Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Особенности действия нитратредуктазы и нитритредуктазы.



Высшие растения поглощают соединения азота из почвы. Основным источником азотного питания для растений являются нитраты и аммиак. Изучение отдельных этапов превращения азотистых соединений, а также исследования, показавшие широкое распространение процессов реутилизации соединений азота, привели к представлению о круговороте азотистых веществ в растительном организме. Корневые системы растений хорошо усваивают нитраты, которые, поступая и корни растения, подвергаются ферментативному восстановлению до нитри­тов и далее до аммиака. Этот процесс происходит главным образом в корнях, однако этой способностью обладают и клетки листьев. Восстановление нитратов до аммиака идет через ряд этапов. На первом этапе нитраты восстанавливаются до нитритов при участии фермента нитратредуктазы:

3- + 2е -> NО2

Нитратредуктаза — это фермент с молекулярной массой 200—270 КДа, со­держащий в своем составе ФАД, гем и молибден. Фермент локализован в цитозоле, где и протекает процесс восстановления нитратов до нитритов. Донором электронов при этой реакции у грибов является НАДФН, а у растений НАДН. В свою очередь поставщиком этих соединений являются процесс дыхания и от­части световые реакции фотосинтеза. Именно поэтому восстановление нитра­тов тесно связано с дыхательным газообменом. Вместе с тем для нормального протекания процесса дыхания растение должно быть достаточно обеспечено углеводами. При искусственном снижении содержания углеводов (выдерживание растений в темноте) нитраты не восстанавливаются, а накапливаются во всех органах растения. При усиленном поступлении нитратов содержание углеводов падает. Интересно, что растения-нитратонакопители, например, некоторые среднеазиатские солянки, содержат мало углеводов и большое количество органиче­ских кислот. Показано, что нитратредуктаза относится к индуцибельным ферментам. Ее новообразование вызывается присутствием в среде нитратов. Вместе с тем на­копление продукта реакции — нитритов репрессирует образование нитратредуктазы. Интересно, что фитогормоны цитокинины также индицируют синтез нитратредуктазы. На восстановление нитратов большое влияние оказывает свет. Прежде всего, на свету в процессе фотосинтеза образуются углеводы, необходимые для вос­становления, а также для дальнейшего превращения нитратов. Вместе с тем для восстановления нитратов могут быть непосредственно использованы продук­ты, образующиеся в процессе нециклического фотофосфорилирования (НАДФН, АТФ). Свет влияет и на уровень фермента нитратредуктазы. Пока­зано, что при низкой освещенности, дефиците Fe и Мо активность фермента снижается, и нитраты накапливаются в клетке. Восстановление нитратов сти­мулируется при освещении синим светом. Возможно, это связано с тем, что флавин, который входит в состав нитратредуктазы, поглощает синий свет и ак­тивируется им.

Второй этап — восстановление нитратов до аммиака катализируется фермен­том нитритредуктазой:

2- + 6е -> NH4+

Нитритредуктаза — это фермент с молекулярной массой 60—70 КДа содер­жит в качестве простетической группы гем. Активность этого фермента значительно выше, чем нитратредуктазы. Нитритредуктаза локализована в хло­ропластах листьев или пропластидах корней. Донором электронов в листьях слу­жит восстановленный ферредоксин, который образуется при функционирова­нии на свету ФС I. Нитриты образуются не только на промежуточной стадии восстановления нитратов. Они, как и нитраты могут поступать в растение из почвы. При этом нитриты также подвергаются восстановлению до аммиака при участии нитритредуктазы. Однако нитриты при накоплении в цитоплазме могут оказаться ядовитыми, поскольку фермент локализован в хлоропластах. Передвижение нит­ритов в хлоропласты стимулируется Са. При недостатке Са нитриты не восста­навливаются до аммиака и накапливаются в клетках. Установлено, что в высших растениях, так же как у прокариот и грибов, на­ряду с восстановлением нитратов до аммиака осуществляется и обратный процесс — окисление аммонийной формы азота в нитратную, что опровергает широко распространенное мнение об исключительно экзогенном происхожде­нии нитратов в растениях (Б.А. Ягодин).

