Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Автопоэз — организация живого

Гиперциклы, изученные Эйгеном, самоорганизуются, самовоспроизводятся и эволюционируют. И все же возникают сомнения, можно ли назвать эти циклы химических реакций «живыми». Какими свойствами, в таком случае, должна обладать система, чтобы ее можно было считать воистину живой? Можем ли мы провести четкое различие между живыми и неживыми системами? В чем конкретно заключается суть связи между самоорганизацией и жизнью?

Именно эти вопросы в 60-е годы задавал себе чилийский нейробиолог Умберто Матурана. После шести лет учебы и исследований в области биологии, проведенных в Англии и Соединенных Штатах, где он сотрудничал с группой Уоррена Мак-Каллока в Массачусетском технологическом институте и находился под сильным влиянием кибернетиков, в 1960 г. Матурана вернулся в Университет Сантьяго. Там он специализировался в нейробиологии и, в частности, занимался проблемами цветовосприятия.

В результате этих исследований у Матураны выкристаллизовались два основных вопроса. Он вспоминал позже: «Я попал в ситуацию, когда моя академическая жизнь разделилась — я искал ответы на два вопроса, которые, казалось, ведут в противоположные стороны: Что представляет собой организация живого? Что такое феномен восприятия?»40.

Почти десять лет Матурана бился над этими вопросами, и его гениальность выразилась в том, что он сумел дать единый ответ на оба. Тем самым он открыл возможность объединить две традиции системного мышления, которые сосредоточились на противоположных сторонах картезианского разделения. Организменные биологи исследовали природу биологической формы, а кибернетики пытались понять природу разума. В конце шестидесятых Матурана осознал, что разгадка обеих этих головоломок лежит в понимании «организации живого».

Осенью 1968 г. Хайнц фон Форстер пригласил Матурану принять участие в работе его междисциплинарной исследовательской группы в Университете Иллинойса, а позже стать участником чикагского симпозиума по обучению. Это была для Матураны идеальная возможность представить свои идеи об обучении как биологическом феномене41. В чем же состояло основное открытие Матураны? По его собственным словам:

Мои исследования цветовосприятия привели меня к открытию, которое было чрезвычайно важно для меня: нервная система функционирует как замкнутая сеть интеракций (взаимодействий), в которой каждое изменение интерактивных отношений между определенными компонентами всегда приводит к изменению интерактивных отношений в тех же или в других компонентах42.

Матурана вывел из своего открытия два заключения, которые и дали ему ответы на два его главных вопроса. Он сформулировал гипотезу о том, что круговая организация нервной системы является базовой организацией для всех живых систем: «Живые системы... организованы в замкнутый причинный круговой процесс, что обеспечивает возможность эволюционных изменений способа поддержания кругообразности, но без потери при этом самой кругообразности»43.

Поскольку все изменения в системе происходят в рамках этой базовой кругообразности, утверждает Матурана, то компоненты, которые определяют данную круговую организацию, должны формироваться и Поддерживаться ею же. И он делает заключение, что такой сетевой паттерн, в котором функция каждого компонента состоит в том, чтобы помочь произвести и трансформировать другие компоненты, одновременно поддерживая общую кругообразность сети, и является основной организацией живого.

Второе заключение, которое Матурана вывел из круговой замкнутости нервной системы, привело к радикально новому пониманию обучения. Он постулировал, что нервная система не только сама организуется, но и постоянно сама на себя ссылается, поэтому восприятие не может рассматриваться как представление внешней реальности, но должно быть понято как непрерывное создание новых взаимоотношений внутри нейронной сети: «Деятельность нервных клеток не отражает окружающую среду, независимую от живого организма, и, следовательно, не позволяет конструировать абсолютно существующий внешний мир»44.

Согласно Матуране, восприятие, а в более общем смысле познание, не представляет внешнюю реальность, а скорее определяет [specify] через процесс круговой организации нервной системы. На основе этой предпосылки Матурана затем делает важный шаг, утверждая, что процесс круговой организации как таковой — связанный или не связанный с нервной системой — идентичен процессу познания:

Живые системы — это когнитивные системы, а жизнь — процесс познания. Это утверждение справедливо для всех организмов, с нервной системой или без нее45.

