для эхо-зеркального и эхо-теневого методов используют раздельно-совмещенную (PC) схему соеди­нения двух преобразователей, когда каждый из них мо­жет поочередно быть либо излучателем, либо приемни­ком.

Метод акустической эмиссии. Это метод технической диагностики, а не дефектоскопии. Он основан на регист­рации акустических волн, излучаемых дефектом при нагружении материала или конструкции. Причиной об­разования упругих волн являются пластическая дефор­мация, процессы движения дислокации кристаллов, возникновение и развитие трещин. Метод применим для ответственных высоконагруженных сварных соединений: сосудов высокого давления, трубопроводов, летательных аппаратов и других конструкций. Для регистрации акус­тической эмиссии требуется высокочувствительная аппаратура, работающая в широком диапазоне частот от килогерц до мегагерц.

Резонансный метод основан на определении резонансных частот, при которых в исследуемом участке изделия (по толщине листа или трубы) укладыва­ется целое число полуволн УЗК. Исчезновение резонансов — это сигнал о наличии дефекта или изменении тол­щины.

Метод акустического импеданса за­ключается в регистрации УЗ-колебаний стержня, опи­рающегося на поверхность изделия. Подповерхностные дефекты изменяют акустический импеданс данного участка изделия, что отражается на амплитуде и частоте соб­ственных колебаний стержня.

Велосиметрический метод связан с ре­гистрацией изменения скорости УЗ-колебаний. Такое изменение имеет место в слоистых конструкциях при из­менении толщины слоя или наличии расслоений.

Метод собственных колебаний основан на анализе частот или прослушивании тона акустических колебаний изделий, вибрирующих на собственной час­тоте. Этот метод очень прост: дефекты выявляют, напри­мер, простукивая молотком бандажи колес на железно­дорожных вагонах или оценивая по звону посуды нали­чие в ней трещин. В данных примерах анализируют на слух звук в слышимом диапазоне, и поэтому метод пра­вильнее назвать акустическим, а не УЗ-методом.


Поделиться:



Последнее изменение этой страницы: 2019-03-22; Просмотров: 832; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.018 с.)
Главная | Случайная страница | Обратная связь