Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Ph -оптимум- значение ph при котором реакция протекает наиболее быстро. Для большинства E он лежит в пределах от 6 до 8



25.  Теория Михаэлиса-Ментон.

Михаэлиса константа, один из важнейших параметров кинетики ферментативных реакций, введенный немецкими учеными Л. Михаэлисом (L. Michaelis) и М. Ментен в 1913; характеризует зависимость скорости ферментативного процесса от концентрации субстрата. Согласно теории Михаэлиса — Ментен, первым этапом любого ферментативного процесса является обратимая реакция между ферментом (Е) и субстратом (), приводящая к образованию промежуточного фермент-субстратного комплекса (ES), который затем подвергается практически необратимому расщеплению на продукт реакции (Р) и исходный фермент:

Реакции образования и распада комплекса ES характеризуются константами скорости k1, k-1, k2. Если концентрация субстрата значительно превышает концентрацию фермента ( S) >> (E)) и, следовательно, концентрация ES становится постоянной, скорость ферментативной реакции (u) выражается уравнением:2
где — максимальная скорость реакции, достигаемая при полном насыщении фермента субстратом. Соотношение констант скорости
где — максимальная скорость реакции, достигаемая при полном насыщении фермента субстратом. Соотношение констант скорости


также является константой (Кm), получившей название Михаэлиса константа Подставляя в уравнение (2) Михаэлиса константа , получаем уравнение Михаэлиса — Ментен:

Из уравнения (3) следует, что Михаэлиса константа численно равна концентрации субстрата, при которой скорость реакции составляет половину максимально возможной (см. рис. ). В ряде случаев, когда величина k1 мала и ею можно пренебречь, Михаэлиса константа становится равной  и может служить мерой сродства субстрата к ферменту. Михаэлиса константа имеет размерность концентрации. Практически величину Михаэлиса константа находят различными графическими методами, исследуя зависимость скорости ферментативной реакции от концентрации субстрата.

 

26.  Обратимые и необратимые ингибиторы ферментов, примеры. Конкурентное, неконкурентное и бесконкурентное ингибирования, примеры. Графический кинетический анализ.

Ферментативный ингибитор — вещество, замедляющее протекание ферментативной реакции. Различают обратимые и необратимые ингибиторы. Обратимые делятся на конкурентные , неконкурентные , бесконкурентные .





Обратимое ингибирование

В этом случае ингибитор связывается в активном центре фермента и конкурирует за него с субстратом . Таким образом, конкурентный ингибитор не связывается с фермент-субстратным комплексом (ES на рис.1), то есть константа диссоциации Ki' >> 1.

Конкурентный ингибитор обычно структурно схож с субстратом, однако фермент не способен катализировать реакцию в присутствии ингибитора из-за отсутствия у последнего необходимых функциональных групп.Схема конкурентного

ингибирования и уравнение Михаэлиса-Ментен для него выглядят следующим образом:

Видно, что при конкурентном ингибировании максимальная скорость реакции Vmax не меняется, а кажущаяся константа Михаэлиса увеличивается в (1 + [I]/Ki) раз. Поэтому в двойных обратных координатах Лайнуивера - Берка (зависимость 1/v0 от 1/[S]) при разных концентрациях ингибитора получают семейство прямых с различным наклоном, пересекающихся в одной точке на оси ординат.Константу ингибирования Ki обычно определяют так: проводят ряд измерений кажущейся константы Михаэлиса при различных концентрациях ингибитора, затем строят зависимость этой величины от концентрации ингибитора. Тангенс угла наклона полученной прямой равен Km/Ki.

Неконкурентное ингибирование

Неконкурентный ингибитор не мешает связыванию субстрата с ферментом. Он способен присоединяться как к свободному ферменту, так и к фермент-субстратному комплексу с одинаковой эффективностью. Ингибитор вызывает такие конформационные изменения, которые не позволяют ферменту превращать субстрат в продукт, но не влияют на сродство фермента к субстрату.

Схема и уравнение Михаэлиса-Ментен в случае неконкурентного ингибирования:

 

При неконкурентном ингибировании константа Михаэлиса не изменяется, а максимальная скорость реакции уменьшается в (1 + [I]/Ki) раз. Поэтому в двойных обратных координатах семейство прямых, отвечающих разным концентрациям ингибитора, пересекается в одной точке на оси абсцисс.

Бесконкурентное ингибирование

При бесконкурентном ингибировании ингибитор связывается только с фермент-субстратным комплексом, но не со свободным ферментом. Субстрат, связываясь с ферментом, изменяет его конформацию, что делает возможным связывание с ингибитором. Ингибитор, в свою очередь, так меняет конформацию фермента, что катализ становится невозможным.

Схема и уравнение Михаэлиса-Ментен в случае бесконкурентного ингибирования:

Максимальная скорость реакции и кажущаяся константа Михаэлиса уменьшаются в одинаковое число раз. Поэтому в двойных обратных координатах для разных концентраций субстрата получаем семейство параллельных прямых.

