Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Генетическая природа холестериновых аномалий



В обмене холестерина принимают участие десятки ферментов, и мутация в каждом из кодирующих их генов может привести к нарушению работы всей системы. Известны, например, так называемые семейные формы гиперхолестеринемии [1], [28]. Эти нарушения липидного обмена связаны с мутацией генов, кодирующих рецепторы липопротеидов низкой плотности. Если мутантный ген присутствует только в одной из пары хромосом, возникает так называемая гетерозиготная форма наследственной гиперхолестеринемии (в Америке и Европе она встречается у одного из 500 человек), если мутантных генов два — гомозиготная (встречается у одного человека из миллиона). В обоих случаях страдают рецепторы к ЛПНП, расположенные на поверхности гепатоцитов. Эти рецепторы играют важную роль в метаболизме холестерина, так как именно ЛПНП являются одним из его переносчиков. При гомозиготной гиперхолестеринемии человек умирает, не достигнув и 20 лет, частично от отложений холестерина в разных органах и артериях, а частично — от функционального расстройства. При гетерозиготной гиперхолестеринемии в клетках человека не хватает рецепторов, чтобы связывать и втягивать в клетки все те холестериновые липопротеиновые частицы, которые образуются в печени. Пожалуй, эти генетически обусловленные расстройства холестеринового метаболизма — одни из немногих случаев, когда прием статинов необходим и оправдан. В остальных случаях вас, дорогой читатель, ожидают печальные последствия, о которых будет сказано позже.

«Холестериновые» гены и продолжительность жизни

Гены, управляющие синтезом холестерина в человеческом организме, играют важную роль в определении продолжительности жизни. В рамках «Проекта генов долголетия» при обследовании генетически наиболее однородной группы европейских евреев ашкенази в возрасте 95–105 лет установлено, что эти долгожители имели повышенное содержание холестерина, локализованного в хиломикронах. Синтез этой крупной липопротеиновой частицы контролируется особым геном СЕТР — так называемым геном долголетия. Он «помогает» движению холестерина по артериям к печени и управляет размером частиц холестерина, циркулирующих в крови. Дополнительные исследования возрастной группы от 75 до 85 лет подтвердили четкую корреляцию между содержанием крупных липопротеиновых частиц в крови и сохранением интеллектуальных способностей в пожилом возрасте.

Люди с высоким содержанием холестерина в крови живут дольше. Согласно данными, полученным учеными Йельского университета, пожилые люди с низким холестерином умирали от инфаркта миокарда в два раза чаще, чем люди такого же возраста с высоким холестерином.

«Перевозчики»

В организме холестерин никогда не бывает сам по себе — он всегда связан с липидами. Будучи гидрофобным соединением, это вещество нерастворимо в воде и плазме крови. Холестерин может переноситься с током крови только в составе так называемых транспортных форм — липопротеинов (белково-липидных комплексов), представляющих собой сферические частицы (рис. 5), наружный (гидрофильный) слой которых образуют фосфолипиды и белки-апопротеины (или просто «апо»), а гидрофобное ядро составляют триглицериды (попросту говоря, жиры) и холестерин (точнее, эфир холестерина). Ядро — функциональный груз, который доставляется до места назначения. Оболочка же участвует в распознавании клеточными рецепторами липопротеиновых частиц и в обмене липидными частями между различными липопротеинами (то есть, служит своего рода контейнером) [30]. Подробнее о строении различных транспортных форм см. во врезке.

Рисунок 5. Белково-липидный комплекс.

«Перевозчик-1» (Хиломикрон)

Хиломикроны (ХМ) — самые большие по размеру (диаметр 80–500 нм), но самые маленькие по плотности (А-1, А-11, А-1V, В-48, С-1, С-11, С-111, Е. Они образуются в эндоплазматическом ретикулуме кишечника, секретируются в лимфу и затем через грудной проток попадают в кровь. Период полужизни ХМ составляет 5–20 минут. При попадании в кровоток хиломикроны теряют аполипопротеины А-1, А-11, А-1V, но приобретают аполипопротеины апоС и апоЕ. Фермент липопротеиновая липаза, находящаяся в капиллярах, гидролизует триглицериды сердцевины хиломикронов путем активации аполипопротеина С-11. Триглицериды поглощаются адипозными (жировыми) тканями и мышечными клетками, а образовавшийся липопротеиновый комплекс входит в состав ЛПВП.

