Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Лекция 3. конструкции многоэтажных промышленных зданий



Конструктивные схемы зданий

Многоэтажные промышленные здания служат для размещения различных производств — машино­строения, приборостроения, цехов химической, электро­технической, радиотехнической, легкой промышленности и др., а также базисных складов, холодильников, гара­жей и т. п. Их проектируют, как правило, каркасными с навесными панелями стен.

Высоту промышленных зданий обычно принимают по условиям технологического процесса в пределах от 3 до 7 этажей (при обшей высоте до 40 м), а для некоторых видов производств с не тяжелым оборудованием, уста­навливаемым на перекрытиях, до 12—14 этажей. Ширина промышленных зданий может быть равной 18—36 м и более. Высоту этажей и сетку колонн каркаса назначают в соответствии с требованиями типизации элементов кон­струкций и унификации габаритных параметров. Высоту этажей принимают кратной модулю 1, 2 м, т.е. 3, 6; 4, 8; 6 м, а для первого этажа иногда 7, 2 м. Наиболее распро­страненная сетка колони каркаса 6x6, 9х6, 12х6 м. Такие ограниченные размеры сетки колонн каркаса обу­словлены большими временными нагрузками на пере­крытия, которые могут достигать 15 кН/м2, а и некото­рых производствах 25 кН/м2 и более.

Для промышленного строительства наиболее удобны многоэтажные каркасные здания без специальных вер­тикальных диафрагм, поскольку они ограничивают сво­бодное размещение технологического оборудования и производственных коммуникаций. Основные несущие конструкции многоэтажного каркасного здания — желе­зобетонные рамы и связывающие их междуэтажные пе­рекрытия (рис. 3.1). Пространственная жесткость здания обеспечивается в поперечном направлении рабо­той многоэтажных рам с жесткими узлами — по рамной системе, а в продольном — работой вертикальных стальных связей или же вертикальных железобетонных диаф­рагм, располагаемых по рядам колонн и в плоскости на­ружных стен, — по связевой системе(рис. 3.2). Если в продольном направлении связи или диафрагмы по тех­нологическим условиям не могут быть поставлены, их заменяют продольными ригелями. В этом случае прост­ранственная жесткость и в продольном направлении обеспечивается по рамной системе.

1 – поперечные рамы; 2 – продольные вертикальные связи; 3 – панели перекрытий

Рис. 3.1. Конструктивный план многоэтажного каркаса промышленного здания

 

Рис. 3.2. Вертикальные связи многоэтажного каркаса в продольном направлении

 

 

При относительно небольшой временной нагрузке на перекрытия пространственная жесткость и в поперечном направлении обеспечивается по связевой системе; при этом во всех этажах устанавливаются поперечные вер­тикальные диафрагмы. Шарнирное соединение ригелей с колоннами в этом решении достигается установкой ри­гелей на консоли колонн без монтажной сварки в узлах.

Ригели соединяют с колоннами (стойками) на консо­лях, с применением ванной сварки выпусков арматуры и обетонированием полости стыка на монтаже. Для между­этажных перекрытий применяют ребристые плиты шири­ной 1500 или 3000 мм. Плиты, укладываемые по линии колонн, служат связями-распорками, обеспечивающими устойчивость каркаса на монтаже.

В таких зданиях возможно опирание плит перекры­тий двух типов: на полки ригелей таврового сечения (для производства со станочным оборудованием, нагрузки от которого близки к равномерно распределенным) и по верху ригелей прямоугольного сечения (главным образом, для зданий химической промышленности с оборудо­ванием, провисающим из этажа в этаж и передающим большую сосредоточенную нагрузку на одну опору). В обоих типах опирания плит типовые ригели при проле­тах 6 и 9 м имеют одинаковое сечение 800 мм и ширину ребра 300 мм.

Типовые конструкции многоэтажных промышленных зданий с балочными перекрытиями разработаны под различные временные нагрузки — от 5 до 25 кН/м2.

Пример решения конструкции здания с безбалочными перекрытиями приведен на рис. 3.3. Ригелем много­этажной рамы в поперечном и продольном направлениях служит безбалочная плита, жестко связанная с колонна­ми с помощью капителей. Пространственная жесткость здания в обоих направлениях обеспечивается по рамной системе. Унификация размеров плит и капителей средних и крайних пролетов безбалочного перекрытия достигает­ся смещением наружных самонесущих стен с оси край­него ряда колонн на расстояние, равное половине шири­ны надкапительной плиты.

Рис. 3.3. Конструкции зданий многоэтажных промышленных зданий

с безбалочными перекрытиями

 

Многоэтажные промышленные здания с часто распо­ложенными опорами при сетке колонн 6× 6 или 9× 6 м не всегда удовлетворяют требованиям гибкой планиров­ки цехов, модернизации оборудования и усовершенство­вания производства без дорогостоящих переустройств. Поэтому применять их следует в случае больших времен­ных нагрузок на перекрытия более 10 кН/м2.

