Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Разновидности термоэлектрических преобразователей и особенности их эксплуатации



Приборы, представляющие собой сочетание термопары и указателя, используемые для измерения температуры, часто называют не термометрами, а термоэлектрическими пирометрами, хотя никакого принципиального различия между этими терминами нет.

Используют различные варианты схем включения термопар.

Рисунок 2.27

Включить указатель в цепь термопары можно как по наиболее часто применяемой схеме рис.2.27,а (здесь два нерабочих спая), так и по схеме рис.2.27,б. Для того чтобы включение в цепь термопары указателя (т.е. третьего проводника) не изменило значения термо-э.д.с., места соединения указателя с термоэлектродами должны иметь одинаковую температуру.

Материалы, применяемые для термопар. Для измерения температур до 1100°С используют в основном термопары из неблагородных металлов, а для измерения температур выше 1100 и до 1600°С – термопары из благородных металлов платиновой группы и, наконец, для измерения температур более 1600°С – различные термопары, изготовленные из очень жароупорных материалов.

Для термопар, не погружаемых непосредственно в печь (например, для термопар радиационных пирометров), применяют также металлические термоэлектроды в паре с неметаллами (например, теллур, кремний и т.п.). Эта категория термопар развивает термо-э.д.с., значительно превышающие термо-э.д.с. термопар из металлических термоэлектродов, но не отличается механической прочностью.

Направление термо-э.д.с. зависит лишь от природы материалов, используемых в качестве термоэлектродов. Положительным называют тот термоэлектрод, по направлению к которому ток идет через рабочий спай термопары.

Состав сплавов:

· хромель  - 90%Ni+10%Cr;

· алюмель  - 1%Si+2%Al+0,17%Fe+Ni(96,83%);

· копель - 56,5%Cu+43,5%Ni.

При пользовании данными таблицы следует иметь ввиду, что развиваемые термоэлектродами термо-э.д.с. в значительной степени зависят от малейших присей, механической обработки (наклеп) и термической обработки (закалка, отжиг).

При конструировании термопар, естественно, стремятся сочетать термоэлектроды, один их которых развивает с платиной наиболее положительную, а другой – отрицательную термо-э.д.с.. При этом необходимо учитывать также пригодность того или иного термоэлектрода для применения в заданных условиях измерения (влияние на термоэлектрод среды, температуры и т.д.).

Термопары из благородных металлов (платиновой группы) имеют широкое распространение в основном как эталонные термопары для измерения температур выше 1000°С. Основной термопарой этой группы является термопара платинородий – платина, один термоэлектрод которой представляет собой чистую платину, а второй – сплав (90%Pt+10%Rh). Эта термопара может применяться для измерения температур до 1600°С кратковременно и до 1400°С длительно и развивает при 1600°С термо-э.д.с., равную 17 мв (при температуре нерабочих спаев, равной нулю). При температурах выше 1400°С электроды начинают взаимодействовать с окружающими элементами, вследствие чего изменяются термоэлектрические характеристики термопары. Достоинством этой термопары является ее химическая стойкость в окислительной среде, восстановительная же среда отравляет термопару.

Для измерения температур до 1800°С применяют термопары из платинородиевых сплавов с различным содержанием родия, например термопару ПР 30/6. В ней положительным термоэлектродом является сплав, состоящий из 70%Pt и 30%Rh, а отрицательным термоэлектродом – сплав из 94%Pt и 6%Rh. Верхним пределом кратковременно измеряемой температуры для этой термопары можно принять температуру 1750°С. Термопара ПР30/6 развивает при 1546°С термо-э.д.с., равную 10,82 мв. Термопары с другим содержанием родия (ПР40/10, ПР30/13 и ПР40/20) развивают несколько меньшую термо-э.д.с., чем термопара ПР30/6, но пригодны для измерения немного более высоких температур (до 1800 - 1850°С).

Сведения о термопарах из неблагородных металлов приведены в таблице.