«Перевозчик-2» (ЛПОНП)

Липопротеиды очень низкой плотности (ЛПОНП; их называют также пре-β-липопротеидами) являются транспортной формой эндогенных триглицеридов, на их долю приходится около 50–70% массы всех липопротеидных частиц, содержащих 90–92% липидов и 8–10% белков (аполипопротеины В-100, С-1, С-11, С-111, Е). Их плотность — менее 1,006 г/мл, диаметр частицы — 30–80 нм. Формируются в печени, из них образуются ЛПНП.

«Перевозчик-3» (ЛППП)

Липопротеиды промежуточной плотности (ЛППП) присутствуют в очень низких концентрациях и являются продуктом метаболизма ЛПОНП. Соотношение липидов и белка (аполипопротеины В-100, Е) в составе частиц непостоянно. Их плотность — 1,006–1,019 г/мл, диаметр частицы — 25–35 нм.

«Перевозчик-4» (ЛПНП)

Липопротеиды низкой плотности (ЛПНП; их называют также β-липопротеидами) являются основным переносчиком эндогенного холестерина в крови (около 70% общего холестерина плазмы). Плотность — 1,019–0,063 г/мл, диаметр частицы — 18–28 нм. Сферические частицы ЛПНП состоят на 80% из липидов, на 20% из белков, ключевым белком является аполипопротеин В-100 (АпоВ-100). В каждой частице ЛПНП только одна молекула АпоВ-100, которая располагается на ее поверхности. Там же располагается и холестерин, который после этерификации в качестве холестеринового эфира попадает внутрь сферы (рис. 6).

Рисунок 6. Строение сферической частицы Х-ЛПНП (частицы Х-ЛПВП имеют похожую организацию, их основной аполипопротеин — АпоА). В таком упакованном виде холестерин переносится из печени в ткани. Частицы ЛПНП варьируют по размеру, плотности, составу и физико-химическим свойствам, вследствие чего количество их субфракций может достигать 15. Обычно различают большие легкие, малые плотные и промежуточные. Большие легкие содержат 2750 молекул холестерина, малые плотные — 2100. Количественное распределение разных ЛПНП по субфракциям у разных людей может варьировать.

Липидное ядро ЛПНП почти полностью состоит из эфиров холестерина. Период полужизни ЛПНП в крови — 2,5 дня. За это время до 75% из них захватывается клетками печени, а остальные 25% попадают в другие органы. Чтобы холестерин попал в печень, ее клетки должны «выхватить» ЛПНП из кровяного русла. Для этого на поверхности каждой частицы и находятся сигнальные аполипопротеины (иногда для краткости их называют апопротеинами или апобелками), а на поверхности клетки-захватчицы — соответствующие им рецепторы. Именно за открытие в клетках печени специфического рецептора LXR (liver X receptor) для поглощения из крови избыточного Х-ЛПНП американские генетики Майкл Браун и Джозеф Голдстайн в 1985 году и получили Нобелевскую премию в области физиологии и медицины «за выдающиеся открытия, касающиеся обмена холестерина и лечения нарушений уровня холестерина в крови». Рецепторы имеют высокое сродство к ЛПНП и прочно связывают их. Основная функция LXR — обратный транспорт холестерина в печень, вывод с желчью, снижение кишечного всасывания [28], [31].

Метаболизм ЛПНП идет двумя путями. Первый путь — связывание с АпоВ/Е-рецепторами печени, клеток надпочечников и периферических клеток, включая гладкомышечные клетки и фибробласты. В норме рецептор-опосредованным путем из кровеносного русла удаляется около 75% ЛПНП. После проникновения в клетку частицы ЛПНП распадаются и высвобождают свободный холестерин. Существует обратная отрицательная связь: чем больше холестерина внутри клетки, тем хуже он поглощается. При избытке внутриклеточного холестерина он через взаимодействие с геном рецептора ЛПНП подавляет синтез рецепторов к ЛПНП и, наоборот, при низком уровне внутриклеточного холестерина синтез рецепторов к ЛПНП возрастает.