Особенность конструктивного решения универсальных промышленных зданий с этажами в межферменном про­странстве состоит в том, что они имеют крупную сетку колонн 18× 6, 18× 12, 24× 6 м. Большие пролеты здания перекрывают безраскосными фермами. При этом в пре­делах конструктивной высоты этих ферм устраивают дополнительные этажи, в которых размещают инженер­ное оборудование и коммуникации, бытовые, складские и другие вспомогательные помещения. Высота межфер­менных этажей может быть 2, 4; 3 и 3, 6 м.

Пример решения конструкций универсального про­мышленного здания приведен на рис. 3.4. Здание име­ет 6 этажей — три основных и три межферменных. Без­раскосные фермы, жестко связанные с колоннами, явля­ются составной частью многоэтажного каркаса и работают как ригели рам. Крайние стойки ферм вверху и внизу снабжены выступами для соединения с колоннами ниже- и вышележащих этажей. Плиты перекрытий в основных этажах ребристые; их укладывают на верхний пояс ферм. Панели перекрытий вспомогательных этажей пустотные или ребристые; опираются они на полки ниж­него пояса ферм (рис. 3.5).

 

 

1 – основные этажи; 2 – межферменные этажи; 3 – соединения колонн с безраскосыми фермами

Рис. 3.4. Конструкция многоэтажного промышленного здания  с межферменными этажами

Рис. 3.5. Деталь опирания перекрытия на нижний пояс безраскосных ферм

 

Многоэтажные гражданские каркасные и панельные (бескаркасные) здания проектируют для массового стро­ительства высотой 12—16 этажей, а в ряде случаев — высотой 20 этажей и более. Сетка колонн, шаг несущих стен и высоты этажей выбирают в соответствии с требо­ваниями типизации элементов конструкций и унифика­ции габаритных параметров. Конструктивные схемы зданий, возводимых из сборных элементов, характерны постоянством геометрических размеров по высоте, регу­лярностью типовых элементов конструкций, четким реше­нием плана.

Каркасные конструкции применяют для различных административных и общественных зданий с большими помещениями, редко расположенными перегородками, а в некоторых случаях и для жилых домов высотой более 25 этажей. Основными несущими конструкциями много­этажного каркасного здания в гражданском строитель­стве являются железобетонные рамы, вертикальные связевые диафрагмы и связывающие их междуэтажные пе­рекрытия.

Важнейшим условием достижения высоких эксплуа­тационных качеств многоэтажного здания является обес­печение его надежного сопротивления горизонтальным нагрузкам и воздействиям. Необходимая пространствен­ная жесткость такого здания достигается различными вариантами компоновки конструктивной схемы, в основ­ном отличающимися способами восприятия горизонталь­ных нагрузок.

Например, при поперечных многоэтажных рамах и по­перечных вертикальных связевых диафрагмах, горизон­тальные нагрузки воспринимаются вертикальными конст­рукциями совместно, и каркасное здание в поперечном направлении работает по рамно-связевой системе, при этом в продольном направлении при наличии только вер­тикальных связевых диафрагм здание работает по связевой системе (рис. 3.6, а).

При поперечном расположении вертикальных связе­вых диафрагм и продольном расположении многоэтаж­ных рам здание в поперечном направлении работает по связевой системе, а в продольном направлении — по рамной системе(рис. 3.6, б). Конструктивная схема каркаса при шарнирном соединении ригелей с колонна­ми будет связевой в обоих направлениях.

 

1 – балка; 2 – колонна; 3 – панель

Рис. 3.6. Направление ригелей поперек (а) и вдоль (б) здания

в сборном балочном перекрытии

 

Панельные конструкции применяют для жилых до­мов, гостиниц, пансионатов и других аналогичных зда­ний с часто расположенными перегородками и стенами. В панельных зданиях основными несущими конструк­циями служат вертикальные диафрагмы, образованные панелями внутренних несущих стен, расположенными в поперечном, иногда в продольном направлении, и связы­вающие их междуэтажные перекрытия. Панели наруж­ных стен навешивают на торцы панелей несущих попе­речных стен. Многоэтажное панельное здание как в поперечном, так и в продольном направлении восприни­мает горизонтальную нагрузку по связевой системе. Возможны другие конструктивные схемы много­этажных зданий. К ним относятся, например, каркасное здание с центральным ядром жесткости, в котором в ка­честве вертикальных связевых диафрагм используются внутренние стены сблокированных лифтовых и вентиля­ционных шахт, лестничных клеток; здание с двумя ядрами жесткости открытого профиля — в виде двутавров; здание с двумя ядрами жест­кости и сложной конфигурацией в плане, позволяющей индивидуализировать архитектурное решение. В описанных конструктивных схемах зданий горизонтальные воздействия воспринимаются по рамно-связевой или связевой системе.

 


Поделиться:



Последнее изменение этой страницы: 2019-05-17; Просмотров: 1023; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.017 с.)
Главная | Случайная страница | Обратная связь