Процесс восстановления нитратов может осуществляться в листьях и корнях растений. Так, древесные растения, черника, люпин и другие восстанавливают нитраты преимущественно в корнях, а в листья транспортируют в органической форме. К видам, осуществляющим этот процесс в листьях, относятся свекла, дурнишник, хлопчатник. Однако большинство растений (злаки, бобовые, то­маты, огурцы и др.) могут восстанавливать нитраты как в листьях, так и в кор­нях, что зависит от уровня снабжения нитратами. Важнейшим источником азотного питания является аммонийный азот. При этом он поступает в растения даже быстрее, чем нитраты. Более быстрое по­глощение аммиака объясняется тем, что для его использования на построение органических веществ не требуется предварительного восстановления, которое необходимо при питании растений нитратами. Аммиак представляет собой основное и, по-видимому, единственное соеди­нение, вовлекаемое в процессы азотного обмена. При этом аммиак может быть разного происхождения: непосредственно поступивший из почвы, образовав­шийся в результате восстановления нитратов или в результате вторичного рас­пада белка в стареющих органах и клетках. Важно отметить, что накопление аммиака в клетках, как растений, так и животных приводит к нежелательным последствиям и даже отравлению организма. Однако растения обладают спо­собностью обезвреживать аммиак путем присоединения его к органическим кислотам с образованием амидов (глутамина, аспарагина). Этот процесс анало­гичен обезвреживанию аммиака животными организмами в виде мочевины. Существует целая группа растений, накапливающая большое количество ор­ганических кислот и с их помощью обезвреживающая аммиак, образуя соли. Это позволило разделить растения на амидные, образующие амиды — аспарагин и глутамин, и аммиачные, образующие соли аммония. Изменяя рН клеточного сока, можно менять направление азотного обмена, превращать растения с амидным типом обмена в аммиачные и наоборот. Каковы же пути образования амидов в растениях? В процессе дыхания в качестве промежуточных продуктов образуются органические кислоты, в том числе а-кетоглутаровая и щавелевоуксусная. Эти кислоты в результате реакции пря­мого восстановительного аминирования присоединяют аммиак:

 

Реакция идет в две стадии. На промежуточном этапе образуется иминокислота. Катализируется реакция ферментом глутаматдегидрогеназой с активной группой НАД. Этот фермент локализован главным образом в митохондриях, так как именно в этих органеллах образуются органические кислоты и восстанов­ленные никотинамидные коферменты, но может содержаться в цитозоле и хло­ропластах. Аспарагиновая кислота образуется по аналогии с глутаминовой ки­слотой путем восстановительного аминирования щавелевоуксусной кислоты при участии фермента аспартатдегидрогеназы. На активность глутаминсинтетазы влияет присутствие катионов: Mg2+, Мп2+, Со2+, Са2+. Фермент обнаружен в цитозоле, но может находится и в хлоропла­стах. Образование аспарагина происходит аналогичным путем. Для образования амидов особенное значение имеет возраст растений. Как правило, чем моложе растение, тем больше его способность к образованию ами­дов. В более молодых органах (листьях) и даже в более молодых клетках одного и того же органа образование амидов идет интенсивнее. В пасоке и в гутте (сок гуттации) обычно присутствуют амиды. Это показывает, что аммиак, посту­пивший в растение, может преобразовываться в форму амидов в живых клетках корня. В тех случаях, когда не хватает углеводов или ослаблена интенсивность дыха­ния, амиды не образуются и накапливается аммиак. В результате может наступить отравление растений. Относительное количество образовавшегося аспарагина и глутамина и их роль различны в зависимости от вида растений и условий среды. Все же, по-видимому, образование аспарагина преобладает в том случае, когда происходит распад белков в семенах. В клетках корня и листа растущего расте­ния идет, главным образом, образование глутамина. Таким образом, аспарагин — форма обезвреживания аммиака, образовавшегося на пути распада белка (регрессивная ветвь азотного обмена), тогда как глутамин — форма обезврежи­вания аммиака, используемого на пути синтеза белка (прогрессивная ветвь азот­ного обмена). Роль амидов в растении разнообразна. Это не только форма обезвреживания аммиака, это и транспортная форма азотистых соединений, обеспечивающая отток их из одного органа в другие. Наконец, чрезвычайно важно, что амиды и их непосредственные предшественники — глутаминовая и аспарагиновая ки­слоты — являются материалом для построения многих других аминокислот в процессах переаминирования, а также перестройки их углеродного скелета. Из 20 аминокислот, входящих в состав белка (протеиногенных), только три, как мы видим, могут образоваться в процессе прямого аминирования. Осталь­ные аминокислоты образуются в процессе переаминирования и взаимопревра­щения. Каждая из аминокислот, образовавшихся путем прямого аминирования (глутаминовая, аспарагиновая и аланин), является предшественником целой группы аминокислот. Реакции переаминирования были открыты в 1937 г. отече­ственными биохимиками А. Е. Браунштейном и М.Г. Крицман. При этих реакци­ях аминогруппа от указанных аминокислот обменивается с кетогруппой любой кетокислоты с образованием соответствующей аминокислоты. Эти реакции ка­тализируются специальными ферментами — аминотрансферазами и идут при участии кофермента пиридоксальфосфата (производное витамина В6):

