Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Методы учета податливости узловых сопряжений
4.2.1. Расчет упругих статически неопределимых конструкций производится либо методом сил, либо методом перемещений. Для конструкций с малой статической неопределимостью рекомендуется к использованию метод сил. Метод перемещений имеет преимущества при в решениях систем с большой статической неопределимостью, но с малым количеством узловых точек. 4.2.2. В методе сил в общем случае учет податливости узлов производится путем суммирования перемещений, вызванных деформациями стержней и податливостью соединений. При формировании основной системы отбрасываются лишние связи в податливых узлах, ограничивающие линейные или угловые деформации, в зависимости от искомого параметра. Рис. 23. Расчетная схема стержня с жестко защемленными концами (а) и расчетная схема стержня с упруго-податливыми при повороте опорами (б) В системе канонических уравнений перемещения в отброшенных связях не обнуляются, а принимаются равными произведению податливости защемления на опорную реакцию [4]. Для простейшей статически неопределимой конструкции, показанной на рис. 23, система канонических уравнений с учетом податливости опор при повороте будет иметь вид: (25) где δ 11, δ 12и δ 22 - перемещения от единичных усилий; X1 и X2 - реакции в отброшенных связях с учетом податливости сопряжений, равные:
здесь
4.2.3. Расчет конструкций с податливыми узлами методом перемещений производится таким же образом, как и с жестким или шарнирными узлами. Податливость узлов и опор учитывается при вычислении опорных реакций наложенных связей, которые можно определить, например, из системы уравнений (25). Таблицы с формулами по вычислению реакций в наложенных связях от единичных линейных или угловых перемещений упруго податливых опор представлены в работе [4]. 4.2.4. Для учета податливости сопряжений в расчетной схеме МКЭ реальные швы между сборными конструкциями следует представлять в виде податливых к.э., геометрические и жесткостные параметры которых максимально отвечают характеристикам реальных швов при различных стадиях возведения и нагружения несущей системы здания (рис. 22). В качестве таких элементов можно использовать типовые стержневые и плоские к.э., а также специальные элементы, имеющиеся в применяемой прикладной программе. 4.2.5. Геометрические размеры к.э. сопряжений следует, по возможности, назначать равными размерам реальных швов, а механические характеристики задавать таким образом, чтобы их угловые и линейные перемещения от соответствующих единичных нагрузок были равны податливостям реальных швов. 4.2.6. Для стыков колонн между собой длина элементов может быть принята равной конструктивной длине сопряжений lfe = ljt. Поскольку к.э. сопряжений обычно более податливы, чем примыкающие элементы, здесь и далее, для наглядности, они изображены в виде пружин (рис. 24, а). 4.2.7. Для стыков ригелей с колоннами (рис. 24, б), а также железобетонных элементов сборных диафрагм, чтобы сохранить геометрию системы необходимо вводить жесткие элементы (вставки) длиной, равной lс = bс/2. Длина зоны стыка, имеющая повышенную деформативность, может быть разной в зависимости от его конструктивного решения. Как показали расчеты, длина конечного элемента, моделирующего податливый стык, не должна быть более 1/6Н, где Н - высота сечения ригеля. Рис. 24. Расчетная схема сопряжений сборных железобетонных элементов для расчета по МКЭ: а) стыки колонны; б) сопряжение ригеля с колонной 4.2.8. Характеристики податливости к.э. в узловых сопряжениях рекомендуется принимать из условия (26) где Сφ fe и Сφ jt - коэффициенты жесткости для заменяющего конечного элемента и шва (сопряжения ригеля с колонной). 4.2.8. Учитывая, что сдвиговые деформации в стержневых элементах вообще, а особенно на коротких участках шва, практически не влияют на перемещения конструкции при назначении деформационных характеристик к.э. швов достаточно задание трех независимых величин. Это характеристики податливости шва при действии моментов в двух плоскостях и при действии нормальной силы. 4.2.9. Если в качестве к.э. швов используются специальные стержневые элементы, то их деформационные характеристики задаются, чаще всего, непосредственно, как величины, характеризующие перемещения от единичного усилия (податливость) или усилия от единичного перемещения (жесткость). При применении стандартных стержневых к.э., их следует принимать прямоугольного сечения. В этом случае при задании исходных данных используются три независимых параметра: высота (h)и ширина (b)сечения и модуль упругости (E), которых достаточно для описания требуемых характеристик швов. Указанные параметры можно определить, используя известные зависимости выражения осевой и изгибной жесткости для прямоугольного сечения через линейную и угловую податливость соответственно в виде (27) где 1/СΔ , 1/Сφ y, 1/Сφ x - податливости стыков при действии на них, соответственно, нормальной силы, изгибающего момента в плоскости оси «х»и «у»; ljt, b и h - толщина шва и размеры сечения конечного элемента вдоль осей «х»и «у». Тогда искомые характеристики сечения определятся по формулам