Такой способ идентификации познания с процессом самой жизни — действительно радикально новая концепция. Ее многообещающие следствия будут подробно обсуждены ниже46.

Опубликовав свои идеи в 1970 г., Матурана начал длительную совместную работу с Франциско Вареной, молодым нейробиологом из университета в Сантьяго. Варела был студентом Матураны, прежде чем стал его сотрудником. По свидетельству Матураны, сотрудничество началось тогда, когда Варела в частной беседе бросил вызов мэтру, предложив ему найти более формальное и более полное описание концепции круговой организации47. Они немедленно принялись за работу над полным словесным описанием идеи Матураны, отложив попытки создать математическую модель, и начали они с изобретения названия для нее — автопоэз.

Авто--, конечно, означает «само-» и относится к автономии самоорганизующихся систем; а поэз имеет тот же греческий корень, что и «поэзия», и означает «созидание». Итак, автопоэз означает «самосозидание».

Поскольку они изобрели новое слово, не имеющее предыдущей истории, его было удобно использовать как отличительный технический термин именно для организации живых систем. Два года спустя Матурана и Варела опубликовали свое первое описание автопоэза в объемном эссе48, а к 1974 г. они вместе со своим коллегой Рикардо Урибе разработали соответствующую математическую модель для простейшей системы автопоэза, живой клетки49.

Матурана и Варела начинают эссе об автопоэзе с того, что определяют свой подход как «механистический» — чтобы отмежевать его от виталистических подходов к природе жизни: «Наш подход будет механистическим: никакие силы или принципы, не присутствующие в физической вселенной, не будут привлечены». Однако следующее же предложение сразу отчетливо показывает, что авторы не картезианские механицисты, но системные философы:

И все же наша проблема — живая организация, поэтому наши интересы будут лежать не в области свойств компонентов, но в сфере процессов и связей между процессами, которые осуществляются через компоненты50.

Далее они уточняют свою позицию, вводя важное различие между организацией и структурой; это различие подразумевалось в течение всей истории системного мышления, но в явном виде к нему не обращались, пока не началось развитие кибернетики51. Матурана и Варела делают различие кристально чистым. Организация живой системы, как они поясняют, представляет собой набор связей между ее компонентами, который определяет принадлежность системы к определенному классу (например, бактериям, подсолнечникам, кошкам или человеческому мозгу). Описание такой организации — это абстрактное описание взаимоотношений, оно не определяет компоненты. Авторы предполагают, что автопоэз — это всеобщий паттерн организации, одинаковый для всех живых систем, независимо от природы их компонентов.

Структура живых систем, наоборот, слагается из реальных отношений между физическими компонентами. Другими словами, структура системы представляет собой физическое воплощение ее организации. Матурана и Варела подчеркивают, что организация системы не зависит От свойств ее компонентов, так что данная организация может быть воплощена множеством разных способов на основе множества разных типов компонентов.

Подчеркнув, что их интересует организация, а не структура, авторы продолжают далее определять автопоэз как организацию, общую для всех живых систем. Это сеть процессов производства, в которой функция каждого компонента состоит в том, чтобы участвовать в производстве или трансформации других компонентов сети. Таким образом, вся сеть непрерывно «делает себя». Она производится своими компонентами и, в свою очередь, производит эти компоненты. «В живой системе, — поясняют авторы, — продуктом ее функционирования является ее же организация»52.

Важная особенность живых систем заключается в том, что их автопоэзная организация включает создание границы, которая обозначает сферу операций сети и определяет систему как единое целое. Авторы указывают, что каталитические циклы, в частности, не образуют живых систем, поскольку их граница предопределяется факторами (например, физическим сосудом), не зависящими от каталитических процессов.

Интересно отметить, что примерно за десять лет до того, как Матурана впервые опубликовал свои идеи, физик Джефри Чу сформулировал свою так называемую «гипотезу бутстрапа», касающуюся состава и взаимодействия субатомных частиц, — она звучит почти так же, как концепция автопоэза53. Согласно Чу, сильновзаимодействующие частицы, или адроны, формируют сеть взаимодействий, в которой «каждая частица помогает генерировать другие частицы, которые, в свою очередь, генерируют ее»54.