 

Таблица 2.3

 

Наиболее распространена термопара хромель – алюмель. Эта термопара хорошо работает в окислительной среде благодаря возникновению при нагреве тонкой защитной пленки окислов, препятствующей проникновению кислорода внутрь металла. Восстановительная среда, напротив, вредно действует на эту термопару, разрушая пленку окислов.

Термопара хромель – копель химически стойка в окислительной и несколько менее стойка в восстановительной средах (в пределах температур до 600°С). следует особо отметить высокую термо-э.д.с., развиваемую термопарой хромель – копель, однако ее термоэлектрическая характеристика отличается значительно большей нелинейностью по сравнению с характеристикой термопары хромель – алюмель.

Термопары железо–копель и медь–копель не получили распространения ввиду отсутствия у них каких-либо существенных преимуществ по сравнению с термопарой хромель – копель.

Кроме описанных стандартных термопар, применяется и ряд нестандартных термопар на константановой основе, близких по свойствам к аналогичным термопарам с копелевым термоэлектродом: медь – константан, железо – константан, нихром – константан.

В группе термопар, предназначенных для измерения температур превышающих 1600°С, следует отметить термопару вольфрам – молибден. К достоинствам такой термопары относятся высокая температура плавления обоих электродов, доступность получения этих материалов и их сравнительно небольшая стоимость.

Недостатками этих термоэлектродов являются их быстрое окисление и хрупкость при высоких температурах, а также низкая воспроизводимость характеристики термо-э.д.с., что требует индивидуальной градуировки каждой такой термопары.

Большой интерес для измерения высоких температур в условиях воздействия различных агрессивных сред представляет термопара из борида и карбида циркония (ZrB2 и ZrC) – твердых тугоплавких соединений. Борид и карбид циркония обладают при относительно высокой прочности низким электрическим сопротивлением и хорошей теплопроводностью. Они устойчивы против действия водорода, окиси углерода, смеси окиси углерода с азотом, расплавленных цветных и черных металлов, а также некоторых расплавленных солей и шлаков. Термопара с электродами из борида и карбида циркония, как показали исследования, имеет практически линейную термоэлектрическую характеристику и развивает термо-э.д.с. около 16 мв при 1800°С.

Помимо перечисленных термопар, существует ряд других, не нашедших пока широкого применения.

Конструктивное устройство термопар промышленного типа, применяемых для измерения температуры в печах, соляных ваннах, газоходах, рассмотрим на примере термопары, изображенной на рис.2.28.

 

 

Рисунок 2.28 Конструкция термопар

Термопара с термоэлектродами из неблагородных металлов, расположенными в составной защитной трубе с подвижным фланцем для ее крепления. Рабочий спай 1 термопары изолирован от трубы фарфоровым наконечником 2. Термоэлектроды изолированы бусами 3. Передвижной фланец состоит из рабочего 4 и нерабочего 5 участков. Передвижной фланец 6 крепиться к трубе винтом. Головка термопары имеет литой корпус 7 с крышкой 8, закрепленной винтами 9. В головке укреплены фарфоровые колодки 10 (винтами 11) с «плавающими» (незакрепленными) зажимами 12, которые позволяют термоэлектродам удлиняться под воздействием температуры без возникновения механических напряжений, ведущих к быстрому разрушению термоэлектродов. Термоэлектроды крепятся к этим зажимам винтами 13, а соединительные провода – винтами 14. Эти провода проходят через штуцер 15 с асбестовым уплотнением.

Основным вопросом при конструировании термопар промышленного типа является выбор материала защитной трубы (арматуры) и изоляции. Защитная арматура термопары должна оградить ее от воздействия горячих, химически агрессивных газов, быстро разрушающих термопару. Поэтому арматура должна быть газонепроницаемой, хорошо проводящей тепло, механически стойкой и жароупорной. Кроме того, при нагревании она не должна выделять газов и паров, вредных для термоэлектродов.

При температурах, не превышающих 600°С, обычно применяют стальные трубы без шва, при более высоких температурах (до 1100°С) – защитные трубы из легированных сталей. Для уменьшения стоимости защитных труб их часто выполняют составными (сварными) из двух частей: рабочий участок трубы – из нержавеющей стали, а нерабочий – из обычной стали.

