Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Прикладное программное обеспечение: назначение, возможности, структура.



К прикладному программному обеспечению относятся несколько типов программ:

1. Прикладные программы общего назначения. Считается, что с ними может работать пользователь, не имеющий специальной подготовки. К этим программам относятся, например, следующие.

1.1. Текстовые редакторы. Основные функции этого класса прикладных программ заключаются в вводе, редактировании и подготовке текстов к печати.

1.2. Текстовые процессоры. Основное отличие текстовых процессоров от текстовых редакторов в том, что они позволяют не только вводить и редактировать тексты, но и форматировать их, то есть оформлять. Соответственно, к основным средствам текстовых процессоров относятся средства обеспечения взаимодействия текста, графики, таблиц и других объектов, составляющих итоговый документ, а к дополнительным – средства автоматизации процесса форматирования.

1.3. Настольные издательские системы. Назначение программ этого класса состоит в автоматизации процесса подготовки полиграфических изданий. Этот класс программного обеспечения занимает промежуточное положение между текстовыми процессорами и системами автоматизированного проектирования.

От текстовых процессоров настольные издательские системы отличаются расширенными средствами управления взаимодействием текста с параметрами страницы и с графическими объектами. С другой стороны, они отличаются пониженными функциональными возможностями по автоматизации ввода и редактирования текста. Типичный прием использования настольных издательских систем состоит в том, что их применяют к документам, прошедшим предварительную обработку в текстовых процессорах и графических редакторах.

1.4. Графические редакторы. Это обширный класс программ, предназначенных для создания (или) обработки графических изображений. В данном классе различают следующие категории: растровые редакторы, векторные редакторы, программные средства для создания и обработки трехмерной графики (3D-редакторы).

1.5. Табличные процессоры. Электронные таблицы представляют комплексные средства для хранения различных типов данных и их обработки. В некоторой степени они аналогичны системам управления базами данных, но основной акцент смещен не на хранение массивов данных и обеспечение к ним доступа, а на преобразование данных, причем в соответствии с их внутренним содержанием.

В отличие от баз данных, которые обычно содержат широкий спектр типов данных (от числовых и текстовых до мультимедийных), для электронных таблиц характерна повышенная сосредоточенность на числовых данных. Зато электронные таблицы представляют более широкий спектр методов для работы с данными числового типа.

Основное свойство электронных таблиц состоит в том, что при изменении содержания любых ячеек таблицы может происходить автоматическое изменение содержания во всех прочих ячейках, связанных с измененными соотношением, заданными математическими или логическими выражениями (формулами). Простота и удобство работы с электронными таблицами снискали им широкое применение в сфере бухгалтерского учета, в качестве универсальных инструментов анализа финансовых, сырьевых и товарных рынков, то есть всюду, где необходимо автоматизировать регулярно повторяющиеся вычисления достаточно больших объемов числовых данных.

1.6. Средства презентационной графики. Эти программы служат для создания презентаций (слайд-фильмов).

2. Методо-ориентированные пакеты прикладных программ отличаются тем, что в их основе реализован определенный экономико-экономический метод решения задачи, такие как методы математического программирования (линейного, динамического и т.д.), методы сетевого планирования, теории массового обслуживания, математической статистик, методы решении линейных уравнений и т.д. Примером является программа Matlab (методы матричной алгебры и вычислительной математики).

3. Проблемно-ориентированные пакеты прикладных программ позволяют решать комплекс задач из конкретной предметной области. К ним относятся банковские прикладные пакеты, системы управления производством, систему финансового менеджмента, правовые справочные системы, браузеры и т.д. Примером таких программ являются программы фирмы 1С, Гарант, Консультант, Парус, Internet Explorer и т.д.

4. Средства проектирования. К ним относятся следующие программы.

4.1. Системы управления базами данных, предназначенные для создания баз данных и их поддержания. СУБД позволяют управлять большими информационными массивами, обеспечивают ввод, поиск, сортировку данных, составление отчетов. Примерами являются Microsoft Access, FoxPro, Oracle, Paradox и т.д.

4.2. Экспертные системы и информационные хранилища предназначены для облегчения принятия решения. Первые содержат средства создания баз знаний, вторые – средства получения аналитических данных. ЭС позволяют с помощью накопленных знаний о предметной области распознавать и диагностировать сложные процессы, принимать решения, формулировать планы действий, выдвигать и проверять гипотезы. Они имитируют процесс принятия решении человеком-экспертом в данной предметной области.

4.3. Системы искусственного интеллекта позволяют моделировать деловые процессы, производственные и социальные технологии.

4.4. Системы электронного документооборота позволяют реализовать безбумажные технологии на предприятии.

5. Интегрированные пакеты прикладных программ объединяют несколько наиболее часто используемых прикладных программ, например, СУБД, табличный процессор, редактор текстов и т.д.как правило, интерфейс каждого компонента имеет родственный вид, однотипные действия выполняются одинаковыми средствами, что облегчает процедуру освоения всего пакета. Примерами являются Microsoft Office, Works, Open Office, Lotus и т.д.