Альтернативный путь метаболизма частиц ЛПНП — окисление. Перекисно-модифицированные ЛПНП слабо распознаются Апо-В/Е-рецепторами, но быстро распознаются и захватываются так называемыми скэвенджерами (англ. scavenger — мусорщик) — рецепторами макрофагов [32]. Этот путь катаболизма ЛПНП, в отличие от рецептор-зависимого пути, не подавляется при увеличении количества внутриклеточного холестерина. Развитие этого процесса приводит к превращению макрофагов в переполненные эфирами холестерина «пенистые» клетки — компоненты жировых пятен [33]. Последние являются предшественниками атеросклеротической бляшки, за что липопротеиды низкой плотности считают «плохими» липопротеидами.

 

«Перевозчик-5» (ЛПВП)

Липопротеиды высокой плотности (ЛПВП) — самые мелкие липопротеидные частицы (плотность — 1,055–1,21 г/мл, диаметр частицы — 5–9 нм). Их также называют α-липопротеидами. На их долю приходится 20–30% общего холестерина крови, но из всех липопротеидов именно эти частицы содержат наибольшее количество фосфолипидов и белка (поровну). А-1, А-11, С-1, С-II, С-III, Е — апопротеины ЛПВП-частиц. Основной компонент ЛПВП — аполипопротеин А-1, составляющий около 30% всей частицы. Его функции — быть кофактором для реакции, осуществляемой LCAT (лецитин-холестерол-ацетилтрансферазой), и обеспечивать поглощение холестерина из клеток. Это ключевая стадия обратного переноса холестерина в печень для его дальнейшего распада. Синтезируется апоА-1 в тонком кишечнике и печени примерно в равных количествах.

По наличию аполипопротеина С различают три субфракции ЛПВП:

  1. ЛПВП-СI с плавучей плотностью 1,055–1,085 г/мл;
  2. ЛПВП-СII с плавучей плотностью 1,063–1,120 г/мл;
  3. ЛПВП-СIII с плавучей плотностью 1,120–1,210 г/мл.

АпоС-1 активирует LCAT и ингибирует фосфолипазу А2. АпоСII — кофактор липопротеиновой липазы. АпоСIII защищает ремнантные липопротеины — продукты распада хиломикронов и ЛПОНП.

Синтезируются ЛПВП-С в кишечнике и печени в виде предшественников (дисковидных частиц), которые превращаются в сферические частицы уже в плазме.

Важную роль в метаболизме холестерина и стероидов играет рецептор-"мусорщик" SR-BI. Он был обнаружен в 1996 г. как рецептор для ЛПВП [34] при избирательном захвате холестерина в печени, надпочечниках, макрофагах, плазме.

«Перевозчик-6»

Но полиморфизм липопротеинов на этом не заканчивается. В последнее время идентифицирован еще и липопротеин ЛП(a) — опасный родственник ЛПНП. Собственно, это и есть ЛПНП, но с «довеском» в виде белка апопротеина (а), связанного с АпоВ дисульфидной связью. Синтезируется ЛП(a) в печени, а катаболизируется в почках, в отличие от других липопротеинов. Апо(а) — гликопротеин с очень большим содержанием нейраминовой кислоты и поэтому водорастворимый, в отличие от АпоВ-100. Белковая часть этого гликопротеина состоит из доменов типа «kringle» (крендель), имеющих гомологию с белками системы свертывания крови — плазминогеном, тканевым активатором плазминогена и фактором ХII. Количество доменов в молекуле апо(а) человеческой популяции варьирует от 12 до 51, а уровни ЛП(a) могут находиться в диапазоне от 1000 мг/л. Это предопределяется генетически, то есть не зависит ни от возраста, ни от пола, ни от диеты, ни от условий жизни, а потому понизить концентрацию ЛП(a) в крови практически невозможно ни изменением диеты, ни снижением массы тела, ни лекарственными препаратами [35]. Повышенные уровни ЛП(a) указывают на генетический риск грядущих коронарных событий и ишемических инсультов у лиц, в данный момент практически здоровых.

Судьбу холестерина в организме определяют аполипопротеины: или холестерин высвободится из «упаковки» и будет поглощен клетками для выполнения своих жизненно важных функций, или излишний холестерин будет удален из тканей и крови и упакован внутрь липопротеиновой частицы, которая унесет его в печень. Аполипопротеины являются структурными элементами, у которых гидрофильный участок контактирует с водными компонентами плазмы, тем самым обеспечивая перенос водонерастворимых липидов кровотоком. Они служат лигандами для рецепторов специфических липопротеинов (например, обеспечивающих первую стадию поглощения липидов клетками). Наконец, некоторые из них — это кофакторы липолитических ферментов, обеспечивающих метаболизм холестерина и липопротеинов.