(28)
Численные значения этих величин для каждого типа сопряжения следует принимать на основании экспериментальных данных или по выражениям гл. 2, рассматривая каждый узел как совокупность отдельных элементов. При этом рекомендуется принимать некоторые упрощения, основанные на анализе возможного напряженно-деформированного состояния каждой группы однотипных узлов и его влияния на работу несущей системы. 4.2.10. Для сопряжений ригелей с колоннами основное влияние на работу несущей системы каркасного здания оказывает податливость узлов при действии изгибающих моментов в плоскости рамы. Деформативность же таких узлов при действии на них моментов из плоскости влияет на работу плоских рам в меньшей степени. Соответственно выражения (28) могут быть упрощены. Тогда при наличии экспериментальных данных по величинам соответствующих податливостей жесткость соединений может быть определена как для сплошного железобетонного сечения с приведенным значением модуля упругости. Это позволит при описании к.э. сопряжений с помощью стандартных элементов принимать их сечения такими же, как в ригелях, а приведенные значения модулей упругости назначать, исходя из значений податливости реальных швов при их изгибе в соответствующей плоскости по формуле (29) где I - момент инерции принятого сечения к.э. шва. 4.2.11. В узловых сопряжениях сборных железобетонных элементов, в которых наибольшее влияние на напряженно-деформированное состояние оказывает деформативность при сдвиге и растяжении-сжатии в плоскости, а сопротивление каждого сопряжения моменту в этой плоскости и из плоскости практически близко к нулю, сопряжение рекомендуется моделировать стержнем, жестко защемленным одним концом с шарниром на другом. В стандартных программных комплексах предусмотрены специальные к.э., позволяющие независимо задавать жесткостные характеристики при растяжении-сжатии и сдвиге. Многоэтажные рамы каркаса 4.3.1. Плоская расчетная схема многоэтажных связевых каркасов представляет комбинированную конструкцию, состоящую из рамной части и связевого элемента - диафрагмы жесткости (рис. 22, в). В расчетной схеме узлы сопряжения ригелей и плит с колоннами при расчете на вертикальную нагрузку во многих конструктивных решениях рекомендуется принимать шарнирными. При действии горизонтальной нагрузки, в результате конструктивных факторов, описанных в разделе 2, возникает частичное защемление, которое ограничивает поворот колонн относительно элементов сборного перекрытия в продольном и поперечном направлениях. Появление сопротивления взаимному повороту элементов в узлах сопряжения повышает жесткость продольных и поперечных рам, тем самым разгружая связи и диафрагмы жесткости. Учет частичного защемления можно производить введением дополнительных изгибающих моментов в шарнирные узлы сопряжения ригеля с колонной, как это показано на рис. 25, а, либо введением в узел элемента с меньшей жесткостью по сравнению с жесткостью ригеля (рис. 25, б). 4.3.2. Характеристикой частичного защемления принята величина податливости сопряжения (обратная величина коэффициента угловой жесткости). Изменения податливости узла сопряжения ригеля с колонной связевого каркаса вследствие проявления нелинейности незначительна и в практических расчетах можно принимать коэффициент угловой жесткости сопряжения постоянным. Рис. 25. Расчетные схемы рам связевого каркаса с учетом частичного защемления колонн в перекрытии: а - введение дополнительных опорных моментов в шарнирные узлы сопряжения ригеля с колонной; б - введение в расчетную схему участка ригеля с пониженной жесткостью 4.3.3. Усилия в элементах рамных каркасов существенно изменяются за счет изменения соотношения жесткостей элементов рамы в процессе нагружения (эксплуатации). Жесткость рамного сопряжения в процессе увеличения изгибающего момента снижается за счет проявления неупругих деформаций в растянутой арматуре, в бетоне и закладных деталях сжатой зоны опорного сечения (см. п. 2). В связи с этим при расчете на вертикальные нагрузки следует учитывать переменную податливость сопряжения ригеля с колонной. 4.3.4. Основная часть усилий в рамном сопряжении возникает от вертикальных нагрузок и в растянутой арматуре допускаются напряжения, соответствующие пределу текучести. Вследствие этого происходит накопление остаточных деформаций и при действии знакопеременных горизонтальных нагрузках имеет место большая деформативность сопряжения ригеля с колонной по сравнению с жестким защемлением. На основании этого при расчете на горизонтальные нагрузки податливость узловых сопряжений перекрытия с колонной следует определять по максимальным усилиям от вертикальных нагрузок. |
Последнее изменение этой страницы: 2019-05-18; Просмотров: 308; Нарушение авторского права страницы