Тем не менее, существует два кардинальных различия между адронным бутстрапом и автопоэзом. Адроны являются потенциальными пограничными состояниями друг друга в вероятностном смысле квантовой теории, что неприложимо к организации живого. Более того, сеть субатомных частиц, взаимодействующих через высокоэнергетические столкновения, не может быть признана автопоэзной, поскольку она не образует никакой границы.

Согласно Матуране и Вареле, концепция автопоэза необходима и достаточна для характеристики организации живых систем. Однако эта характеристика не содержит никакой информации о физическом составе компонентов системы. Для понимания свойств компонентов и их физических взаимодействий абстрактное описание организации системы должно быть дополнено описанием структуры системы на языке физики и химии. Ясное различение этих двух описаний — одного в терминах структуры и другого в терминах организации — позволяет объединить структуро-ориентированные модели самоорганизации (например, Пригожина и Хакена) и организационно-ориентированные модели (например, Эйгена и Матураны-Варелы) в согласованную теорию живых систем55.

Гайя — живая Земля

Ключевые идеи, лежащие в основе описанных выше разнообразных моделей самоорганизующихся систем, выкристаллизовались в течение нескольких лет в начале 60-х: в Соединенных Штатах Хайнц фон Форстер собрал свою междисциплинарную исследовательскую группу и проводил конференции по самоорганизации; в Бельгии Илья Пригожий осознал принципиальную связь между неравновесными системами и нелинейностью; в Германии Герман Хакен разработал теорию лазера, а Манфред Эйген исследовал каталитические циклы; в Чили Умберто Матурана бился над разгадкой организации живых систем.

В это же время специалист по химии атмосферы Джеймс Лавлок пришел к блестящей догадке, а затем и к формулированию модели, которая, вероятно, является наиболее поразительным и красивым выражением самоорганизации: планета Земля как целое представляет собой живую, самоорганизующуюся систему.

Истоки смелой гипотезы Лавлока можно отыскать в самых первых этапах космической программы НАСА. Хотя идея живой Земли существовала еще в древности и умозрительные теории о планете как живой системе формулировались неоднократно56, только первые космические полеты в начале 60-х позволили человеческим существам впервые реально взглянуть на свою планету со стороны и воспринять ее как единое Целое. Вид Земли во всей ее красе — бело-голубой шар, парящий на фоне глубокой тьмы космоса, — произвел сильнейшее впечатление на космонавтов, и впоследствии они рассказывали, что это событие стало для них великим духовным опытом, который навсегда изменил их отношение к Земле57. Изумительные фотографии, с которыми они вернулись Назад, стали могучим символом глобального экологического движения.

В то время как космонавты наблюдали планету и восхищались ее красотой, датчики научных приборов изучали из открытого космоса окружающую среду Земли, Луны и других близлежащих планет. В 60-е годы в рамках советских и американских космических программ было запущено более 50 космических спутников, большинство из которых исследовали Луну, но некоторые направлялись и дальше, к Венере и Марсу.

В это время НАСА пригласила Джеймса Лавлока в Лабораторию реактивных двигателей в Пасадене, Калифорния, с тем, чтобы он принял участие в разработке приборов для обнаружения жизни на Марсе58. План НАСА состоял в том, чтобы послать на Марс космический корабль, который искал бы следы жизни в районе посадки, экспериментально исследуя марсианскую почву. Работая над техническими проблемами конструкции прибора, Лавлок задавал себе более общий вопрос: «Как мы можем быть уверены в том, что марсианская жизнь, если она там есть, проявится в ответ на тесты, основанные на земном варианте жизни?» В последующие месяцы и годы этот вопрос не покидал его и заставлял глубоко задумываться над природой жизни и способами ее распознания.

Размышляя над этой проблемой, Лавлок обнаружил, что тот факт, что все живые организмы поглощают энергию и материю и освобождаются от отработанных продуктов, являет собой наиболее обобщенный признак жизни среди всех ему известных. Почти как Пригожий, он подумал, что эту кардинальную характеристику можно выразить математически, на языке энтропии; но затем его рассуждения приняли другое направление. Лавлок предположил, что жизнь на любой планете использовала бы атмосферу и океаны в качестве текучей среды для сырья и отбросов. Поэтому, размышлял он, существует некая возможность обнаружить наличие жизни, проанализировав химический состав атмосферы планеты. Таким образом, если на Марсе есть жизнь, то в марсианской атмосфере должна существовать некая особая комбинация газов, некоторый характерный «узор», который можно обнаружить даже с Земли.

