Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Ннтерференционные приборы и их применение.



Интерференция применяется в сверхточных претензионных измерениях. Используются приборы – интерферометры, в их основе лежит явление интерференции. 2-ая область – контроль за чистотой обработки поверхности высокого класса точности. 3) для определения коэффициента линейности расширения твердого тела – делатометр. 4) просветление оптики.

 

Принцип Гюйгенса-Френеля.

Качественно явление дифракции света объясняется на основе принципа Гюйгенса: каждая точка пространства до которой дошло световое возбуждение становится источником вторичных волн, распространяющихся в данной среде с характерной для нее фазовой скоростью v. Геометрическоее место точек, до которого доходит световое возбуждение за один и тот же промежуоток времени носит название фронта волны или волновой поверхности. Огибающая вторичных волн – есть положение волнового фронта в последующий момент времени. Пусть расространяется волна и ее волновой фронт в некоторый момент времени есть поверхность Ф. Такое распространение показывает, что волновой фронт загибается на концах, также как и лучи (нормаль к волновой поверхности). Количественный расчет дифракционного явления был предпринят: Френелем, который исходил из ряда положений, принимающихся без доказательства и составляющих принцип Гюйгенса-Френеля. Эти положения сводятся к следующему: 1) следуя Гюйгенсу Френель предложил заменить реально действующий источник излучения эквивалентной ему совокупностью вторичных (виртуальных) источников и испускаемых ими торичных волн. 1) В качестве вторичного источника выступают бесконечно малые участки поверхности S замкнутой вокруг So. Выбор поверхности S произволен, но чаще всего поверхность S совпадает с нулевой поверхностью. 2) согласно Френелю все вториные источники когерентны между собой и испускают когерентные волны, в любой точке вне S, волны, идущие от So представляют собой интерференцию вторичных волн. Для поверхности S совпадающей с волновым фронтом все вторичные испускаемые колебания в одной фазе. 3) для поверхности S, совпадающей с волновой поверхностью разные по площади вторичные источники испускают равное по мощности вторичное излучение. dS1=dS2=dSn; dP1=dP2=dPn (P-мощность). 4) Каждый вторичный источник, излучает направление нормали к волновой поверхности в данной точке. Интенсивность излучения (амплитуда) в точке p тем меньше, чем больше угол α

между внешней нормалью и радиус-вектором проведенным

в точке наблюдения. Фаза результирующего колебания зависит тоже от r (в). 5) если чсть волновой поверхности перекрыто непразрачным экраном, то световое воздействие в точке наблюдателя осуществляется открытыми вторичными источниками. Для нахождения результирующего колебания в точке P, необходимо просуммировать вторичные источники по их амплитуде и фазам. Существует приближенный метод расчета интерференции вторичных волн – метод зон Френеля

Метод зон Френеля.

Френель предложил объединил симметричные точки световой волны в зоны выбирая конфигурацию и размеры зоны такие что разность хода лучей от краев 2-х соседних зон от точки наблюдений была бы равна l/2 и следовательно от краев 2-х соседних волн приход. в точку наблюдения в противофазе и при наложении др. на др. ослабевают.

Обозначим ч/з A1 амплитуду колебаний в точке P даваемым всеми точками источниками находим внутри 1-й зоны Френеля. Ясно что A1 > A2 > A3

Результат амплитуды колебаний в т.P даваемое всеми зонами Френеля будет A = A1 - A2+A3 - A4…, A=A1/2+(A1/2-A2+ A3/2)+(A3/2-A4+ A5/2)+…=> A=A1/2. Видно что в том случае, если открыты все зоны Френеля то амплитуда колебаний = половине амплитуды колебаний даваемой 1-й зоной Френеля.

 

 

Явление дифракции. Дифракция Френеля на круглом отверстии.

Дифракцией света называется явление отклонения от прямолинейного распространения волн, огибание волнами препятствий и захождение волн в область геометрической тени.

ДИФРАКЦИЯ ФРЕНЕЛЯ НА

КРУГЛЫХ ОТВЕРСТИЯХ

а) CD – экран. Экран с круглым отверстием

AB. Исследуем световое воздействие в точке р, лежащей на линии пересечения источника S с центром отр. Отверстие вырезает часть волновой поверхности.

Разобьем открытую часть волновой поверхности на зоны Френеля. В зависимости от размеров отверстий на ней укладывается то или иное количество зон. Если отверстие пропускает 1, 3 или 5 зон, то световое воздействие в точке р больше, чем при полностью открытом волновом фронте. Максимум светового воздействия в точке р при k=1 (см последний рисунок в прошлом абзаце). Если отверстие открывает небольшое четное число зон Френеля (k=2, 4, 6), то световое воздействие всегда больше, чем при полностью открытом волновом фронте. Min воздействия отвечает отверстию в 2 зоны Френеля.

б) Дифракция Френеля на … Световая волна встречает на своем пути непрозрачный круглый экран AB (на рисунке ошибка – АВ – там снизу на самом деле).

Исследуем световое воздействие в точке p. Экран перекрывает часть зон Френеля. Разобьем открытую часть световой поверхности на зоны Френеля. Согласно рассуждениям методом зон Френеля: A=(An+1)/2 + [(An+1)/2 – (An+2)/2 + (An+3)/2] + … + - Ak/2. n – число перекрытых зон Френеля. An+1 – амплитуда от 1-ой открытой зоны. A=(An+1)/2. Итак, если число зон, перекрытых экраном AB невелико, точка р останется освещенной, причем интенсивность освещенности не отличается практически от интенсивности освещенности, создаваемой полностью открытым световым фронтом. По мере увеличения размеров экрана АВ амплитуда от 1-ой открытой зоны будет убывать, однако точка р остается освещенной до тех пор, пока число перекрытых зон Френеля достаточно мало и лишь при условии, что экран перекрывает большее число зон Френеля, в точке р будет наблюдаться min, т.е. геометрическая тень от экрана АВ.


Поделиться:



Популярное:

  1. Аминокислоты, их состав и химические свойства: взаимодействие с соляной кислотой, щелочами, друг с другом. Биологическая роль аминокислот и их применение.
  2. Биологическое воздействие радиации на человека. Основные величины и контролируемые параметры облучения населения. Приборы дозиметрического контроля.
  3. Виды гидростатического давления. Приборы для измерения давления
  4. Законы отражения и преломления света. Полное отражение света. Линза. Формула тонкой линзы. Оптические приборы. Оптические кабели на ж/д.
  5. Измерение уровня и применяемые для этого приборы
  6. Интерференция света и ее практическое применение.
  7. Контрольно-измерительные приборы
  8. Контрольно-измерительные приборы.
  9. Лекарственное сырье животного происхождения. Препараты, применение.
  10. Линейные измерения. Приборы прямого измерения линий.
  11. Методы и приборы контроля радиоактивного загрязнения
  12. Методы измерения концентрации пыли и измерительные приборы


Последнее изменение этой страницы: 2016-07-13; Просмотров: 512; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.031 с.)
Главная | Случайная страница | Обратная связь