Основной компонент ЛПВП — аполипопротеин А1, тогда как ключевым компонентом ХМ, ЛПОНП, ЛППП, ЛПНП является аполипопротеин В. Именно он обеспечивает выемку холестерина из «упаковки» и передачу его в клетки, отвечает за способность липопротеинов переносить холестерин из печени в ткани, необходим для образования липопротеинов, богатых триглицеридами. Аполипопротеин В отличается полиморфизмом и встречается в двух формах:

  • апоВ-100 — большой белок (4536 аминокислотных остатков), содержащийся в ЛПОНП, ЛППП и ЛПНП. Образуется в печени, прочно связан с липидной сердцевиной и поэтому не способен переходить из одной сферической частицы в другую;
  • апоВ-48 обнаруживается в хиломикронах, образуется в тонком кишечнике при расщеплении апоВ-100.

«Плохой» и «хороший»

Термины «плохой» и «хороший» холестерин возникли после того, как было установлено, что в организме холестерин никогда не бывает сам по себе — он всегда связан с липидами [36]. Различные классы липопротеинов по-разному причастны к возникновению атеросклероза. Так, атерогенность липопротеинов частично зависит от размера частиц. Самые мелкие липопротеиды, такие как ЛПВП, легко проникают в стенку сосуда, но так же легко ее покидают, не вызывая образования атеросклеротической бляшки. За это их и называют «хорошими» липопротеинами. ЛПНП, ЛППП и ЛПОНП при окислении легко задерживаются в сосудистой стенке. ЛПНП — наиболее атерогенные липопротеины крови.

А вот хиломикроны сами по себе неатерогенны: они слишком велики, вследствие чего неспособны проникать в сосудистый эпителий и вызывать эндотелиальные дисфункции. Но когда их триглицеридная «начинка» расходуется, их остатки (remnants) сильно уменьшаются в размерах и приобретают потенциальную атерогенность. Такие ремнантные частицы содержат экзогенный (пищевой) холестерин, апоВ-48 и апоЕ. Именно маленький размер ремнантных хиломикронов позволяет им проникать через стенки артерий и связываться со специфическими участками на тканевых макрофагах, вызывая их превращение в «пенистые» клетки и запуская медленный воспалительный процесс в стенках артерий (об этом — чуть позже). В норме апоЕ, расположенный на поверхности таких частиц, в печени связывается с рецепторами Х-ЛПНП и там же утилизируется. Но до этого момента ремнантные частицы (теоретически) могут успеть реализовать свою потенциальную атерогенность, особенно, если печень нездорова (например, поражена вирусом гепатита С) [37]. В общем, именно высвобождение из хиломикронов триглицеридов и последующая неэффективная утилизация ремнантных ХМ и повышают риск атерогенеза [38].

Большая часть того того, что известно о «хороших» и «плохих» свойствах холестерина, касается именно липопротеинов — «перевозчиков». Холестерин, связанный с липопротеинами низкой, промежуточной и очень низкой плотности, стали называть «плохим», а связанный с не имеющими отношения к атеросклерозу липопротеинами высокой плотности — «хорошим» [39]. Это стало очевидным из многочисленных проспективных исследований, в которых было доказано, что повышение уровня «плохого» Х-ЛПНП и понижение концентрации «хорошего» Х-ЛПВП увеличивает риск возникновения и развития атеросклероза, риски фатальных и нефатальных инфарктов миокарда и ишемических инсультов [40], [41].

Полученные результаты послужили платформой для разработки рекомендаций по снижению концентрации «плохого» холестерина, ставших, как считали, основой профилактики атеросклероза и стратегической целью диетического и медикаментозного вмешательства.

