Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Структурные схемы систем автоматического управления



 

В общем случае порядок исследования САУ включает математическое описание системы и изучение ее переходных и установившихся режимов. Получение математической модели начинается с разбиения системы на звенья и описания этих звеньев.

При рассмотрении принципа действия систем автоматического управления в п. 1.1 было дано понятие о функциональной схеме САУ (см. рисунок 1.2), где разбиение системы на звенья проводилось с учетом выполняемых ими функций, то есть с учетом их назначения. Для математического описания систему разбивают на звенья по другому принципу, а именно – исходя из удобства получения этого описания. Для этого систему следует разбить на возможно более простые звенья, обладающие свойством направленного действия.

Звеном направленного действия называют звено, передающее воздействие только в одном направлении – со входа на выход, так что изменение состояния такого звена не влияет на состояние предшествующего звена, работающего на его вход. Соответственно, математическое описание всей системы в целом может быть получено как совокупность составленных независимо друг от друга уравнений или характеристик отдельных звеньев, образующих систему, дополненных уравнениями связи между звеньями.

В результате разбиения САУ на звенья направленного действия и получения математического описания отдельных звеньев составляется структурная схема системы, которая и является ее математической моделью.

Структурная схема САУ характеризует геометрию системы, то есть показывает, из каких элементов состоит система и как эти элементы связаны между собой. На схеме указывают прямоугольники, изображающие звенья, и пути распространения сигналов в системе в виде стрелок, соединяющих входы и выходы звеньев. Каждому звену структурной схемы придается описывающая его характеристика (передаточная функция), которая обычно записывается прямо внутри изображающего звено прямоугольника (рисунок 2.4).

Рисунок 2.4 – Структурная схема САУ

 

Получение структурной схемы является конечной целью математического описания системы автоматического управления.

 

2.3 Преобразование Лапласа

В настоящее время под операционным исчислением понимают совокупность методов прикладного математического анализа, позволяющих экономными средствами получать решения линейных дифференциальных уравнений, а также разностных и некоторых типов интегральных уравнений.

Операционное исчисление нашло широкое применение в теории автоматического регулирования, где с его помощью производится анализ переходных и установившихся процессов в автоматических системах. Сущность операционного метода заключается в использовании прямого преобразования Лапласа (ППЛ), которое некоторой функции  действительной переменной  ставит в соответствие функцию комплексной переменной :

,                                                                        (2.4)

где – переменная (множитель) Лапласа.

Условием существования преобразования Лапласа является сходимость интеграла в правой части равенства (2.4). Минимальное значение параметра , при котором данный интеграл сходится, носит название абсциссы сходимости.

Обратное преобразование Лапласа (ОПЛ) имеет вид:

.                                                             (2.5)

Функция  носит называние оригинала, а функция – изображения.

Для пары преобразований Лапласа используется также операторная форма записи:

 и

где L – оператор Лапласа.

Вычисление интегралов (2.4), (2.5) для некоторых видов функций может оказаться трудным или громоздким, поэтому для упрощения расчетов используют таблицы соответствий «оригинал–изображение» (таблица 1).

Таблица 1 – Таблица оригиналов и их изображений (  – const)

Оригинал Изображение F (p)
 
 
 
 

 

Свойства преобразования Лапласа:

1. Изображение суммы функций равно сумме изображений отдельных функций:

.

2. Временному запаздыванию функции в области оригиналов соответствует умножение ее изображения на множитель , где
 – время запаздывания:

.

3. При нулевых начальных условиях дифференцирование в области оригиналов соответствует в области изображений умножению изображения функции на переменную Лапласа в степени, соответствующей порядку производной:

 при условии, что , и т.д.

При ненулевых начальных условиях правило расчета изображения для производной 1-го порядка имеет вид:

.

4. Интегрирование в области оригиналов соответствует делению на переменную Лапласа  в области изображений:

.

5. Постоянная величина выносится за знак преобразования:

, где .

6. По виду изображения  можно судить о начальном (при ) и предельном (при ) значениях оригинала  (теоремы о начальном и конечном значениях):

 и .

С помощью преобразования Лапласа существенно упрощается процедура решения дифференциальных или интегродифференциальных уравнений с постоянными коэффициентами.

Выделяют следующие этапы решения:

1) преобразование заданного дифференциального уравнения по Лапласу, учитывая при этом начальные условия (то есть переход из области оригиналов в область изображений);

2) решение полученного алгебраического уравнения относительно изображения;

3) переход от изображения решения к его оригиналу (например, с помощью таблиц преобразования Лапласа).

Применение преобразования Лапласа в теории автоматического управления связано с важнейшим понятием – передаточной функцией системы, относящейся к одной из основных характеристик САУ.


Поделиться:



Последнее изменение этой страницы: 2019-04-10; Просмотров: 333; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.018 с.)
Главная | Случайная страница | Обратная связь