Ингибирование субстратом

Ингибирование субстратом — частный случай бесконкурентного ингибирования, когда две молекулы субстрата связываются с ферментом, что препятствует образованию продукта.

Схема и уравнение Михаэлиса-Ментен в случае ингибирования субстратом:

Необратимое ингибирование

Формирование стабильного комплекса ингибитора с ферментом, ведущее к его необратимой инактивации. Случай необратимого ингибирования можно обнаружить по тому признаку, что при разбавлении раствора не происходит повышения удельной активности фермента, как в случае обратимого ингибирования .

 

27.  Использование ингибиторов ферментов в медицине. Лекарственные препараты и яды как ингибиторы ферментов.

Ингибиторы моноаминоксидазы (ИМАО, MAOI) — биологически активные вещества, способные ингибировать фермент моноаминоксидазу, т. е. замедлять или полностью блокировать его работу. К таковым относятся некоторые антидепрессанты , а также ряд природных веществ.

Ингиби́торы прото́нного насо́са (синонимы: Ингиби́торы прото́нной по́мпы, Ингиби́торы прото́нового насо́са, Ингиби́торы прото́новой по́мпы; часто употребляется аббревиатура ИПП, реже — ИПН) — лекарственные препараты, предназначенные для лечения кислотозависимых заболеваний желудочно-кишечного тракта за счёт снижения продукции соляной кислоты посредством блокирования в париетальных клетках слизистой оболочки желудка протонного насоса — Н++-АТФазы . Относятся к антисекреторным препаратам.

Ингибиторы ангиотензин-превращающего фермента (АПФ) Фармакологическое действие ингибиторов АПФ обусловлено их влиянием на функциональное состояние ренин-ангиотензин-альдостероновой системы. При этом ингибиторы АПФ обладают необходимой структурой, позволяющей им взаимодействовать с атомом цинка в молекуле ангиотензин-превращающего фермента. Это сопровождается его инактивацией [14] и подавлением активности циркулирующей (плазменной) и тканевой (локальной) ангиотензиновых систем.

Препараты группы отличаются по выраженности и продолжительности ингибирующего влияния на ангиотензин I-превращающий фермент: в частности, рамиприл в организме превращается в активный метаболит - рамиприлат, сродство которого к ангиотензин I-превращающему ферменту в 42 раза выше, а комплекс рамиприл-фермент в 72 раза стабильнее, чем каптоприл-фермен

Ферментные яды, вещества различной химической природы, специфически подавляющие активность определённого фермента или группы родственных ферментов. Ф. я. представляют собой ингибиторы ферментов, которые даже в очень низких концентрациях угнетают жизненно важные физиологические функции организма. Многие ядовитые вещества, т. н. "нервные яды" (люизит), "дыхательные яды" (цианиды, H2S), пестициды (ядохимикаты) оказывают отравляющее действие в результате ингибирования отдельных ферментов (например, холинэстеразы у членистоногих). Изучение влияния Ф. я. на изолированные ферменты или ферментные системы позволяет целенаправленно искать эффективные противоядия к определённым отравляющим веществам или новые пестициды для борьбы с вредными насекомыми, клещами и т.д. и сорняками. Иногда термин "Ф. я." применяют для обозначения ферментов, входящих в состав ядов змей, пчёл, скорпионов и др. и разрушающих клетки крови или др. тканей человека и животных.

28.  Регуляция активности ферментов. Виды быстрой регуляции.

Ключевые ферменты-ферменты, запускающие метаболический путь, а также ферменты, лимитирующие скорость его протекания. Лимитирующая реакция – реакция с самой высокой энергией активации. Факторы регуляции скорости протекания метаболического пути:1)общие условия регулируют активность Ф. – концентрация Ф. и субстрата ( S), значение рН, t0,времени;2)Аллостерическая регуляция - специальные, специфические активаторы и ингибиторы являются эффекторами (фактор активации – работа АЦ и S;фактор ингибирования – несоответствие АЦ и S). Эффектор может взаимодействовать непосредственно с каталитической субъединицей, и с регуляторной субъединицей, которая дает команду к формированию каталитической субъединице. Объединение субъединиц в олигомерный комплекс усиливает чувствительность Ф в ответ на малое колебание концентрации эффекторов. Олигомерность приводит к явлению кооперативности. Присоединение облегчает последующее взаимодействие субъед. и S. Олигомерность ускоряет или тормозит активность Ф в ответ на незначительные колебания концентрации S. 3)Активация предшественников (форактивация): 1 метаболит активирует Ф, катализирующий последующую стадию (необязательно ближайшую).4)ретроингибирование – торможение по принципу обратной связи, адекватная быстрая регуляция прямого метаболического пути.5)хим.модификация белков – Ф: к белку-Ф ковалентно присоединятся хим.функц.группа, что активирует или ингибирует деятельность Ф. Ф находится в активном состоянии несколько минут, а затем модифицированная группа удаляется с помощью лиаз.6)Хроническая регуляция – подавление синтеза ненужного в данный момент Ф, активация синтеза нужного; контроль на уровне генома: транскрипция/трансляция.7)регуляция активности Ф через гормоны: гормон-первичный сигнализатор→ рецептор→ регуляция активности.8) компартментализация: в клетке Ф и S могут быть разделены мембраной. Любой фактор, оказывающий влияние на проницаемость мембраны, будет являться регулятором активности ФК. Удаление продукта реакции (пространственное разообщение) также влияет на скорость. В случае разделения мембраной продукта и Ф, реакция протекает под ингибирование др. влияний.9)активация Ф путем протеолиза – для формирования АЦ.