Казалось, что исследования ученых, проведенные на самом современном молекулярном уровне, выстроили четкую схему формирования атеросклероза как болезни нарушенного липидного обмена. Эту гипотезу как будто подтверждали и результаты лечения антиатеросклеротическими препаратами, мишенью которых был холестерин. Препараты, воздействующие на различные звенья липидного обмена, уменьшали частоту осложнений атеросклероза, предупреждали его дальнейшее развитие. В который раз казалось, что проблема атеросклероза решена. Но, как оказалось, все не так просто, и остались вопросы, ответов на которые не было. Их довольно много, и, прежде всего, вопрос практических врачей: почему атеросклероз развивается у лиц с нормальным содержанием холестерина в крови, а нередко и при низком его содержании? [42]

 

«Плохой», «еще хуже» и «совсем плохой»

Дело не только в соотношении концентраций атерогенного и неатерогенного холестерина. Действительно, чем больше в плазме частиц Х-ЛПНП, тем хуже. Но чем меньше их размер, тем еще хуже. Как указывалось выше, частицы Х-ЛПНП очень гетерогенны по своему липидному составу, заряду, размеру и форме. Чем меньше размер таких частиц, тем выше их атерогенность. Такие частицы были названы мелкими плотными, поскольку по сравнению с «нормальными» имеют более высокую плотность и пониженное содержание триглицеридов. К несчастью, они отличаются более длительным сроком жизни в плазме по причине изменения сродства к рецепторам печени, благодаря которым поглощаются и утилизируются ею. Важно подчеркнуть, что уровень мелких плотных частиц Х-ЛПНП в значительной мере предопределяется генетическими факторами, а их повышенные концентрации связаны с повышением риска сердечнососудистых заболеваний (ССЗ), метаболического синдрома и диабета 2 типа. А это означает, что у двух лиц при одинаковом количестве Х-ЛПНП и одинаковой концентрации Х-ЛПВП могут быть разные уровни мелких плотных частиц Х-ЛПНП и, стало быть, различные риски и атеросклероз различной тяжести [43].

Размер частиц Х-ЛПНП был признан предиктором возникновения и развития ССЗ и последующих острых коронарных событий. В марте 2006 года на страницах одного из самых престижных медицинских журналов появился манифест, подписанный тридцатью специалистами из десяти стран [44]. Он призывает к установлению новых правил оценки риска ССЗ. Предлагается заменить общепринятое определение в плазме общего холестерина, Х-ЛПНП и Х-ЛПВП на измерение концентраций АпоВ и АпоА — основных апопротеинов Х-ЛПНП и Х-ЛПВП, соответственно. Именно показатель баланса атерогенных и антиатерогенных частиц АпоВ/АпоА — самый точный индикатор риска ССЗ у лиц с бессимптомными сердечнососудистыми заболеваниями и диабетиков.

К сожалению, уменьшение размера частиц Х-ЛПНП — далеко не все, что делает «плохой» холестерин «еще хуже». Оказалось, что избыточная концентрация глюкозы в крови диабетиков приводит к нарушению обмена холестерина, а главная причина их смертности — ССЗ, вызванные гиперхолестеринемией. В основе такой причинно-следственной связи лежит гликозилирование — неферментативное присоединение глюкозы к апопротеину, в результате чего химически модифицированный АпоВ делает частицы Х-ЛПНП более атерогенными. А это приводит к выводу, что у двух лиц с одинаковым количеством частиц Х-ЛПНП одинакового размера могут быть разные уровни гликозилированного АпоВ и, стало быть, разные судьбы. И закономерно возникает вопрос: можно ли считать нарушение метаболизма холестерина и изменение размера частиц Х-ЛПНП единственными причинами атеросклероза? Ведь изменения концентраций «плохого» холестерина не объясняют всех случаев ССЗ: примерно половина сердечных приступов и ишемических инсультов происходят при нормальных уровнях холестерина.

Было установлено, что в атеросклеротических повреждениях стенок сосудов всегда обнаруживается миелопероксидаза (МПО) — центральный нападающий неспецифического иммунитета. Этот гем-содержащий фермент выполняет одну из ключевых функций в микробицидной системе, опосредованной нейтрофилами. Супероксидные анионы, являющиеся продуктами окислительного и нитрозативного стресса, повреждают не только микроорганизмы, но и ткани макроорганизма. На то он и неспецифический иммунитет! Это происходит при многих воспалительных процессах [45], в том числе и при атеросклерозе. Высокореактивные соединения окисляют и модифицируют в «плохом» Х-ЛПНП практически все его компоненты, вследствие чего пусть «плохой», но «свой» Х-ЛПНП превращается в окисленный и уже «чужой» о-Х-ЛПНП. И тут иммунная система начинает его уничтожать. Макрофаги, признав в модифицированном АпоВ чужака, интенсивно поглощают о-Х-ЛПНП, превращаясь в «пенистые» клетки, перегруженные окисленными фосфолипидами и холестерином [46]. Медленный воспалительный процесс запущен! (рис. 7).