Для термопар из благородных металлов часто применяют неметаллические трубы (кварцевые, фарфоровые и т.д.); однако такие трубы механически непрочны и дороги. Фарфоровые трубы надлежащего состава можно использовать при температурах до 1300 - 1400°С.

При использовании защитных труб из карбида кремния и графита, необходимо учитывать, что при нагревании они выделяют восстанавливающие газы. Поэтому помещаемые в них термопары (особенно термопары на платиновой основе) должны быть защищены дополнительным газонепроницаемым чехлом.

В качестве изоляции термоэлектродов друг от друга применяют асбест – до 300°С; кварцевые трубки или бусы – до 1000°С; фарфоровые трубки или бусы – до 1300-1400°С. Для лабораторных термопар, используемых при измерении низких температур, применяют также теплостойкую резину – до 150°С; шелк – до 100-120°С; эмаль – до 150-200°С.

Термоэлектроды термопары, помещаемые в защитную трубу, обычно выполняют жесткими, а соединение их с последующими частями измерительной цепи для удобства монтажа осуществляется гибкими проводами с надлежащей изоляцией. Соединительные провода, идущие от зажимов в головке термопары до места нахождения нерабочих спаев (до места соединения с проводами указателя), называется удлинительными термоэлектродами.

Удлинительные термоэлектроды для термопар из неблагородных металлов и других материалов выполняют из тех же материалов, что и термоэлектроды термопары. Для термопар из благородных металлов пользоваться удлинительными термоэлектродами из тех же металлов крайне невыгодно; кроме того, некоторые термоэлектроды не могут быть выполнены в виде гибких проводов. Поэтому удлинительные термоэлектроды в этих случаях изготавливают из неблагородных металлов и других материалов. Чтобы при включении удлинительных термоэлектродов из материалов, отличных от материалов основных термоэлектродов, не изменилась термо-э.д.с. термопары, необходимо выполнить два условия. Удлинительные термоэлектроды должны быть термоэлектрически идентичны с основной термопарой в диапазоне возможных температур нерабочего спая и места соединения термоэлектродов в головке термопары (примерно в диапазоне от 0 до 100°С). Иначе говоря, удлинительные термоэлектроды в указанном интервале температур должны иметь одинаковую температуру, такую же термо – ЭДС, как и электроды основной термопары. При невыполнении хотя бы одного из этих условий возникает погрешность измерения.

  Для термопары платинородий-платина применяются удлинительные термоэлектроды из меди и сплавы, образующие термопару. Такие же удлинительные термоэлектроды с измененными знаками полярности применяют для термопары вольфрам-молибден. Для термопары хромель-алюмель удлинительные электроды изготавливаются из меди и константана. Для термопар хромель-копель удлинительными являются термоэлектроды, выполненные в виде гибких проводов. 

Большое значение при измерении температуры с помощью термопар имеет их инерционность, определяемая как время, за которое показания термопары при переносе из среды с комнатной температурой (15-20°С) в среду с температурой 100°С достигают 97-98°С.

Для уменьшения инерционности стремятся обеспечить наилучший тепловой контакт между рабочим спаем термопары и средой, температура которой подлежит измерению. Так, термопары, в которых рабочий спай вварен в дно трубы, имеют инерционность, не превышающую 2-3 минут, однако такие термопары быстрее выходят из строя, чем обычные.

Конструкции термопар, применяемых для измерения температуры жидкой стали (платинородий – платина, вольфрам-молибден), отличаются наличием специальных деталей (наконечников), защищающих рабочий конец термопары от воздействия агрессивных газов. Кроме того, в этих термопарах стремятся получить малую инерционность. Последняя обеспечивает возможность проведения быстрых (в пределах одной минуты) измерений, что в свою очередь способствует уменьшению воздействия агрессивной среды и сохранению термопары.

 


Поделиться:



Последнее изменение этой страницы: 2019-03-22; Просмотров: 425; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.015 с.)
Главная | Случайная страница | Обратная связь