Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ГЛАВА 5 Архитектура операционных систем и интерфейсы прикладного



Программирования

Несмотря на тот факт, что в наши дни уже практически никто не разрабатывает операционные системы (естественно, за исключением нескольких известных компаний, специализирующихся на этом направлении, кстати, одном из сложнейших) и все являются пользователями наиболее распространенных систем, мы всё-таки рассмотрим кратко вопросы архитектуры ОС. Сделать это необхо­димо потому, что многие возможности и характеристики ОС определяются в значительной мере её архитектурой.

Основные принципы построения

Операционных систем

Среди множества принципов, которые используются при построении ОС, пере­числим несколько наиболее важных (на наш взгляд, так как в соответствующих публикациях на эту тему перечисляется существенно большее их количество).

 

Принцип модульности

Под модулем в общем случае понимают функционально законченный элемент системы, выполненный в соответствии с принятыми межмодульными интерфей­сами. По своему определению модуль предполагает возможность без труда заме­нить его на другой при наличии заданных интерфейсов. Способы обособления составных частей ОС в отдельные модули могут существенно различаться, но чаще всего разделение происходит именно по функциональному признаку. В значительной степени разделение системы на модули определяется используемые методом проектирования ОС (снизу вверх или наоборот).

Особо важное значение при построении ОС имеют привилегированные, повторно входимые и реентерабельные модули, так как они позволяют более эффективно использовать ресурсы вычислительной системы. Как мы уже знаем (см. раздел «Основные виды ресурсов», глава 1), достижение реентерабельности реализуется различными способами. В некоторых системах реентерабельность программа получают автоматически, благодаря неизменяемости кодовых частей программ при исполнении (из-за особенностей системы команд машины), а также автоматическому распределению регистров, автоматическому отделению кодовых частей программ от данных и помещению последних в системную область памяти Естественно, что для этого необходима соответствующая аппаратная поддержка В других случаях это достигается программистами за счёт использования специальных системных модулей.

Принцип модульности отражает технологические и эксплуатационные свойства системы. Наибольший эффект от его использования достижим в случае, когда принцип распространён одновременно на операционную систему, прикладные программы и аппаратуру.

 

Принцип функциональной избирательности

В ОС выделяется некоторая часть важных модулей, которые должны постоянно находиться в оперативной памяти для более эффективной организации вычислительного процесса. Эту часть в ОС называют ядром, так как это действительно основа системы. При формировании состава ядра требуется учитывать два противоречивых требования. В состав ядра должны войти наиболее часто используемые системные модули. Количество модулей должно быть таковым, чтобы объём памяти, занимаемый ядром, был бы не слишком большим. В состав ядра, как правило, входят модули по управлению системой прерываний, средства по переводу программ из состояния счёта в состояние ожидания, готовности и обратно, средства по распределению таких основных ресурсов, как оперативная память и процессор.

Помимо программных модулей, входящих в состав ядра и постоянно располагающихся в оперативной памяти, может быть много других системных программных модулей, которые получают название транзитных. Транзитные программные модули загружаются в оперативную память только при необходимости и в случае отсутствия свободного пространства могут быть замещены другими транзитными модулями. В качестве синонима к термину «транзитный» можно использовать термин «диск-резидентный».

 

Принцип генерируемости ОС

Основное положение этого принципа определяет такой способ исходного представления центральной системной управляющей программы ОС (её ядра и основных компонентов, которые должны постоянно находиться в оперативной памяти), который позволял бы настраивать эту системную супервизорную часть, исходя из конкретней конфигурации конкретного вычислительного комплекса и круга решаемых задач. Эта процедура проводится редко, перед достаточно про­тяженным периодом эксплуатации ОС. Процесс генерации осуществляется с по­мощью специальной программы-генератора и соответствующего входного языка для этой программы, позволяющего описывать программные возможности сис­темы и конфигурацию машины. В результате генерации получается полная вер­сия ОС. Сгенерированная версия ОС представляет собой совокупность системных наборов модулей и данных.

Упомянутый раньше принцип модульности положительно проявляется при гене­рации ОС. Он существенно упрощает настройку ОС на требуемую конфигурацию вычислительной системы. В наши дни при использовании персональных компьютеров с принципом генерируемости ОС можно столкнуться разве что только при работе с Linux. В этой UNIX-системе имеется возможность не только использовать какое-либо готовое ядро ОС, но и самому сгенерировать (скомпили­ровать) такое ядро, которое будет оптимальным для данного конкретного персо­нального компьютера и решаемых на нем задач. Кроме генерации ядра в Linux имеется возможность указать и набор подгружаемых драйверов и служб, то есть часть функций может реализовываться модулями, непосредственно входящими в ядро системы, а часть – модулями, имеющими статус подгружаемых, транзит­ных.