R1CHNH2COOH + Р2СОСООН -> R1COCOOH + R2CHNH2OOH

Полученные путем переаминирования различные аминокислоты за счет пе­рестройки углеродного скелета дают остальные аминокислоты. Таким образом, глутаминовая, аспарагиновая кислоты и их амиды являются как бы донорами аминогруппы. Д.Н. Прянишников называл их воротами, через которые должен пройти аммиак, для того чтобы включиться в остальные аминокислоты и белки. Растительный организм, в отличие от животного, обладает способностью син­тезировать все необходимые ему аминокислоты из неорганических соединений. В этом также выражается его автотрофность. Аминокислоты могут образовывать­ся в разных органах растений — в листьях, корнях, верхушках стебля. Некоторые аминокислоты образуются непосредственно в хлоропластах и здесь используются на образование белка. Наиболее интенсивно синтез белка происходит в меристематических и молодых развивающихся тканях. Интересно, что в отрезанных листьях синтез белка полностью прекращается. Это служит еще одним доказа­тельством, что для синтеза белка нужен какой-то фактор, образующийся в корнях растений. Можно предположить, что это фитогормон, относящийся к группе цитокининов. Для нормального протекания синтеза белка в растительном организме нужны следующие условия: 1) обеспеченность азотом; 2) обеспеченность углеводами (углеводы необходимы как материал для построения углеродного скелета амино­кислот и как субстрат для дыхания); 3) высокая интенсивность и сопряженность процесса дыхания и фосфорилирования. На всех этапах преобразования азоти­стых веществ (восстановление нитратов, образование амидов, активация амино­кислот при синтезе белка и др.) необходима энергия, заключенная в макроэргических фосфорных связях (АТФ); 4) присутствие нуклеиновых кислот. ДНК необходима как вещество, в котором зашифрована информация о последова­тельности аминокислот в синтезируемой молекуле белка; мРНК — как агент, обеспечивающий перенос информации от ДНК в цитоплазму; тРНК — как обес­печивающая перенос аминокислот к рибосомам; 5) рибосомы — структурные единицы, где происходит синтез белка; 6) белки-ферменты — катализаторы син­теза белка (аминоацил-т-РНК-синтетазы); 7) ряд минеральных элементов (ионы Mg2+, Са2+и др.). Образованием белка заканчивается прогрессивная ветвь азотного обмена в растениях, которая преобладает главным образом в молодых растущих орга­нах (первичный синтез белковых веществ). Однако в растениях идет и непре­рывный распад белка. Опыты с использованием меченого азота 15N позволили исследователю Ф.В. Турчину подтвердить последовательность включения азота в различные соединения, постулированную схемой Прянишникова, и одновременно показать, что обновление белка происходит чрезвычайно бы­стро. За 48 ч до 60% белка организма синтезируется вновь. Белки распадаются до аминокислот и далее до аммиака. Аммиак вновь обезвреживается в виде амидов (аспарагин и глутамин). На основе этих соеди­нений образуются аминокислоты. Это позволяет организму синтезировать но­вый набор аминокислот, который обеспечит построение иных белков со своим специфическим набором и последовательностью аминокислот (вторичный син­тез белковых веществ). Анализируя факты, Д.Н. Прянишников подчеркнул, что аммиак — это альфа и омега азотного обмена в растениях, т. е. его начальный и конечный этапы. В условиях, обеспечивающих достаточно высокий уровень синтетических процессов, аммиак представляет собой прекрасный источник азотного питания для растений. Признание аммиака как источника азотного питания имеет не только теоре­тическое, но и практическое значение. Получение удобрений, содержащих ам­миачные соли, — процесс более простой и дешевый по сравнению с удобрения­ми, где азот содержится в форме нитратов.