Виды быстрой регуляции

 

 

29. Регуляция активности ферментов. Виды медленной регуляции. №28

30.  Изоферменты. Диагностическое значение определения изоферментов в медицине. Изоформы ферментов.

Изоферм – разные молекуляр формы одного и того же ферм, кодирующиеся родственными генами. Отличаются рядом структурных, катализирующих и метаболич св-в: разные ферм имеют разные рН-оптимум, отличаются степенью сродства к субстрату и кофакторам, чувствит к активаторам и ингибиторам, скоростью синтеза и распада. Благодаря набору изоферм клетка обладает способностью к тонкой адаптации. Тканевые изоферм отвечают за приспосабливание ткани и оптимальное протекание р-ии при имеющихся условиях. 1) Изоферм могут быть гибридами двух видов полипепт цепей: креатинкиназа, ЛДГ, изоферм имеющие более 2-х полипепт цепочек. 2) аллелозины – генетич вариант одного и того же ферм, встречается у организмов – глюкозо-6-фосфат-ДГ. 3) генетич независимые изоферм, кодируются разными генами, может быть разная внутриклеточная организация (малатДГ,аминотрансфераза).

31.  Изоферменты. Диагностическое значение определения изоферментов в медицине. Энзимодиагностика.

Энзимодиагностика – это исследование активности ферментов плазмы крови, мочи, слюны с целью диагностики тех или иных заболеваний. Примером может служить фермент лактатдегидрогеназа , определение его активности в плазме крови необходимо при заболеваниях сердца, печени, скелетной мускулатуры. Увеличение активности α-амилазы в плазме крови и моче наблюдается при воспалительных процессах в поджелудочной и слюнных железах.

С другой стороны, заболевания тех или иных органов всегда сопровождаются специфичным "ферментативным профилем". Например, инфаркт миокарда сопровождается увеличением активности ЛДГ , КК , аспартатаминотрансферазы. +№30

 

32.  Применение ферментов в медицине.

Ферменты в медицине используются в качестве диагностических (энзимодиагностика) и терапевтических (энзимотерапия) целей. Кроме того ферменты используются в качестве специфических реактивов для определения ряда в-в.

При лечении желудочных заболеваний , сопровождающихся снижением содержания пепсина в желудочном соке, для улучшения пищеварения назначают препараты пепсина (заместительная терапия). Протеолитические ферменты применяют при первичной обработке ран: гидролизуя белки разрушенных кл-к, ферменты способствуют очищению ран и уменьшении воспалительных явлений. Нуклеазы (катализ разрушения нуклеиновых кислот) используются при лечении вирусных заболеваний. Некоторые протеолитические ферменты применяют для предотвращения или лечения тромбов, закупорки кр. сосудов сгустками крови.

Аспарагиназу применяют для лечения некоторых форм лейкозов. Аспарагин в лейкозных к-ах не синтезируется, и к-ки получают его из плазмы крови. Если ввести в кровь больного аспарагиназу, то аспарагин в плазме крови разрушается и синтез белков в лейкозных к-ах прекращается – к-ки гибнут.

С помощью фермента можно определить его субстрат в смеси, содержащей множество др. в-в. Этим методом измеряют содержание глюкозы, мочевины, моч. к-ты, мол. к-ты, креатинина, холестерина и др.

Энзимодиагностика заключается в постановке диагноза заболевания на основе определения активности ферментов в биол. жидкостях человека. При повреждении к-к в крови увеличивается концентрация внутрикл. ферментов поврежденной к-ки.

Специфичность Ф к опр. субстратам → применение В ЛАБ. ДИАГНОСТИКЕ.

(1)многие лабораторные методы основаны на взаимодействии добавляемого извне фермента с определяемым соединением. В результате возникает специфичный продукт реакции, после определения содержания последнего судят о концентрации искомого вещества (глюкозооксидазный, холестеролоксидазный методы), НАД+ при 340 нм → тест Варбурга.

(2)иммуноферментные методы, основанные на образовании тройного комплекса фермент-антиген-антитело. Определяемое вещество не является субстратом фермента, но является антигеном. Фермент может присоединять этот антиген вблизи от активного центра. Если в среде есть антиген, то при добавлении антител и формировании тройного комплекса активность фермента изменяется. Активность фермента измеряют любым способом.


Поделиться:



Последнее изменение этой страницы: 2019-03-31; Просмотров: 131; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.029 с.)
Главная | Случайная страница | Обратная связь