Инструментальное программное обеспечение (системы программирования).

Системы программирования – системы, которые автоматизируют процедуры создания программы. Они включают языки программирования и трансляторы.

Языки, на которых пользователи составляют программы, называются также алгоритмическими. Их принято делить (в зависимости от сложности) на языки высокого и низкого уровня. К языкам низкого уровня относится Ассемблер, который отображает архитектуру ЭВМ, обеспечивает доступ к регистрам, указание методов адресации и описание операций в терминах команд процессора. Он служит для разработки операционных систем. К языкам высокого уровня относятся Ada, Algol, FORTRAN, BASIC, Pascal, Prolog, Dbase, SQL и т.д.

Трансляторы – программы, обеспечивающие перевод с языка программирования на машинный язык. Они бывают двух типов – компиляторы и интерпретаторы.

Интерпретатор обеспечивает покомандный перевод текста программы с одновременным выполнением переведенной в машинные коды команды. Процедура перевода сопровождается проверкой правильности написания команды. Если в результате проверки обнаруживается ошибка, выполнение программы прекращается, а на экране появляются сообщение о характере ошибки и строка, в которой она обнаружена. Недостатком работы интерпретатора является невысокая производительность. Это объясняется тем, что при каждом запуске программы на выполнение происходит проверка на наличие ошибок и перевод в машинные коды каждой строчки программы.

Компилятор переводит в машинные коды всю программу сразу с одновременной проверкой корректности ее написания. Программы, переведенные в машинные коды при помощи компилятора, работают значительно быстрее, так как при запуске программы сразу начинается ее выполнение без дополнительных проверок и переводов.

 

Техническое обеспечение ЭИС.

Поколения ЭВМ.

Первое поколение (1946 – середина 50-х годов).

Элементная база: электронно-вакуумные лампы, резисторы и конденсаторы. Габариты: громадные шкафы, занимающие целые залы. Скорость работы: 10-20 тыс. операций в секунду. Программирование: в машинных кодах.

Второе поколение (конец 50-х – конец 60-х годов).

Элементная база: полупроводниковые транзисторы, диоды. Габариты: стойки чуть выше человеческого роста. Производительность: до 1 млн. операций в секунду. Введен принцип разделения времени для совмещения во времени работы разных устройств. Программирование: появились алгоритмические языки. Программы вводились с помощью перфокарт или перфолент. Задачи решались в пакетном режиме: друг за другом по мере освобождения устройств обработки.

Третье поколение (конец 60-х – конец 70-х годов).

Элементная база: интегральные схемы. Габариты: схожи с ЭВМ второго поколения. Скорость: несколько миллионов операций в секунду. В структуре ЭВМ появился принцип модульности и магистральности. Увеличился объем памяти, память разделилась на ОЗУ и ПЗУ, появились магнитные диски, ленты, дисплеи и графопостроители. Программирование: такое же, как во втором поколении. Наряду с пакетной обработкой появился режим работы с разделением времени.

Четвертое поколение (от конца 70-х по настоящее время).

Элементная база: большие и сверхбольшие интегральные схемы, содержащие сотни тысяч элементов на одном кристалле. Габариты: персональный компьютер. Скорость: до миллиарда операций в секунду. Программирование: новые языки и среды программирования, новые принципы программирования. Развитие операционных систем, а также широкого класса программ прикладного характера.

Пятое поколение (начало 80-х годов по наше время) – искусственный интеллект.

 

Классификация ЭВМ.

Классификация по принципу действия:

цифровые – вычислительные машины дискретного действия, работающие с информацией, представленной в цифровой (дискретной) форме;

аналоговые – вычислительные машины непрерывного действия, работающие с информацией, представленной в аналоговой форме;

гибридные – вычислительные машины смешанного действия, позволяющие обрабатывать информацию, представленную как в цифровой, так и в аналоговой форме.

Классификация по назначению:

универсальные ЭВМ – предназначены для выполнения экономических, инженерных, информационных и других задач, связанных со сложными алгоритмами и большими объемами данных. Они характеризуются большой емкостью оперативной памяти, высокой производительностью, обширным спектром выполняемых задач (арифметических, логических, специальных) и разнообразием форм обрабатываемых данных;

проблемно-ориентированные ЭВМ – обладают ограниченными по сравнению с универсальными ЭВМ аппаратными и программными ресурсами и служат для решения задач, связанных с управлением технологическими процессами, регистрацией, накоплением и обработкой относительно небольших объемов данных, выполнения расчетов с относительно несложным алгоритмом;

специализированные ЭВМ – служат для решения строго определенных групп задач. Высокая производительность и надежность работы обеспечивается наличием возможности специализировать их структуру.

