Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Глава 7. Применение в измерительной технике явлений дисперсии, дифракции и интерференции



Среды, различающие цвет

Оптоэлектронные устройства часто работают с цветом (сканеры, денситометры, спектрофотометры и др.), и на них, как правило, возлагаются функции цветоразличения (разложения на спектральные цвета). Еще до появления оптоэлектроники для этих целей использовались (и сейчас с успехом применяются) самые разнообразные элементы традиционной оптики. Призмы и дифракционные решетки используются для разложения светового потока на составляющие цвета; зональные светофильтры и дихроичные зеркала - для цветоделения светового потока на три составляющие (красную, зеленую, синюю).

Рисунок 7.1 Принцип действия призмы и дифракционной решетки

Принцип действия призмы основан на зависимости показателя преломления среды, через которую пропускается свет, от длины волны электромагнитных колебаний, проще говоря, цвета. Эта зависимость в первом приближении описывается формулой Коши. Зависимость эта нелинейная. Показатель преломления увеличивается с уменьшением длины волны. Это приводит к эффекту разложения белого цвета, пропускаемого через призму. Призма усиливает различимость эффекта, так как лучи разных цветов, отклоняясь под разными углами, проходят к тому же разные расстояния, и на выходе из нее спектр оказывается более растянутым. Если за призмой установлена линейка фотоприемников (или белый экран), то это позволяет определять спектральный состав излучения. Примерные зависимости изменения показателя преломления от длины волны можно оценить по данным, приведенным в таблице 7.1.

Таблице 7.1.

Длина волны [нм], (цвет) Стекло (кварц) Исландский шпат
687 (красный) 1,541 1,653
656 (оранжевый) 1,542 1,655
589 (желтый) 1,544 1,658
527 (зеленый) 1,547 1,664
486 (голубой) 1,550 1,668
431 (сине-фиолетовый) 1,554 1,676
400 (фиолетовый) 1,558 1,683

Другой принцип заложен в явлении спектрального разложения света на дифракционной решетке. Эффект дифракции света сказывается у краев экранов, малых отверстий, узких щелей, когда расстояния светлых промежутков становятся соизмеримы с длиной световой волны. В таких условиях лучи, касающиеся края препятствия, отклоняются от прямолинейной траектории падающего света, при этом синус угла отклонения прямо пропорционален и кратен длине волны (т.е. угол отклонения тем больше, чем больше длина волны). Вокруг малого единичного отверстия в результате дифракции наблюдаются дифракционные кольца чередующихся светлых и темных участков (в формулу входит показатель кратности или порядка явления k. Вокруг одиночной щели кольца преобразуются в полосы, затухающие по мере удаления от просвета (в обе стороны). Если такие щели расположены в ряд и близко друг к другу (размеры щелей и перегородок одного порядка малости), то образуется дифракционная решетка, за которой, при размещении там белого экрана, можно увидеть спектр падающего на решетку светового луча. Дифракционные решетки делают и на отражение - тогда на зеркальную поверхность наносят тонкие риски (до нескольких тысяч рисок на миллиметр). Такие элементы разложения сложного света на составляющие цвета используются в современных спектрофотометрах, приборах калибровки мониторов, компьютерных системах управления цветом (color management systems - CMS). Другая задача различения сложной окраски - разделение на зональные составляющие для последующего синтеза цвета (на базе триады голубой, пурпурной и желтой красок + черная) - цветоделение.

Светофильтры пропускают свет только своей зоны спектра, задерживая световые потоки остальных цветовых оттенков, поэтому если взять, например, синий фильтр и посмотреть через него на отпечаток, сделанный желтой краской на белой бумаге (кстати, без фильтра желтое на белом различается с трудом), то глаз увидит черный отпечаток на фоне синего - лучи желтого цвета через синий фильтр не пройдут. Чем меньше будет желтого на отпечатке, тем менее черным покажется этот участок за синим фильтром. Этот эффект позволяет измерять оптические плотности основных красок полиграфической триады (голубой, пурпурной, желтой) на оттисках с помощью денситометров, в которых устанавливаются зональные фильтры: синий - для желтой краски, зеленый - для пурпурной, красный - для голубой (черная измеряется за визуальным фильтром, имеющим спектральную характеристику, близкую к характеристике человеческого зрения).

Дихроичные зеркала тоже не пропускают излучение одной из зон видимого спектра (поэтому их также называют дихроичными фильтрами), отражая эти лучи, как зеркало, - это придает им новое свойство в отличие от светофильтров, так как не прошедшие через зеркало лучи могут использоваться в другом измерительном канале, если они будут туда направлены. Поставив друг за другом два разных по характеристикам зеркала, можно произвести деление светового потока на лучи красной, зеленой и синей зоны: первое зеркало отразит волны красной зоны и пропустит зеленые и синие, которые разделятся на втором зеркале - синие отразятся, а зеленые будут пропущены через него.

Как уже было сказано, отличительной чертой оптоэлектроники является миниатюризация элементов, их интеграция с целью переработки больших объемов информации. Поэтому и те элементы традиционной оптики, которые были описаны выше, в приложении к оптоэлектронным приборам изготавливаются зачастую в совершенно специфическом виде, по технологиям, применяемым в производстве оптоэлектронных элементов. Например, зональные фильтры для матричного ПЗС могут представлять собой тонкую пленку, размещенную на поверхности матрицы, с нанесенными микроскопическими триадами цветов, в виде синих, зеленых и красных штришков или точек, каждая из которых предназначается для своей элементарной ПЗС-ячейки размером 5×5 мкм.

Следует упомянуть также о многослойных диэлектрических структурах, применяемых в системах оптической связи в случаях, когда из смешанного света с различными длинами волн необходимо выделить свет с одной определенной длиной волны. Такие структуры представляют собой многослойный «бутерброд» с чередованием тонких слоев диэлектриков двух типов с различными показателями преломления. Каждый слой имеет толщину, равную четверти длины волны выделяемого излучения. Падающий на структуру свет частично отражается от каждой из границ раздела двух сред. Отраженные лучи выделенной длины волны, будучи одночастотными и сдвинутыми на четверть волны, т.е. когерентными, интерферируют (складываются), усиливаясь по амплитуд). Свет других длин волн такого эффекта не имеет, так как либо проходит через структуру не отражаясь, а если и отражается, то не синфазно, а, следовательно, и не когерентно - для него интерференция безрезультатна.


Поделиться:



Последнее изменение этой страницы: 2019-03-22; Просмотров: 408; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.013 с.)
Главная | Случайная страница | Обратная связь