Инфекции и атеросклероз

Несмотря на то, что между атеросклерозом, повышенным уровнем о-Х-ЛПНП и хроническими инфекциями существует определенная связь, атеросклероз инфекционным заболеванием не является. Хронические инфекции могут лишь приводить к его возникновению и развитию [47].

Рисунок 7. Строение атеросклеротической бляшки, образовавшейся в результате воспалительного процесса. «Воспалительная» теория утверждает, что атеросклероз — это вызываемый неспецифическим иммунитетом вялотекущий воспалительный процесс в стенках сосудов.

Следующий участник «ОПГ» («организованной преступной группировки»), причастной к возникновению атеросклероза, — фосфолипаза А2 (ЛП ФЛА2), ассоциированная с липопротеинами. Этот фермент связан преимущественно с Х-ЛПНП, но в малых количествах обнаруживается и в Х-ЛПВП. Он уничтожает окисленные фосфолипиды, содержащиеся уже в «совсем плохом» о-Х-ЛПНП. Благородная цель омрачается тем, что высокие уровни ЛП ФЛА2 присутствуют ни где-нибудь, а в атеросклеротических бляшках. Показано, что повышенная активность ЛП ФЛА2 является предиктором заболеваний коронарных артерий, инфаркта миокарда и, особенно, ишемических инсультов [48]. Известно, что высокий холестерин связан с риском ИБС, но не является надежным предиктором ишемического инсульта у людей среднего возраста. Таким предиктором может быть именно ЛП ФЛА2. Тест для определения уровня этого фермента в плазме одобрен в США для оценки индивидуального риска ишемического инсульта.

Помимо МПО, «обезображенного» ею о-Х-ЛПНП и ЛП ФЛА2, пытающейся это «безобразие» уничтожить, в атеросклеротических повреждениях обнаруживается также С-реактивный белок (СРБ) — центральный нападающий острой фазы воспаления. Установлено, что повышение базовых уровней СРБ позволяет оценить степень риска острого инфаркта миокарда, ишемического инсульта и внезапной смерти у лиц, еще не имеющих диагностированных ССЗ, даже в отсутствие гиперхолестеринемии. Доказано, что СРБ специфически связывается с о-Х-ЛПНП, следствием чего является активация системы комплемента и инициация воспалительного процесса в стенках артерий [49]. Подтверждением «виновности» СРБ в атерогенезе служит синтезированный ингибитор СРБ, на который возлагаются надежды в плане ранней терапии острых инфарктов миокарда. Этот ингибитор снижает риск смертности и предотвращает увеличение зоны инфаркта.

Кажется, с «организованной преступной группировкой» во челе с «плохим» Х-ЛПНП все ясно. Чего же еще ожидать?!

 

И ты, «Брут»?!

Мы помним, какие хорошие ЛПВП! Ведь они удаляют избыточный холестерин из клеток органов, тканей и крови, то есть проявляют антиатерогенные свойства. Помимо этого, частицы ЛПВП, содержащие «хороший» холестерин (Х-ЛПВП), обладают многими другими положительными характеристиками [50], [51]:

  1. их основные белки — АпоА1 и АпоАII — являются эффективными антиоксидантами;
  2. с ними связан особый фермент параоксоназа 1 (ПОН 1), который ингибирует окисление Х-ЛПНП, расщепляя токсичные окисленные липиды в составе о-Х-ЛПНП;
  3. уменьшая связывание моноцитов крови со стенками артерий, они проявляют противовоспалительные качества;
  4. стимулируют движение эндотелиальных клеток;
  5. ингибируют синтез факторов активации тромбоцитов эндотелиальными клетками;
  6. защищают эритроциты от генерации прокоагулянтной активности, что понижает вероятность образования тромбов;
  7. стимулируют синтез простациклинов эндотелиальными клетками, продлевая время их жизни;
  8. уменьшают синтез ДНК в васкулярных гладких мышцах, индуцируемый эпидермальным фактором роста;
  9. имеют тромболитические свойства;
  10. модулируют эндотелиальную функцию, очевидно, за счет стимулирования продукции NO.