Классификация по размерам и функциональным возможностям учитывает важнейшие технико-эксплуатационные характеристики компьютера, такие, как быстродействие; разрядность и формы представления чисел; номенклатура, емкость и быстродействие запоминающих устройств; типы и пропускная способность устройств связи и сопряжения узлов; возможность работы в многопользовательском и мультипрограммном режиме; наличие и функциональные возможности программного обеспечения; программная совместимость с другими типами ЭВМ; система и структура машинных команд; возможность подключения к каналам связи и вычислительной сети; эксплуатационная надежность и др.

Согласно перечисленным выше критериям ЭВМ делятся на следующие группы: микроЭВМ, малые ЭВМ, большие ЭВМ, суперЭВМ.

МикроЭВМ – класс ЭВМ, действие которых основано на микропроцессорах. Внутри своего класса микроЭВМ делятся на универсальные (многопользовательские и персональные) и специализированные (серверы и рабочие станции).

Многопользовательские – мощные микроЭВМ, оборудованные несколькими видеотерминалами и функционирующие в режиме разделения времени, что позволяет эффективно работать сразу нескольким пользователям.

Персональные – микроЭВМ, удовлетворяющие требованиям общедоступности и универсальности применения, ориентированные на работу в однопользовательском режиме. Современные персональные компьютеры имеют два вида исполнения: настольный (стационарный) и портативный (переносной).

Портативные компьютеры представляют собой быстроразвивающийся подкласс, который, по некоторым оценкам, в ближайшее время будет занимать превалирующие позиции среди микроЭВМ. Главной отличительной чертой портативных компьютеров является наличие блока автономного питания и LCD-монитора. Среди существующих в настоящее время портативных компьютеров различают:

компьютеры типа Lap Тор;

компьютеры-блокноты типа Note book;

карманные компьютеры типа Palm Тор;

электронные секретари типа PDA (Personal Digital Assistant);

электронные записные книжки (органайзеры – organizer).

Серверы (server) – особо интенсивно развивающаяся группа микроЭВМ, применяемая в вычислительных сетях. Сервер представляет собой компьютер, выделенный для обработки запросов со всех станций сети, а также предоставляющий этим станциям доступ к общим системным ресурсам. Кроме того, на сервер возлагаются функции распределителя ресурсов.

Рабочие станции (work station) – однопользовательские микроЭВМ, специализированные для выполнения определенного вида работ.

Малые ЭВМ (мини-ЭВМ) – класс ЭВМ, разрабатывающихся на основе микропроцессорных наборов интегральных микросхем 16, 32, 64-разрядных микропроцессоров. Компьютеры этого класса характеризуются широким диапазоном производительности в конкретных условиях применения, аппаратной реализацией большинства функций ввода-вывода информации, достаточно простой реализацией микропроцессорных и многомашинных систем, возможностью работы с форматами данных различной длины. Мини­ЭВМ ориентированы на использование в качестве управляющих вычислительных комплексов. Кроме того, они могут быть использованы для вычислений в многопользовательских вычислительных системах, системах автоматизированного проектирования и моделирования несложных объектов, в системах искусственного интеллекта.

К основным характеристикам машин этого класса относятся количество процессоров (от 1 до 16), производительность (от 1 до 600 MIPS), емкость основной памяти (от 4 Мбайт до 2 Гбайт), емкость дисковой памяти (2-300 Гбайт), количество каналов ввода-вывода (до 32).

Большие ЭВМ (mainframe) – класс ЭВМ, предназначенных для решения научно-технических задач и задач, связанных с управлением вычислительными сетями и их ресурсами, работы в вычислительных системах с пакетной обработкой информации и боль­шими базами данных. В последнее время наметилась тенденция использования этого класса ЭВМ в качестве больших серверов вычислительных сетей.

Основными характеристиками больших ЭВМ являются производительность (не менее 10 MIPS), емкость основной памяти (до 10 Гбайт), внешняя память (не менее 50 Гбайт), многопроцессорность (от 4 до 8 векторных процессоров), многоканальность (до 256 каналов ввода-вывода), многопользовательский режим работы (обслуживание до 1000 пользователей одновременно). На больших ЭВМ сейчас находится около 70% компьютерной информации.

СуперЭВМ – класс мощных многопроцессорных вычислительных машин с быстродействием в десятки миллиардов операций в секунду. ЭВМ этого класса представляют собой многопроцессорные вычислительные системы и структурно делятся на следующие группы:

магистральные (конвейерные), снабженные процессорами, одновременно выполняющими разные операции над последовательными потоками обрабатываемых данных. Такие системы называют системами с многократным потоком команд и однократным потоком данных;

векторные, работа которых характеризуется тем, что все их процессоры одновременно выполняют одну команду над различными данными (однократный поток команд и многократный поток данных);

матричные, в которых процессорами одновременно выполняются действия над несколькими последовательными потоками обрабатываемых данных.

 


Поделиться:



Последнее изменение этой страницы: 2019-05-18; Просмотров: 599; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.031 с.)
Главная | Случайная страница | Обратная связь