Потрясающее подтверждение этих соображений пришло, когда Лавлок и его коллега Даен Хичкок начали систематический анализ марсианской атмосферы, используя результаты наблюдений с поверхности Земли и сравнивая их с аналогичными данными для земной атмосферы. Они обнаружили, что химический состав двух этих атмосфер принципиально различен. В то время как в марсианской атмосфере очень мало кислорода, огромные количества углекислого газа (СО2) и совсем нет метана, атмосфера Земли содержит массу кислорода, мизерные объемы СО2 и много метана.

Лавлок понял, что причина этого специфического атмосферного профиля Марса кроется в том, что на планете, где нет жизни, все возможные химические реакции между газами в атмосфере завершились в очень давние времена. Сегодня никакие химические реакции на Марсе невозможны: в марсианской атмосфере наблюдается полное химическое равновесие.

Ситуация на Земле совершенно противоположная. Земная атмосфера содержит такие газы, как кислород и метан, которые с большой вероятностью вступают в реакцию, но и сосуществуют в больших пропорциях — получается смесь газов, далекая от химического равновесия. Лавлок понял, что это особое состояние должно быть обусловлено присутствием жизни на Земле. Растения непрерывно производят кислород, а другие организмы — другие газы, так что объем атмосферных газов постоянно пополняется по мере движения химических реакций. Другими словами, Лавлок обнаружил, что атмосфера Земли является далекой от равновесия открытой системой с непрерывным потоком энергии и материи. Его химический анализ позволил определить отличительный признак жизни.

Это прозрение пришло к Лавлоку так внезапно, что он навсегда запомнил точный момент его рождения:

Откровение Гайи пришло ко мне совершенно внезапно — как вспышка просветления. Я находился в маленькой комнате на верхнем этаже здания Лаборатории реактивных двигателей в Пасадене, Калифорния. Это была осень 1965 года... и я обсуждал с коллегой Даеном Хичкоком статью, которую мы вместе готовили... Именно в этот момент я узрел Гайю. Мне в голову пришла потрясающая мысль. Атмосфера Земли представляет собой необычную и неустойчивую смесь газов. Вместе с тем я знал, что ее состав не менялся в течение огромного периода времени. А что если Земля не только сформировала атмосферу, но также и регулировала ее — поддерживая ее постоянный состав, и именно на том уровне, который благоприятен для организмов?59

Процесс саморегуляции является ключевым в идее Лавлока. Из астрофизики он знал, что, с тех пор как на Земле зародилась жизнь, тепловое излучение Солнца повысилось на 25% и что, несмотря на это увеличение, температура поверхности Земли оставалась неизменной на уровне благоприятном для жизни, в течение этих четырех миллиардов лет. Что если Земля способна регулировать свою температуру и другие планетарные параметры — состав атмосферы, уровень солености океанов и т.д. — точно так же как живые организмы способны к саморегуляции и поддержанию постоянной температуры и других параметров своего тела? Лавлок понял, что эта гипотеза ведет к разрыву с традиционной наукой:

Рассматривайте теорию Гайи как альтернативу общепринятой мудрости, которая видит в Земле мертвую планету, состоящую из неодушевленных камней, океана и атмосферы илишь местами населенную крупицами жизни. Рассматривайте Гайю как реальную систему, в которой вся жизнь в целом и вся окружающая ее среда накрепко связаны воедино и представляют собой саморегулирующуюся сущность60.

Ученым НАСА открытие Лавлока отнюдь не пришлось по душе. Они разработали впечатляющий цикл экспериментов по обнаружению жизни и связывали его с миссией своего «Викинга» на Марс, а теперь Лавлок рассказывает им, что на самом деле нет никакой необходимости запускать космический корабль на красную планету. Все, что им нужно, — это спектральный анализ марсианской атмосферы, который легко произвести с помощью телескопа с Земли. Неудивительно, что НАСА игнорировала совет Лавлока и продолжала разрабатывать программу «Викинг». Их корабль достиг Марса несколько лет спустя и, как и предсказывал Лавлок, не обнаружил там следов жизни.

