Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Понижение температуры замерзания растворов. Криометрия



Хорошо известно, что растворы замерзают при более низкой температуре, чем чистый растворитель. Причиной понижения температуры замерзания (как и повышения температуры кипения) растворов является уменьшение давления пара, что можно проиллюстрировать с помощью диаграммы состояния воды (рис. 7.12).

 

Сплошные линии выражают границы фазовых полей для чистой воды. Напомним, что линия 1 отображает равновесие “жидкость - пар”. После добавления к воде нелетучего растворённого вещества давление пара над раствором (пунктирная линия 2 ) понижается при любой температуре.

Любая жидкость будет замерзать (отвердевать) тогда, когда давление пара над ней сравнивается с давлением пара над твёрдой фазой (в случае воды - надо льдом). Поэтому и температура замерзания раствора Тзам будет меньше, чем температура замерзания Тозам чистого растворителя - воды.

Ф.М.Рауль (1883) опытным путём установил, что понижение температуры замерзания (иначе - депрессия замерзания )

DTзам = Тозам - Тзам ,

вызываемое разными растворёнными веществами, взятыми в одинаковых молярных количествах, одинаково для данного растворителя.

При различных концентрациях растворённых веществ DTзам пропор­цио­нально их моляльной концентрации m:

DTзам = Ккрm (7.1)

Коэффициент пропорциональности Ккр в уравнении (7.1), называемый криоскопической константой, представляет собой молярное понижение температуры замерзания. Эта величина численно равна понижению температуры замерзания раствора, содержащего 1 моль растворённого вещества в 1 килограмме растворителя при условии, что раствор обладает свойствами идеального. Криоскопическая константа является характеристикой растворителя, её величина не зависит от природы растворённого вещества.

Моляльная концентрацияможет быть выражена через массы растворённого вещества (b) и растворителя (а)в граммах (см. п. 7.3):

1000 b m = ¾ ¾ ¾ ¾ , М а

где М - молярная масса растворённого вещества (г/моль). Подставляя это выражение в уравнение (7.1), получим

1000 Ккр b DTзам = ¾ ¾ ¾ ¾ ¾ , М а

Из этого уравнения следует одно очень важное обстоятельство, а именно: зная точный состав разбавленного раствора и измеряя температуры замерзания чистого растворителя и раствора, можно рассчитать молярную массу растворённого вещества:

1000 Ккр b М = ¾ ¾ ¾ ¾ ¾ . (7.2) DTзам а

Уравнение (7.2) лежит в основе крио­ско­пи­ческого (или криометрического ) метода определения молярной массы веществ по понижению температуры замерзания их растворов.Криометрический метод находит широкое применение в лабораторной практике, в том числе и в фармации.

Повышение температуры кипения растворов. Эбуллиоскопическая константа. Эбуллиоскоическое определение молярной массы веществ.

Повышение температуры кипения растворов. Эбулиометрия

Кипение растворов, как и чистых жидкостей, начинается при температуре, соответствующей достижению общего давления пара, равного атмосферному. Из рассмотрения диаграммы состояния воды (рис. 7.12), следует, что в случае раствора это достигается при более высокой температуре, чем в случае чистой воды. Как и понижение температуры замерзания (плавления), повышение температуры кипения растворов по сравнению с чистым растворителем

кип = Ткип - Токип

пропорционально моляльной концентрации растворенного вещества:

кип = Кэm

где Кэ - эбулиоскопическая ( эбулиометрическая ) константа или молярное повышение температуры кипения. Она численно равна повышению температуры кипения раствора, содержащего 1 моль растворенного вещества в 1 килограмме растворителя при условии, что раствор обладает свойствами идеального. Эбулиоскопическая константа, как и криоскопическая, является характеристикой растворителя, и её величина не зависит от природы растворённого вещества.

Повышение температуры кипения раствора может быть использовано для расчёта молярной массы растворённого вещества эбулиометрическим ( эбулио­скопическим ) методом по уравнению (7.3), подобному тому, которое используется в крио­метрии. Обозначения в уравнении (7.3) аналогичны обозначениям, использованным в уравнении (7.2).