Количественный вклад каждого из этих факторов в понижении риска атерогенеза пока не ясен, но в целом их значение трудно переоценить [28]. Так можно ли ожидать от такого «хорошего» Х-ЛПВП каких-нибудь «подлянок»? Увы, да!

Оказалось, плазменные частицы Х-ЛПВП очень неоднородны по физико-химическим свойствам, метаболизму и биологической активности. Антиатерогенные свойства Х-ЛПВП могут пострадать при нарушениях обмена веществ, связанных с прогрессирующим атеросклерозом. Действительно, метаболический синдром и диабет 2 типа характеризуются не только повышенным сердечно-сосудистым риском и низким уровнем холестерина в ЛПВП, но также и функциональной дефективностью. Функциональный недостаток ЛПВП глубоко связан с изменениями их внутрисосудистого метаболизма и компонентного состава. Формирование частиц ЛПВП с ослабленным антиатерогенным действием обусловлено обогащением ядра частицы триглицеридами и обеднением эфирами холестерина, изменением структуры аполипопротеина A-I (апоA-I), заменой апоA-I сывороточным амилоидом А и модификацией белковых компонентов в результате окисления и гликозилирования. Функциональная дефективность Х-ЛПВП и их субнормальные уровни могут действовать синергически, ускоряя прогрессирование атеросклероза при нарушении обмена веществ [52].

Также установлено, что при острой фазе воспаления снижается концентрация основного апопротеина Х-ЛПВП — апоА, который обеспечивает обратный транспорт холестерина. Более того, снижается уровень ПОН 1 — независимого показателя риска предрасположенности к ишемической болезни сердца (ИБС) и инфаркту миокарда (ИМ). В результате таких трагических событий при воспалительном процессе большинство антиатерогенных функций Х-ЛПВП превращаются в свою противоположность: «хороший» Х-ЛПВП становится «плохим» [53]. У лиц с ССЗ весьма часто обнаруживается именно провоспалительный и атерогенный вариант Х-ЛПВП.

К сожалению, потеря Х-ЛПВП антиатерогенных свойств — не единственная беда, которая с ним приключается при воспалении. Он также подвергается окислению благодаря действию МПО. Частицы Х-ЛПВП, выделенные из атеросклеротических повреждений, содержат этот фермент. АпоА частиц Х-ЛПВП, циркулирующих в плазме лиц с ССЗ, содержит много 3-нитротирозина и 3-хлортирозина — продуктов активности МПО. Хлорирование и нитрирование АпоА приводят к уменьшению обратного транспорта холестерина, осуществляемого ЛПВП.

Американские ученые выяснили, как холестерин переносится из липопротеидов высокой плотности (ЛПВП) в липопротеиды низкой плотности (ЛПНП), становясь из «хорошего» «плохим». Полученные данные подтвердили существовавшую гипотезу о том, что холестерин перемещается между липопротеидами разных фракций по тоннелю, проходящему через центр молекулы белка-переносчика эфиров холестерина (БПЭХС) (рис. 8). Таким образом, Х-ЛПВП — действительно «хороший», но лишь до поры до времени [54].

Рисунок 8. Белок-переносчик эфиров холестерина (БПЭХС). Исследователи из Национальной лаборатории Лоренса Беркли при Министерстве энергетики США впервые методом электронной микроскопии получили изображение структуры БПЭХС, транспортирующего холестерин из ЛПВП в ЛПНП. БПЭХС является небольшой (53 кДа) молекулой, имеющей форму банана, с заостренным N-концом и сферическим С-концом. N-конец проникает в ЛПВП, а С-конец взаимодействует с ЛПНП, что приводит к образованию трехкомпонентного комплекса. На основании структурного анализа было сделано предположение, что такое взаимодействие может создавать молекулярные силы, изменяющие форму концов БПЭХС с образованием пор с обеих сторон молекулы. Эти поры соединяются с центральными полостями БПЭХС, формируя тоннель, через который холестерин выходит из ЛПВП.


Поделиться:



Последнее изменение этой страницы: 2019-03-22; Просмотров: 352; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.116 с.)
Главная | Случайная страница | Обратная связь