В 1969 году Лавлок впервые представил свою гипотезу Земли как саморегулирующейся системы на научном семинаре в Принстоне61. Вскоре после этого его друг, писатель, понимая, что идея Лавлока возрождает мощный древний миф, предложил название Гайя-гипотеза в честь греческой богини Земли. Лавлок с радостью принял предложение и в 1972 году опубликовал первую обширную версию своей идеи в статье под названием «Гайя: взгляд сквозь атмосферу»62.

В те времена Лавлок еще не имел представления о том, каким образом Земля может регулировать температуру и состав своей атмосферы. Он понимал только, что в саморегулирующие процессы должны быть вовлечены организмы, населяющие биосферу. Он не знал, какие газы производят те или иные организмы. Но в это же самое время американский микробиолог Линн Маргулис изучала именно те процессы, которые Лавлоку было необходимо понять, — производство и удаление газов различными организмами, включая, в частности, мириады бактерий в почве Земли. Маргулис вспоминает, как ее неотступно преследовал вопрос: «Почему все согласны с тем, что атмосферный кислород... происходит от жизненных процессов, но никто не говорит о других атмосферных газах, исходящих от жизни?»63 Вскоре некоторые из ее коллег посоветовали ей поговорить с Джеймсом Лавлоком; с этого началось долгое и плодотворное сотрудничество, которое вылилось в полновесную научную Гайя-гипотезу.

Оказалось, что научные убеждения и профессиональные сферы интересов Джеймса Лавлока и Линн Маргулис идеально дополняют друг друга. Маргулис без затруднений отвечала на многочисленные вопросы Лавлока по поводу биологического происхождения атмосферных газов, в то время как Лавлок вносил в зарождающуюся теорию Гайи концепции из химии, термодинамики и кибернетики. Таким образом двое ученых постепенно смогли определить сложную сеть петель обратной связи, которая — как они предполагали — осуществляет саморегуляцию планетарной системы.

Выдающаяся особенность этих петель обратной связи заключается в том, что они связывают воедино живые и неживые системы. Мы теперь уже не можем думать о камнях, животных и растениях как об изолированных сущностях. Теория Гайи показывает, что существует тесная взаимосвязь между живыми частями планеты — растениями, микроорганизмами и животными — и ее неживыми составляющими — камнями, океанами и атмосферой.

Цикл углекислого газа хорошо иллюстрирует это положение64. В течение миллионов лет вулканы Земли извергли в атмосферу колоссальные массы углекислого газа (СО2). Поскольку СО2— один из важнейших газов, создающих тепличный эффект, Гайе приходится выкачивать его из атмосферы, иначе температура для жизни будет слишком высокой. Растения и животные перерабатывают огромные количества СО2 в ходе процессов фотосинтеза, дыхания и разложения. Тем не менее эти обмены всегда сбалансированы и не влияют на уровень СО2 в атмосфере. Согласно теории Гайи, избыток углекислого газа в атмосфере удаляется и перерабатывается гигантской петлей обратной связи, в которую в качестве важнейшей составляющей входит эрозия горных пород.

В процессе эрозии компоненты горных пород соединяются с дождевой водой и углекислым газом, формируя различные химические соединения, именуемые карбонатами (углекислыми солями). Благодаря этому СО2 изымается из атмосферы и связывается в жидких растворах. Это Чисто химические процессы, не требующие участия жизни. Тем не менее Лавлок и другие обнаружили, что присутствие почвенных бактерий значительно ускоряет эрозию пород. В определенном смысле почвенные бактерии действуют как катализатор процесса эрозии, и весь цикл обращения углекислого газа можно рассматривать как биологический эквивалент каталитических циклов, изученных Манфредом Эйгеном.

Затем карбонаты смываются в океан, где крошечные водоросли, невидимые невооруженным глазом, поглощают их и используют для построения изящных меловых (карбонат кальция) раковин. Итак, СО2, который был в атмосфере, теперь оказывается в раковинах этих мельчайших водорослей (рис. 5-4). Кроме того, океанические водоросли поглощают углекислый газ и непосредственно из воздуха.