В остальных современных распространенных ОС для персональных компьюте­ров конфигурирование ОС под соответствующий состав оборудования осущест­вляется на этапе инсталляции, а потом состав драйверов и изменение некоторых параметров ОС может быть осуществлено посредством редактирования конфигурационного файла.

 

Принцип функциональной избыточности

Этот принцип учитывает возможность проведения одной и той же работы различными средствами. В состав ОС может входить несколько типов мониторов (модулей супервизора, управляющих тем или другим видом ресурса), различные средства организации коммуникаций между вычислительными процессами. На­личие нескольких типов мониторов, нескольких систем управления файлами позволяет пользователям быстро и наиболее адекватно адаптировать ОС к опре­деленной конфигурации вычислительной системы, обеспечить максимально эф­фективную загрузку технических средств при решении конкретного класса за­дач, получить максимальную производительность при решении заданного класса задач.

 

Принцип виртуализации

Построение виртуальных ресурсов, их распределение и использование теперь используется практически в любой ОС. Этот принцип позволяет представить структуру системы в виде определенного набора планировщиков процессов и распределителей ресурсов (мониторов) и использовать единую централизован­ную схему распределения ресурсов. Наиболее естественным и законченным проявлением концепции виртуальности является понятие виртуальной машины. По сути, любая операционная система, являясь средством распределения ресурсов и организуя по определенным прави­лам управление процессами, скрывает от пользователя и его приложений реаль­ные аппаратные и иные ресурсы, заменяя их некоторой абстракцией. В результа­те пользователи видят и используют виртуальную машину как некое устройство, способное воспринимать их программы, написанные на определённом языке программирования, выполнять их и выдавать результаты. При таком языковом представлении пользователя совершенно не интересует реальная конфигурация вычислительной системы, способы эффективного использования её компонен­тов и подсистем. Он мыслит и работает с машиной в терминах используемого им языка и тех ресурсов, которые ему предоставляются в рамках виртуальной ма­шины.

Чаще виртуальная машина, предоставляемая пользователю, воспроизводит архитектуру реальной машины, но архитектурные элементы в таком представле­нии выступают с новыми или улучшенными характеристиками, часто упрощаю­щими работу с системой. Характеристики могут быть произвольными, но чаще всего пользователи желают иметь собственную «идеальную» по архитектурным характеристикам машину в следующем составе:

¨ единообразная по логике работы память (виртуальная) практически неограниченного объёма. Среднее время доступа соизмеримо со значением этого параметра оперативной памяти. Организация работы с информацией в такой памяти производится в терминах обработки данных – в терминах работы с сегментами данных на уровне выбранного пользователем языка программи­рования;

¨ произвольное количество процессоров (виртуальных), способных работать па­раллельно и взаимодействовать во время работы. Способы управления процессорами, в том числе синхронизация и информационные взаимодействия, реализованы и доступны пользователям на уровне используемого языка в терминах управления процессами;

¨ произвольное количество внешних устройств (виртуальных), способных работать с памятью виртуальной машины параллельно или последовательно, асинхронно или синхронно по отношению к работе того или иного виртуаль­ного процессора, которые инициируют работу этих устройств. Информация, передаваемая или хранимая на виртуальных устройствах, не ограничена допус­тимыми размерами. Доступ к такой информации осуществляется на основе либо последовательного, либо прямого способа доступа в терминах соответст­вующей системы управления файлами. Предусмотрено расширение инфор­мационных структур данных, хранимых на виртуальных устройствах.

Степень приближения к «идеальной» виртуальной машине может быть большей или меньшей в каждом конкретном случае. Чем больше виртуальная машина, реализуемая средствами ОС на базе конкретной аппаратуры, приближена к «идеальной» по характеристикам машине и, следовательно, чем больше ее архитектурно-логические характеристики отличны от реально существующих, тем боль­ше степень виртуальности у полученной пользователем машины. Одним из аспектов виртуализации является организация возможности выполне­ния в данной ОС приложений, которые разрабатывались для других ОС. Други­ми словами, речь идет об организации нескольким операционных сред, о чем мы уже говорили (см. главу 1). Реализация этого принципа позволяет такой ОС иметь очень сильное преимущество перед аналогичными ОС, не имеющими такой воз­можности. Примером реализации принципа виртуализации может служить VDM-машина (virtual DOS machine) – защищённая подсистема, предоставляющая полную среду MS-DOS и консоль для выполнения MS-DOS приложений. Одно­временно может выполняться практически произвольное число VDM-сессий. Такие VDM-машины имеются и в системах Microsoft Windows, и в OS/2.

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-05-29; Просмотров: 672; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.013 с.)
Главная | Случайная страница | Обратная связь