В целом, оценивая сравнительное физиологическое значение аммиачных и нитратных форм азотных удобрений, необходимо учитывать следующее:

1. Аммиак как источник азотного питания имеет то преимущество, что он быстрее поступает и быстрее используется растением. Однако во избежание ам­миачного отравления растения необходимо присутствие в нем достаточного ко­личества углеводов. В силу этого применение аммиачных удобрений в рядки для культур с мелкими семенами не рекомендуется.

2. При внесении различных форм азота важно учитывать реакцию питатель­ной среды: в слабокислой почве лучше поглощаются нитраты, в нейтральной преимущество имеет аммонийная форма. Поэтому для усвоения аммонийного азота большое значение имеет одновременное достаточное снабжение кальцием.

3. Накопление нитратов для растительного организма не представляет опас­ности. Однако при высоких дозах и накоплении нитратов в клетках растений они становятся весьма опасными для животных организмов, в том числе и для человека. Попадая в желудок, они могут восстанавливаться до нитритов и далее при взаимодействии с вторичными аминами образовывать нитрозамин — ве­щество, обладающее сильным мутагенным действием. При этом необходимо учитывать, что повышенной способностью к накоплению нитратов при внесе­нии удобрений обладают кормовые злаковые травы и некоторые овощные куль­туры. Считается, что предельно допустимая норма содержания нитратов в овощах не должна превышать 290—300 мг на 1 кг сырой массы. Предельно допустимое количество (ПДК) нитратов для человека составляет 500 мг в день. Это еще раз показывает необходимость строгого нормирования внесения питательных ве­ществ с удобрениями.

4. Наконец, аммиачные и нитратные удобрения оказывают различное влияние на процессы обмена веществ и, как следствие, на качество урожая. При внесе­нии аммиачных форм в растении накапливаются восстановленные соединения, тогда как при нитратных — окисленные. Так, было показано, что внесение аммиачных форм удобрений под махорку позволяет усилить накопление в ней никотина, тогда как внесение нитратов вызывает преимущественное образова­ние органических кислот (А.В. Владимиров).

Опыты, проведенные в стерильных условиях, показали, что в качестве ис­точника азотного питания могут быть использованы растениями и растворимые органические соединения (аминокислоты, амиды и мочевина). Однако их содер­жание в почве, как правило, очень мало. Для некоторых растений с уклоняю­щимся типом питания (паразиты, полупаразиты, сапрофиты, несекомоядные растения) источником питания может служить органический азот.


Поделиться:



Последнее изменение этой страницы: 2019-05-18; Просмотров: 837; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.02 с.)
Главная | Случайная страница | Обратная связь