Рис. 5-4. Океаническая водоросль (кокколитофора) с меловой раковиной

Когда водоросли умирают, их раковины оседают на океанское дно, где образуют массивные отложения известняка (другой формы карбоната кальция). Обладая громадным весом, эти известняковые отложения постепенно погружаются в мантию Земли и плавятся, порой даже вызывая сдвиги тектонических пластов. В конце концов некоторая часть СО2, содержащаяся в расплавленной породе, снова извергается вулканами наружу и запускает следующий оборот великого цикла Гайи.

Весь цикл — связь вулканов с эрозией пород, с почвенными бактериями, с океаническими водорослями, с известняковыми отложениями и снова с вулканами — работает как гигантская петля обратной связи, участвующая в регулировании температуры Земли. Чем интенсивнее солнечное излучение, тем активнее становятся бактерии почвы и выше скорость эрозии пород. Это, в свою очередь, выкачивает больше СО2 из атмосферы и, таким образом, охлаждает планету. Согласно Лавлоку и Маргулис, подобные циклы обратной связи — связывающие друг с другом растения и камни, животных и атмосферные газы, микроорганизмы и океаны — регулируют климат Земли, содержание соли в ее океанах и другие важные планетарные условия.

Теория Гайи рассматривает жизнь в системном контексте, сопрягая вместе геологию, микробиологию, химию атмосферы и другие дисциплины, специалисты которых не привыкли взаимодействовать друг с другом. Лавлок и Маргулис бросили вызов общепринятому убеждению, что это изолированные дисциплины, что условия для жизни на Земле создаются геологическими силами и что растения и животные — просто пассажиры, которым случайно удалось найти подходящие условия для своей эволюции. По Гайя теории, жизнь создает условия для собственного существования. Линн Маргулис говорит об этом так:

Выражаясь простым языком, эта гипотеза [Гайи] говорит о том, что поверхность Земли, которую мы всегда считали окружающей средой, на самом деле является частью жизни. Воздушный покров — тропосферу — следует считать круговой системой, которую формирует и поддерживает сама жизнь... Когда ученые говорят нам, что жизнь приспосабливается, по сути, к пассивному окружению химии, физики и камней, они укрепляют сильно искаженный взгляд на природу. Жизнь на самом деле производит, формирует и изменяет то окружение, к которому она приспосабливается. В таком случае, это «окружение» оказывает обратную связь на жизнь, которая изменяется, действует и растет в нем. Происходят непрерывные циклические взаимодействия65.

Поначалу неприятие научным сообществом этого нового взгляда на жизнь было столь сильным, что авторы даже не могли опубликовать свою гипотезу. Авторитетные академические журналы, такие как «Science» и «Nature», отвергли ее. В конце концов астроном Карл Саган, который издавал «Icarus», предложил Лавлоку и Маргулис опубликовать их гипотезу в своем журнале66. Поражает тот факт, что ни одна из теорий и Моделей самоорганизации, предложенных к тому времени, не встречала такого сильного сопротивления. Это наводит на размышление о том, не была ли эта в высшей степени иррациональная реакция научного истэблишмента обусловлена влиянием Гайи как мощного архетипического мифа.

Действительно, образ Гайи как чувствующего существа был одним из главных неявных аргументов против Гайя-гипотезы после ее публикации. Ученые выражали свое неприятие заявлениями, что гипотеза ненаучна, поскольку она телеологична, т. е. подразумевает идею целенаправленного формирования естественных процессов. «Ни Линн Маргулис, ни я сам никогда не говорили, что планетарная саморегуляция целенаправленна, — протестует Лавлок. — И все же мы столкнулись с настойчивой, почти догматической критикой нашей теории как телеологической концепции»67.

Эта критика уходит корнями в старые споры между механицистами и виталистами. В то время как механицисты утверждают, что все биологические феномены будут в конце концов объяснены в рамках законов физики и химии, виталисты постулируют существование нематериальной сущности, каузального посредника, управляющего жизненными процессами, которые не поддаются механистическому объяснению68. Телеология — от греческого tellos («причина») — утверждает, что каузальный посредник, признаваемый витализмом, целенаправлен, что в природе существует цель и замысел. Упорно противостоя виталистам и их телеологическим аргументам, механицисты до сих пор сражаются с ньютоновской метафорой Бога как часового мастера. Недавно зародившаяся теория живых систем положила конец спорам между механицизмом и телеологией. Как мы увидим ниже, она рассматривает живую природу как сущность, наделенную интеллектом и разумом, и не нуждается в признании какого-либо высшего замысла или причины69.