 

1000 Кэ b М = ¾ ¾ ¾ ¾ ¾ . (7.3)

DTзам а

Осмос. Осмотическое давление растворов неэлектролитов. Уравнение Вант-Гоффа.

Осмос - явление самопроизвольного перехода растворителя через полупроницаемую мембрану, разделяющую два раствора или раствор и чистый растворитель. Причиной осмоса является различие химических потенциалов растворителя по обе стороны полупроницаемой мембраны и стремление системы к выравниванию его концентрации в растворах, находящихся по обе стороны полупроницаемой мембраны.

Высота поднятия жидкости во внутреннем сосуде осмометра не зависит от природы растворённого вещества, но зависит от его концентрации и от температуры, а именно: чем больше концентрация вещества и чем выше температура, тем выше поднимается уровень жидкости. Осмос продолжается не бесконечно, через какое-то время он останавливается. Если мембрана разделяет два раствора с различной, но не намного отличающейся концентрацией, осмос будет идти до практически полного выравнивания концентрации каждого из компонентов по обе стороны мембраны. Если же мембрана разделяет раствор и чистый растворитель или два раствора с сильно отличающимися концентрациями, осмос остановится из-за того, что ему будет препятствовать гидростатическое давление поднимающегося столба жидкости. При остановке осмоса в системе наступает динамическое равновесие, характеризующееся равенством скоростей диффузии растворителя через мембрану в обоих направлениях. Вообще осмос можно приостановить любым давлением, направленным противоположно ему. Очевидно, что давление, необходимое для остановки осмоса, равно по величине тому давлению, которое оказывают при диффузии через мембрану молекулы растворителя. Это избыточное гидростатическое давление, возникающее в результате осмоса, называется осмотическим давлением. Осмотическое давление обозначается буквой p; размерность его в системе СИ - Па, но на практике часто используется и внесистемная единица атм.

Если два раствора обладают одинаковым осмотическим давлением, их называют изотоническими. Когда осмотические давления растворов различны, тот раствор, у которого осмотическое давление больше, называется гипер­тони­ческим, тот у которого оно меньше - гипотоническим.

В 1887 г. Я.Вант-Гофф вывел уравнение, связывающее осмотическое давление раствора неэлектролита с его концентрацией:

p = CRT (7.4)

где С - молярная концентрация растворённого вещества.

Электрохимия. Основные понятия. Значение электрохимии для медицины и фармации, биологии.

Электрохимия - раздел физической химии, изучающий физико-хими­че­ские свойства ионных систем (растворов, расплавов или твёрдых электролитов), а также явления, происходящие на поверхностях раздела фаз с участием заряженных частиц - ионов и электронов.

Электрод — это электрический проводник, имеющий электронную проводимость (проводник 1-го рода) и находящийся в контакте с ионным проводником — электролитом (ионной жидкостью, ионизированным газом, твёрдым электролитом).

Электро́ дный потенциа́ л — разность электрических потенциалов между электродом и находящимся с ним в контакте электролитом (чаще всего между металлом и раствором электролита.

Электри́ ческая проводи́ мость (электропроводность, проводимость) — способность тела проводить электрический ток, а также физическая величина, характеризующая эту способность и обратная электрическому сопротивлению.

Электроли́ т — вещество, которое проводит электрический ток вследствие диссоциации на ионы, что происходит в растворах и расплавах, или движения ионов в кристаллических решётках твёрдых электролитов.

Электро́ лиз — физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор, либо расплав электролита.

Законы электрохимии лежат в основе многих широко распространённых методов исследования и анализа (потенциометрия, кондуктометрия, полярогра­фия, амперометрия и др.). В химической и фармацевтической промышленности при получении многих веществ используются электролиз и электросинтез (например, электросинтезом получается глюконовая кислота - сырьё для синтеза применяемого в медицинской практике глюконата кальция). Химические источники тока - гальванические элементы, аккумуляторы - настолько широко используются, что без них уже невозможно представить практически ни одной области деятельности человека.

В медицинской практике используются физиотерапевтические электрохимические методы, например, электрофорез, или приборы, в частности, электрокардиостимуляторы.


Поделиться:



Последнее изменение этой страницы: 2017-03-17; Просмотров: 1185; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.014 с.)
Главная | Случайная страница | Обратная связь