Представители механистической биологии атаковали гипотезу Гайи как телеологическую концепцию, потому что они не могли представить, как жизнь на Земле может создавать и регулировать условия для своего собственного существования, не обладая сознанием и способностью к целеполаганию. «Не проводятся ли собрания комитетов различных биологических видов, чтобы обсудить температуру на будущий год?» — со злорадным юмором вопрошали эти критики70.

Лавлок ответил на критику невинной математической моделью под названием «Мир маргариток». Она представляет весьма упрощенную схему Гайи, из которой становится совершенно понятно, что регулирование температуры — это внезапно возникающее свойство системы, которое проявляется автоматически в отсутствие какого бы то ни было целенаправленного действия, как следствие наличия петель обратной связи между организмами планеты и их окружением71.

«Мир маргариток» — это компьютерная модель планеты, согреваемой солнцем с постоянно нарастающим излучением тепла и населенной только двумя видами — черными и белыми маргаритками. Семена этих маргариток рассеяны по всей планете, почва всюду влажна и плодородна, однако маргаритки могут расти лишь в определенном температурном интервале.

Лавлок ввел математические уравнения, соответствующие всем этим условиям, в качестве начальной выбрал температуру замерзания — и запустил модель на компьютере. «Приведет ли эволюция экосистемы мира маргариток к саморегуляции климата?» — таков был решающий вопрос, который он задал сам себе.

Результаты оказались впечатляющими. Планета постепенно разогревается, и в какой-то момент экватор становится достаточно теплым для поддержания жизни растений. Первыми появляются черные маргаритки, поскольку они поглощают тепло лучше белых и поэтому более приспособлены к выживанию и воспроизведению. Итак, в первой фазе эволюции в мире маргариток появляется пояс черных маргариток, распределенных вдоль экватора (рис. 5-5).

Рис. 5-5. Четыре эволюционные фазы мира маргариток

По мере дальнейшего повышения температуры на планете экватор становится слишком жарким для выживания черных маргариток, и они начинают колонизацию субтропических зон. В это же время в районе экватора появляются белые маргаритки. Поскольку они белые, они отражают тепло и охлаждаются, что повышает их выживаемость в Перегретых зонах по сравнению с черными маргаритками. Итак, во второй фазе вдоль экватора наблюдается пояс белых маргариток, а субтропические зоны и области умеренного климата заполнены черными маргаритками; вблизи полюсов еще слишком холодно для любого вида маргариток.

Солнце продолжает греть с возрастающей интенсивностью, и растительная жизнь на экваторе вымирает — там становится слишком жарко даже для белых маргариток. Тем временем белые маргаритки сменили черные в умеренных зонах, а черные маргаритки начинают появляться вокруг полюсов. Таким образом, в третьей фазе экватор оказывается бесплодным, умеренные зоны заселены белыми маргаритками, вокруг полярных зон теснятся черные маргаритки, и лишь на самых верхушках полюсов не наблюдается растительной жизни. В последней фазе, наконец, обширные территории вокруг экватора и субтропические зоны оказываются слишком горячими для выживания обоих видов, и мы видим белые маргаритки в умеренных зонах, а черные — на полюсах. После этого на модели планеты становится слишком жарко для выживания обоих видов маргариток, и жизнь на ней вымирает.

Такова основная динамика системы мира маргариток. Важнейшее свойство модели, обусловленное саморегулированием, заключается в том, что черные маргаритки, поглощая тепло, согревают не только себя, но и саму планету. Подобным же образом, когда белые маргаритки отражают тепло и охлаждаются, они охлаждают и планету. Стало быть, в течение всей эволюции мира маргариток тепло поглощается и отражается в зависимости от того, какой вид маргариток доминирует.

Когда Лавлок изобразил на графике изменения температуры планеты в ходе ее эволюции, он получил поразительный результат: температура планеты поддерживается постоянной на протяжении всех четырех фаз (рис. 5-6). Когда солнце относительно прохладно, мир маргариток повышает свою температуру через поглощение тепла черными маргаритками; по мере того как солнце нагревается, температура постепенно снижается из-за прогрессирующего преобладания белых маргариток, отражающих тепло. Так мир маргариток, без всякого предвидения и планирования, «регулирует свою температуру в обширном диапазоне лишь с помощью танца маргариток»72.

Петли обратной связи, которые регулируют влияние окружающей среды на рост маргариток, который, в свою очередь, влияет на окружение, представляют собой существенную особенность модели Мира маргариток. Если этот цикл разорвать так, чтобы маргаритки перестали влиять на окружающую среду, популяции маргариток начинают сильно и беспорядочно колебаться и вся система приходит в хаотическое состояние. Но как только петли замыкаются, снова связывая маргаритки с окружающей средой, модель стабилизируется и возникает саморегуляция.

Рис. 5-6.

Эволюция температуры в мире маргариток: пунктирная кривая показывает рост

температуры в отсутствии жизни; непрерывная кривая показывает, как жизнь

поддерживает постоянную температуру. График взят из Lovelock (1991)

С тех пор Лавлок разработал несколько гораздо более сложных версий мира маргариток. В новых моделях присутствуют не два, а гораздо больше видов маргариток с различной пигментацией; существуют модели, в которых маргаритки развиваются и изменяют цвет, модели, в которых кролики поедают маргаритки, а лисы поедают кроликов, и т. д.73. Конечный результат анализа всех этих весьма сложных моделей состоит в том, что небольшие температурные колебания, присутствующие в первоначальной модели мира маргариток, сглаживаются и саморегуляция становится все более и более устойчивой по мере возрастания сложности модели. Кроме того, Лавлок ввел в свои модели катастрофы, которые с регулярными интервалами уничтожают 30% маргариток. Он обнаружил, что саморегуляция мира маргариток обнаруживает замечательную гибкость и при этих резких возмущениях.

Все эти модели вызвали оживленную дискуссию среди биологов, геофизиков и геохимиков, и с тех пор, как они были впервые опубликованы, стала вызывать больше уважения в научном сообществе и Гайя- гипотеза. Сегодня уже в разных частях света существует несколько исследовательских групп, которые работают над подробными формулировками Гайя-теории74.

Первые попытки синтеза

В конце 70-х, почти двадцать лет спустя после того, как в различных контекстах были обнаружены ключевые критерии самоорганизации, удалось сформулировать подробные математические теории и модели самоорганизующихся систем и стал очевиден набор присущих им характеристик: непрерывный поток энергии и материи через систему, далекое от равновесия устойчивое состояние, возникновение новых паттернов порядка, центральная роль петель обратной связи и математическое описание в виде нелинейных уравнений.

В это же время австрийский физик Эрих Янч, работавший тогда в Калифорнийском университете в Беркли, в своей книге «Самоорганизующаяся Вселенная» представил одну из первых попыток синтеза новых моделей самоорганизации, основанную, главным образом, на теории диссипативных структур Пригожина75. И хотя сегодня книга Янча уже устарела, поскольку была написана прежде, чем широкую известность приобрела математика сложных систем, и не включала полную концепцию автопоэза как организации живых систем, в то время она представляла собой огромную ценность. Это была первая книга, сделавшая труды Пригожина доступными для широкой публики, и в ней была предпринята попытка объединить самые новые (на тот момент) концепции и идеи в связную парадигму самоорганизации. Мой синтез этих концепций в настоящей книге является в некоторой мере попыткой переформулировать ранние работы Эриха Янча.


ПРИМЕЧАНИЯ К ГЛАВЕ 5


1.См. Checkland (1981), pp. 123ff.

2.См. там же, р. 129.

3.CM.Dickson(1971).

4.Цитируется по Checkland (1981), р. 137.

5.См. там же.

6.См. Richardson (1992), pp. 149ff, 170ff.

7.Ulrich(1984).

8. См. Konigswieser и Lutz (1992).

Последнее изменение этой страницы: 2016-03-17; Просмотров: 34; Нарушение авторского права страницы


lektsia.com 2007 - 2017 год. Все права принадлежат их авторам! (0.161 с.) Главная | Обратная связь